

Progress and prospects of optical network technologies and standards in China

Haiyi ZHANG

China Academy of Information and Communications Technology(CAICT)

2023.9.21

1. Background and overview

目录

Directory 2. Progress of optical network technologies and standards

3. Prospects of future optical network

Optical networks : the cornerstone of information infrastructureCAICT 中国信通院

- As the cornerstone of communication networks, optical network is the key infrastructure and prerequisite for the development of 5G, data centers, and other fields.
- Optical network plays an important role in driving effective ICT investment, promoting information consumption, and empowering various industries transformation.
- AIGC big data training and application, 5G-A and 6G are the new driven factors of optical network, which will require for 400G/800G high speed, low latency, more network capacity and intelligence SDN control of network connections.

Optical Network Management & Control Systems

- **SDN MCS:** Enhanced MCS function and standard north & south-bound interface, current L3 of intelligent operation
- AI/ML, Big Data, Digital Twin Network: targeting L4 of network intelligent operation in 2025

Optical Transport and Access Network Technology

- Backbone: 100G/200G/400G/800G WDM/OTN including Flex grid ROADM+OXC
- Metro: 100G/400G/800G WDM, POTN (CTC, CMCC, CUC), PTN and SPN (CMCC), CPE OTN & SDH MSTP
- □ Access: X-PON including 50G PON, FTTR

Optical Fiber Cable & Infrastructure

- □ Fiber Cable: G.652, G.654E, G.657, SDM fiber, Hollow core fiber etc.
- **Physical Infrastructure:** P2MP ODN, Optical junction box

CCSA' s organization for optical network standards

1. Background and overview

目录 Directory

2. Progress of optical network technologies and standards

- Transport network
- Access network
- Devices and modules
- New fibers
- Network management
- 3. Prospects of future optical network

Transport network : 400G/800G being currently hot topic

CAICT 中国信通院

Domestic industry, academia, research and application institutions also focus on 800G transmisson ⁷ related research and experimental verification.

Transport network : Standards activities on WDM/OTN

CAICT 中国信通院

- □ WDM: The single carrier rate is evolving to 400Gb/s, 400G QPSK is the mainstream solution in China. Meanwhile, 800G WDM for metro applications is also in the process of standardization.
- **OTN:** Widely deployed in China. OSU, fine granularity OTN and beyond 400G OTN is under study simultaneously.
- □ ROADM/OXC: All-optical networking is the main developing direction with consensus. CCSA has published the latest ROADM equipment standard.

Transport network: SPN scale deployment supports 5G development CAICT 中国信通院

SPN technology, combined with the advantages of multi-layer transport technology, has been deployed on a large scale in fields such as 5G bearer and industry private network applications.

Transport network: the standardization of SPN is preliminarily complete

SPN Network and Equipment SPN Management and Control 5G Network End to End Slicing Architecture Architecture Architecture NSMF Management and Control System (MCS) L2/L3 VPN Services Transport -CN-RAN-Packet CBR NSSMF SPL South-NSSMF NSSMF (SRv6/SR-MPLS/ MPLS-TP) Services (Slicing Packet Layer) bound NETCONF+Yang PCEP BGP-LS Telemetry Ethernet MAC SPN Super SDN Controller Interface MTN FGU (N×10Mbps) MTN Channel (N × 5Gbps) NE& Fault& Domain A-Domain B-Service Protocol Perfor DCN Interfa 协议 MCS MTN Channel (N × 5Gbps) MCS Sync SCL (configu MTN FGU mance ces (Slicing Channel Layer) (N×10Mbps) ration) MTN Section STL **IEEE 802.3 PHY** 5G CN Domain B Domain A (Slicing Transport Layer) **Optical Media** SPN **Progress** CCSA TC6 WG1 Standards on SPN CCSA SP2 Standards on SPN for 5G network slicing **Progress** YD/T 3826-2021 General Technical Requirements for Slicing 2021. 3 Published YD/T 3974-2021 5G network slicing Technical requirements for end-to-Packet Network (SPN) end forwarding and control plane interworking based on SPN transport 2021.12 Published 1 YD/T 4172-2022 Technical Requirements for Slicing Packet 2 2022.9 Published Inetwork **Network (SPN) Equipment** YD/T 4446-2023 Test Method of Slicing Packet Networks(SPN) 3 2023.7 Published Equipment YD/T 4293-2023 Technical requirements for TN-NSSMF based on SPN 2023.4 Published 2 YD/T 4372-2023 Technical Specification of South Interface of 4 2023.7 Published Slicing Packet Network(SPN) YD/T 4291-2023 Technical requirements for interface between NSMF 2021-0966T-YD Test Method of Slicing Packet Networks(SPN) 3 2023.4 Published 5 2023.6 Approved Equipment Southbound Interface and TN-NSSMF based on SPN 2021-0965T-YD, Fine Granularity bearer Technical Specification for 6 2023.4 Approved Slicing Packet Network (SPN) Test method for interface between NSMF and TN-NSSMF based on SPN Under Study 4 YDFFZT1383-2023 Test Method of Fine Granularity bearer Technical 7 2023.9 Consent Specification for Slicing Packet Network (SPN) YDCPZT1436-2023 Technical requirements for miniaturized access 5 Enhanced Technical Specification for 5G Network Slice SLA Assurance **Under Study** 8 Under study Sliced Packet Network(SPN) equipment

11

Fixed access in China had entered the era of all-optical access, and optical access services can be further extended.

The number of users with giga bps and above has been increased rapidly, with an annual growth rate more than 250%

Access network: 50G PON standard partially completed

Progress of 50G-PON standards

Progress of 50G-PON Applications

- The standards of 50G-PON system requirements have basically completed.
- Next step for 50G-PON standards is for test and interoperability aspects.
- Carriers network: CTC, CMCC and CUC select 50G-PON as the evolution of XG/XGS-PON. Multiple 50G-PON trails has been executed in Chinese Carriers.
- Industrial network: 50G-PON has been trailed in industrial scenario.

		x-PON standards progress			
		G-PON Series	XG-PON Series	XGS-PON Series	50G-PON Series
PON system	General	YD/T 1949.1-2009	YD/T 2402.1-2012	YD/T 3691.1-2020	YD/T 4300.1-2023
requirements	PMD	YD/T 1949.2-2009	YD/T 2402.2-2012	YD/T 3691.2-2020	Approved
	DLL	YD/T 1949.3-2010	YD/T 2402.3-2012	YD/T 3691.3-2020	YD/T 4300.3-2023
Test method		YD/T 1995-2009 (2017)	YD/T 2756-2014	YD/T 3916-2021	Under study
Interoperability		YD/T 2157-2010(2017)	YD/T 3915-2021	YD/T 4115-2022	Under study

Access network: FTTR standard being developed gradually

Whole

house Giga

Progress of FTTR standards Progress of FTTR Application Operators in China have accelerated the ■ The standard of FTTR system development of higher speed optical access requirements is the most hot topic in CCSA TC6/WG2. networks and launched FTTR service brands. ■ The standard of General CTC CMCC requirements of FTTR has been Ŷ

approved in April 2023.

■ The standards of PHY and DLL are

expected to be approved in 2024.

Forecast for FTTR users growth in China 3M 2M Dec 2022 Apr 2023 Dec 2023

Optical

Wi-Fi

CUC

<u>_</u>

Whole

house

optical

13

Devices and modules: Focusing on Tb/s and CPO/LPO research CAICT 中国信通院

800G/1.2T/1.6T

- 800G/1.2T/1.6T standards in CCSA、IEEE802.3、OIF and MSAs are under study. Industries actively develop related products.
- □ For 1.6T IM-DD, IEEE802.3 focus on 200G/lane scheme, 4×400G MSA focus on 100G/lane scheme, CCSA set up a series of research projects to evaluate different technical solutions.

1.6T IM-DD Module	1.2/1.6TCoherent Module	Optoelectronic Chips		
	cisco	LUMENTUM SOURCE		
eoptolink° (intel)	ciena	MACOM SEMTECH		

1.2T/1.6T	Standard/Research report	Distance	
		200G/lane 500m	
		200G/lane 2km	
4×400G MSA	/	100G/lane 100~10km+	
	Research on 1.6Tb/s intensity modulation transceiver module	TBD	
CCEA	Research on 1.6Tb/s phase modulation transceiver module	TBD	
CCSA	Coherent driver modulator subassembly Part 3: 1.2Tb/s	—	
	Technical specification of integrated intradyne coherent receiver part 6: 1.2Tb/s	_	

- □ IPEC has initiated the OIO/CPO research project in and is currently drafting a 100T+research report.
- Key Components/Modules for Co-Packaged Optics Part 1: External Light Source Module

CCSA TC6 WG4 Research report: Research on the technology of Co-Packaged optics (2021)

LPO

- □ LPO has become a new hot topic. Driven by the AI big model, LPO is expected to accelerate its landing in 2024.
- Different technical solutions are being studied.
- □ Standardization organizations including CCSA are considering standardization research.

Devices and modules: 400G/800G standard developed acceleratedly CAICT 中国信通院

	Single-mode optical fibers for telecommunication					Next generation new optical fibers		
C	CSA: GB/T 9771.X	IEC: BX.X_X	ITU-T: G	6.65X.X	S	Submarine cables		2
	GB/T 9771.1 GB/T 9771.2	B1.2_b/c/d	G.654.A/B	B/C/D/E	N	Aulti-fiber optical		
	GB/T 9771.3 GB/T 9771.4	B1.3 B2 a/b	G.652 G.653.	2.D		cables		
	GB/T 9771.5	B4_c/d/e	G.655.0	C/D/E	n	Space-division ultiplexing(SDM)		
	GB/T 9771.6 GB/T 9771.7	B5 B6 a1/a2/b2/b3	G.657.A1/A	A2/B2/B3		fibers		
	CCSA TC6 WG3 Standards			Progress]	Hollow core fiber		
1	1 GB/T 9771.1-2020 Characteristics of a dispersion unshifted single-mode optical fibrer			2020.12 Published				
2	GB/T 9771.2-2020 Characteristics of a cut-off wavelength shifted single-mode optical fiber			2020.6 Published		CCSA TC6 WG3	Standards	Progress
3	3 GB/T 9771.3-2020 Characteristics of an extended wavelength band dispersion unshifted single-mode optical fiber			2020.6 Published	1	Research on New Optical Fibers Oriented to Future Network Evolution		Under study
4	4 GB/T 9771.4-2020 Characteristics of a dispersion shifted single-mode optical fiber			2020.6 Published		Research on characteristics and applications		Under
5	5 GB/T 9771.5-2020 Characteristics of a non-zero dispersion shifted single-mode optical fiber			2020.6 Published	2	of space division multiple	xing fibers	study
6	6 GB/1 9771.6-2020 Characteristics of a fiber with non-zero dispersion for wideband optical transport			2020.6 Published		Tachnical report of hellow	, coro fibor	Under
7	7 GB/T 9771.7-2022 Characteristics of a bending loss insensitive single-mode optical fiber			2022.6 Published	3	rechnical report of hollow	v core fiber	study ₁

Network management: Integrating AI and DT becomes hot topic CAICT 中国信通院

- □ Mainly responsible for the research of MC systems and interfaces.
- Currently research on interface technologies for the orchestration of cloud computing and transport networks.
- Research on AI/ML application scenarios and classification technologies.
- The application of DT in transport networks has become a hot topic

Network management: Improve the level of Intelligent operation CAICT 中国信通院

TC610: Test specification for the level of optical network intelligent operation

The current level of optical network intelligent operation has reached L3+.
In 2025, online AI and DT based simulation functions may be introduced, evolving towards L4.

	CCSA TC610 Standards	Progress
1	Technical requirements/Test specification for intelligent hierarchical evaluation of cloud-optical private line scenario 1.0	Finished
2	Test specification for intelligent hierarchical evaluation of cloud-optical private line scenario 2.0	Under study
3	Technical requirements/Test specification for service experience grade evaluation of cloud-optical private line	Under study

Test cases for optical network intelligent	L1	L2	L3	L4	L5
Service creation (2022)	Manul	Tools	Fixed rules	Optimizable rules	Connect the entire
Network health evaluation (2022)	Manul	Fixed rules	Configurable rules	Optimizable rules	process to self intelligence
Alarm correlation analysis (2022)	Manul fault location	Proposal based on tools	Fixed association rules	Optimizable rules	
Optical Channel planning (2023)	Manual network planning	Planning based on tools	Planning based on fixed rule	Optimizable rules and network simulation	
Service optimization (2023)	Manual optimization	Optimization based on tools	Optimization based on fixed rule	Optimizable rules and network simulation	

1. Background and overview

目录

Directory 2. Progress of optical network technologies and standards

3. Prospects of future optical network

Optical networks accelerate evolution on hot technologies

The future development of optical network need to collaborate on technological standards and application innovation research, industrial development, and intelligent network operating.

Enhance the innovation capability of all optical network Actively exploring innovative ICT applications for optical

Building an all optical network capacity evaluation system

Global industry collaborate on optical network technology and standard innovation, enhancing industrial ecological system development for future ICT network

Thanks for your attention

