

Strategic Research and Innovation Agenda Webinar 12,13th January 2023

DEVICES AND COMPONENTS

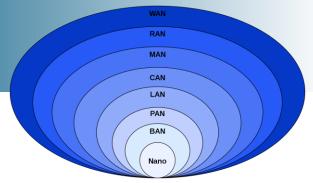
André Bourdoux (IMEC)

Table of content

Chapter 9 – Devices and Components

- 9.1 Vision and requirements
- 9.2 Sub-10GHz
- 9.3 Millimeter-wave and TeraHertz
- 9.4 Ultra-low Power Wireless
- 9.5 Antenna and Packages
- 9.6 High-speed Transceivers, Wireline and Optical
- 9.7 Baseband Modems
- 9.8 Processors for Cloud-AI, Edge-AI and on-device-AI
- 9.9 Memories
- 9.10 Hardware for Security
- 9.11 Opportunities for IoT Components and Devices

25 pages 11 sections >20 contributors 1 editor


Vision and context

- Wired and wireless networks are in constant evolution
 - addressing all relevant societal challenges
 - support the digitization of the industry and society
 - support new applications
 - support the "more Al" trend
- Requirements on future networks
 - support very low to very high throughputs, increase area coverage, reduce latencies, improve reliabilities, integrate artificial intelligence, ...
 - support an ever-larger number of verticals.
- Antagonistic requirements
 - devices densities, AP/BS densities, (aggregate) throughputs are exploding
 - power
 - cost
- High impact on hardware, software and technologies

Sub-10GHz

- Standards trend: more and more standards!
 - Dominance of Cellular (xG), Wi-Fi, Bluetooth, GPS
 - Many other systems: NFC, IoT, WAN, NTN, ...
- More efficient use of spectrum
 - XXXX-QAM, MIMO, multiple bands
- Higher integration
 - SoC (RF, analog, ADC/ADC, DSP, CPU)
- Front-end module and antenna nightmare
 - RF filters, switches, multi-band antennas, multiple channels, duplexers, ...
- ADC/DAC "closer" to the antenna/RF
- Technology choice
 - Best RF (linearity, filtering), fastest digital (digital RF), lowest power
- New opportunities, new challenges
 - e-health: wearables, implantables, ingestibles, ...
 - Human-machine interface, brain-machine interface
 - Mobile display technologies: AR/VR/XR, glasses, ...
- 17/01/2023 Sensing: passive, active (! self-interference)

https://commons.wikimedia.org/w/index.php?curid=95509836

- Better EVM

- Wider bandwidths
- Higher spectral efficiency
- Low cost, low power

This may look like "business as usual" but the requirements and constraints keep growing and so does the number of different platforms

ETWORLD

Millimeter-wave and TeraHertz

- The 90 to 300GHz range has great potential
 - Fronthaul/backhaul, Access, P2P, sensing, ...
- At higher frequencies:
 - Higher free-space loss must be compensated by higher antenna gain
 - Front-end becomes more challenging
 - Ultra-wide bandwidth → multi-GHz baseband and 10+Gsps ADC/DACs
 - Improvements in circuit design needed
 - Phase noise, noise figure, IQ mismatch, ...
 - Frequency dependent effects: group delay distortion in all components
 - Efficient (hybrid) beamforming remains a challenge, especially for high gain, large bandwidth (phase shifters vs true -time delay, beam squinting)
 - Chip, chip interconnect and antenna module must be co-designed
 - Minimize interconnect lengths, losses
 - 2D, 2.5D and 3D electromagnetic simulations
- Air interface design exploiting ultra-wide bandwidth, very directional beamforming and "front-end friendliness"
- Move digital processing to analog (equalization, synchronization, ...)

P	$_{T}G_{T}G_{R}\lambda^{2}$	$P_T A_T A_R$
$P_r = -$	$(4\pi R)^2$ =	$(\lambda R)^2$

Millimeter-wave and TeraHertz

- Solid-state technologies
 - Scale CMOS no longer the panacea: must be replaced or *complemented* with III-V
 - Huge trade-off:
 - Chip partitioning
 - Improve RF circuits vs calibration vs digital compensation
 - Technology choice
 - Silicon-based: RF-SOI, FD-SOI, SiGe BiCMOS
 - III-V on native substrates: InP
 - III-V co-integrated with CMOS
 - With further scaling, CMOS will transition from FinFET to gate-all-around structure (nanosheet, 2nm and beyond)
 - Impact on 10+Gsps ADC/ADC
- Not only wireless comm: convergence of communications and sensing
 - Passive THz imaging
 - Above-IC bolometer: better performance but expensive
 - Monolithic CMOS-based imagers: much lower performance but cost-effective
 - Active mm-wave and THz imaging
 - Higher frequencies enable smaller devices/better angular resolution and larger bandwidth/range resolution
 - Antenna options include on-chip and on-package
 - Imaging at >100GHz expected to boom and help driving circuit and technology research towards higher performances, smaller form factors and lower cost

Ultra-low Power Wireless

- IoT devices to grow to 100 billion by 2030
 - ULP sensors
 - e-health: wearables, implantables, ingestibles, brain-machine interface, active eye lenses, ...
- Huge challenge towards zero or near-zero power
 - Profound impact on the complete transceiver architecture and design and the protocol
- (nearly) Battery-free operation
 - Energy scavenging (thermoelectric, photovoltaic, piezoelectric, RF or wireless, wind, vibration, ...)
 - Wake-up receivers
 - Back-scattering devices
- Degradable devices
 - Huge # devices → huge e-waste at end of life
 - Bio-degradable substrates
 - Renewable materials

Antenna and Packages

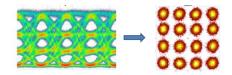
Moving to >100GHz brings new challenges

- Packaging for consumer equipment is a challenge
- Lossy interconnects \rightarrow avoid interconnects \rightarrow on-chip or in-package antenna
- Lenses can help to increase the gain but reduce the field-of-view
- Dual polarization (because of mobility)
- Wide bandwidth
 - Frequency-dependent behaviour
- Mismatches and angle-dependent coupling between antenna elements
 - Need for efficient array calibration
 - Can be expensive at manufacturing time
 - Fully-automatic, both start-time and run-time
- MIMO arrays, hybrid beamforming architectures
- New phased array architectures and interconnects
 - Substrate integrated waveguide

Antenna and Packages

Metamaterials and metasurfaces

- Allow to manipulate electromagnetic waves
- → huge potential for antennas and surfaces ("Intelligent Reflective Surfaces")
- Coverage increase, smart radio environment, better cell edge coverage, less interference and electromagnetic pollution
- Can be combined with antenna technologies, massive MIMO, mm-wave and THz communication, D2D
- Applications include:
 - Antenna design, absorbers, reflectors, super-lenses, cloaking devices, RCS manipulation (radar), ...
- Very active field of research, many innovations and disruptions


Radio-over-fibre communication, sub-systems and components for B5G and 6G networks

- Fronthauling needs explode with coordinated BF, CoMP, massive MIMO and cell-free MIMO
- CPRI and OBSAI are expected to saturate
- Example:
 - 2GHz BW, 4 carriers, 3 sectors each with 32 antennas, 8bits I&Q, 8B/10B encoding, 10% overhead → sustained throughput of 25Tb/s
- Innovative fronthauling solutions are needed
 - Analog RoF (high linearity needed)
 - RF Sigma-delta modulation
 - ...
- Split processing trade-offs between RRH and BBU

High-speed Transceivers, Wireline and Optical

Towards Terabaud capable opto-electronic transceivers

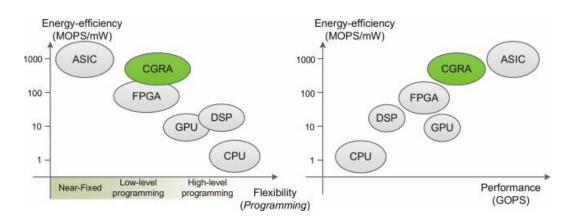
- Traffic to Data Centres is exploding
 - Higher telecom needs + cloud-based ML/AI + ...
- Need for new generations of optical transceivers with ever higher capacity
- Deployment of optical links at ever shorter distances
- More pervasive use of coherent transceiver technologies
 - From long-haul to metro to data centers to access
- Need for electro-photonic Systems-in-Package and co-packaged optics
 - Optical transceiver chiplets + CMOS data processing in one package
- Increase
 - Symbol rate: 100G \rightarrow 200G \rightarrow 400G \rightarrow 800G \rightarrow 1.6T \rightarrow 3.2T ... transceivers
 - Number of parallel lanes: (multiple wavelengths and/or fibres)
 - Higher spectral efficiencies: 4-PAM \rightarrow complex modulation
 - Integration: denser integration e.g. 3D modules
- Enabling technologies:
 - CMOS \rightarrow SiGe, InP
 - Novel materials for ultra-broadband optical modulators and detectors: e.g Organic hybrid material, Ferro-electric materials, Lithium Niobate (LiNbO3)
 - Monolithically integrated optics and electronics
 - Optically assisted analog-to-digital and digital-to-analog conversion

Ultra low-cost and low-power coherent "lite" transceivers

- Need for coherent detection for shorter ranges and at very low-cost
- Potential enabling technologies:
 - Integrated narrow linewidth laser sources
 - Integrated optical phase locked loops
 - For carrier recovery
 - Novel equalization approaches relying on co-developed opto-electronics
 - Move compute-intensive digital functions to optical e.g. passive optical filter

Optically assisted wireless subsystems

Microwave photonic techniques to replace conventional beamforming

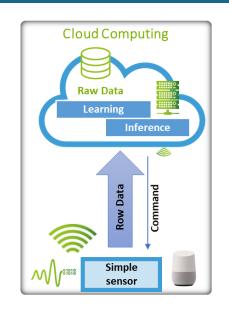

. . .

Baseband Modems

- Architectural trade-off
 - Flexibility/Programmability
 - Performance
- According to application
 - IoT, UE, Infrastructure
 - SISD, SIMD, MIMD
- Trends
 - Coarse-grained reconfigurable architecture
 - Near-ASIC performance with SW-like programmability
 - Array of COTS CPUs
 - Better suited for infrastructure
 - Deep-learning architectures for PHY processing
- Challenge for very high throughput: from nJ/bit to pJ/bit
- Challenge for very low throughput: from sub-mW to sub-µW
- Memory architecture/hierarchy!
 - A lot of power goes in data exchange

CMOS scaling

- Towards 1nm (A10) and beyond (A7, A5, ...)
- Lithography evolution
 - Extreme UV
 - Multi-patterningEUV
 - High numerical aperture UV
- Transistor architecture evolution
 - FinFET
 - Gate all-around (nanosheet, forksheet)
 - Complementary FET
- Innovative interconnect architectures
- 2.5D and 3D stacking

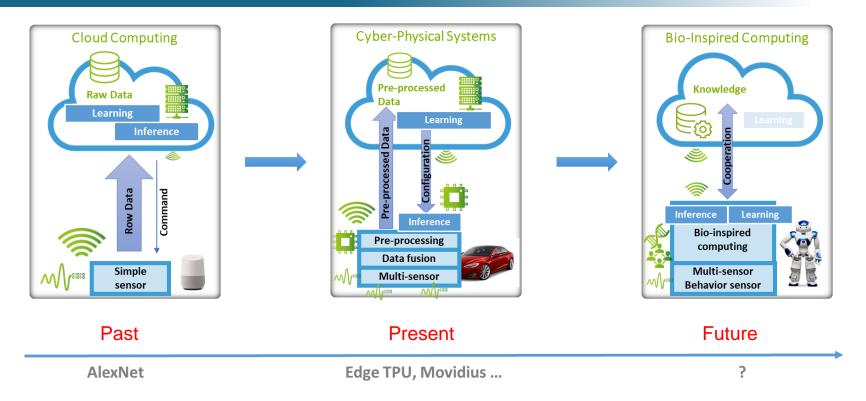

Potential roadmap extension									
2018	2020	2022	2024	2026	2028	2030	2032	2034	2036
N7	N5	NB	N2	A14	A10	A7	A5	A3	A2
						c	ontinued o	dimensiona	l scaling
Metal Pitch 40	28	22	21	18	16	16-14	16-12	16-12	16-12
						De	vice and m	aterial inno	ovations
Metal Tracks 7	6	6	6	5	5	5	4	-4	-4
FinFET	FinFET	FinFET	GAA Nanosheet	GAA Nanosheet	GAA Forksheet	GAA Forksheet	CFET	CFET	CFET Atomic
							Context-aware interconnect		
		Sauda	State	Sim			50	50	Sa
and the second sec	President of								
			-	Sec. 22	No.		SA	-	3

Picture from : https://www.imec-int.com/en/articles/20-year-roadmap-tearing-down-walls

• "Tearing down the walls": the power wall, the cost wall, the memory wall

Processors for Cloud-AI, Edge-AI and on-device-AI

Cloud computing is still the workhorse today


Need for very **high compute power for training** large networks

→ Large GPUs, TPUs, scalability over multiple nodes

Need for **low latency inference** (on a batch of 1 piece of data)

Processors for Cloud-AI, Edge-AI and on-device-AI

But there are ever larger needs for edge computing

Because of safety of operation, latency, privacy, power dissipation ...

 \rightarrow Need for dedicated ASICs, with sensor integration

Processors for Cloud-AI, Edge-AI and on-device-AI

Several techniques can be employed at architecture and circuit levels

Increased computing efficiency

Weight quantization

Reduced bit accuracy

- Smaller memory footprint
- Lighter operations

Variable bit precision

Handling higher bit accuracy when needed

• For higher inference precision

Sparsity

Skip MAC operations

• When weight or intermediate result is 0

Increased storage efficiency

Near memory computing

Avoid external memory accesses

Weights

Embedded Non-Volatile Memory
Intermediate results

SRAM or Embedded DRAM

In-Memory computing

SRAM or Embedded NVM

Digital or analog

A completely different paradigm, related to CIM:

Spiking neural networks (SNN), analog and digital flavour

Memories - Memories for processing and storage

We are entering the zettabyte and soon the yottabyte eras: yearly growth rate: 1.2 ... 1.4x

- Yottabyte predicted in 2030
- Data and traffic generated through
 - Apps such as Amazon, YouTube, Facebook, Netflix ...
 - IoT such as autonomous cars, smart buildings, smart city, e-health, ...
- Huge environmental problem: heat and power consumption
- 3-axis performance improvements
 - Density
 - Time: latency and speed/bandwidth
 - Energy
 - ... and Cost ...

Memories - Memories for processing and storage

- Growth rate for SRAM and DRAM is saturating and not sufficient towards yottabyte era
- Novel approaches and technologies are needed to sustain the growth rate
 - 3D stacking, already largely exploited
 - Emerging storage class memories to fill the gap between DRAM and NAND
 - PC-RAM, VMCO, CB-RAM, OxRAM, ...
 - Magnetoresistive RAMs: many variants
 - STT-MRAM (for L3 cache), SOT-MRAM (for L1-L2 cache), VCMA-based MRAM, ...
- DNA storage
 - Highest density *potential* by orders of magnitude
 - Challenges: speed, reliability ... and cost
 - Very long term

	ENERGY REDUCTION FOR A GIVEN THROUGHPUT	DENSITY IMPROVEMENT	SPEED (AT DEVICE LEVEL)	
CACHE (SRAM)	1.12x	1.15x	l.lx	
MEMORY (DRAM)	I.IX Cs reduction,Vdd reduction	I.2X → I.1X Slow down with C scaling	lx	
STORAGE (FLASH)	IX	I.4X → I.2X 3D log trend cannot last	lx performance increase from 2D to 3D	
ARCHIVAL (TAPES)	l.lx	1.4X Doubling at each LTO node	Lix	

https://www.imec-int.com/en/imec-magazine/imec-magazine-september-2018/emerging-memories-for-the-zettabyte-era

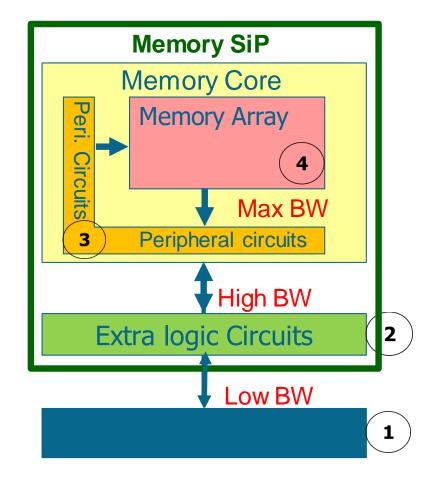
Memories - Computation-in-Memory (CIM)

Networld Europe

Computer architectures: Classification

Computation-outside-Memory (COM)

1. Far


2. Near

- Computation-in-Memory (CIM)
 - 3. Periphery

4. Array

CIM relies on memristive devices

Not a mature technology

Memories - Computation-in-Memory (CIM)

Challenges

Circuit design

& applications

Tools

- Multi-state behaviour
- Energy switching
- Threshold behaviours
- Endurance

Technology

Architecture

- Fault tolerance
- Variability, ROFF/RON ratio
- Integration, yield

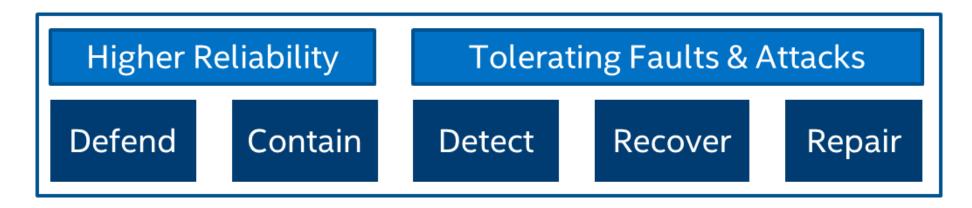
- High precision programming of NVM
- Fast and energy efficient signal conversion circuits (DAC, ADC)
- Precise measurement of current
- Vector x matrix: output as current
- Control complexity

- Micro vs macro architectures
- Intra- and inter-communication
- System accuracy
- Design exploration
- Simulation tools

- Mapping applications on architecture
- Compilers
- EDA tool chains
- Bridging device characteristics to circuit and to algorithm design
- Simulators

Research on Sustainable Security and Privacy - Motivation

Today's Limitations:


- Devices with limited security life-time
- Devices do not survive attacks require manual recovery
- Manual mitigation of risks and frequent patching
- Crypto is degrading and suffers against quantum computing attacks

Desired Future:

- Devices that survive for years in the field
- With minimal maintenance and automated recovery
- Guaranteed long-term survival of crypto mechanisms

Research on Sustainable Security and Privacy - Research Vectors

Research:

Maintaining Security and Surviving Attacks

- Graceful degradation into fail-secure states, maintaining critical services
- Systems survive attacks with automated recovery

Research:

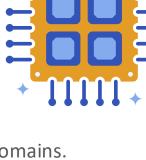
Post-Quantum Cryptography with Hardware Support

- Range of crypto that are robust against quantum computing attacks
- Toolboxes for wide range of usages

Opportunities for IoT Components and Devices

IoT - Components and Devices – Research areas

- **Pervasive wireless connectivity** as a major component behind the IoT technology and one of the key layers in IoT and IIoT architecture.
- Research challenges in the development of IoT components and devices for IT/OT integration using multi-frequency/multi-protocol heterogeneous wireless communication and networking for IoT/IIoT and edge computing with built-in end-to-end distributed security.
- Ultra-low power IoT, extended to Tactile IoT components and on-IoT device AI techniques and methods.
- Wide frequency range from sub-1GHz to THz
 - Use of CMOS and III-V semiconductors-based GaAs, GaN, InGaAs, SiC semiconductor technologies. Integrate microwave and analogue front-end technology and millimetre wave monolithic integrated circuits (MMIC).
 - Requires alignment between SNS and KDT.



Opportunities for IoT Components and Devices

Approach for IoT devices

- Specialized IoT devices and sensors enabled and validated especially for vertical sectors
 - Leveraging system on chip activities.
 - Specifying the way to communicate in the network/systems.
 - Integrating them in their operational systems in vertical (and as well cross vertical) application domains.
- Sustainable growth for energy efficient IoT devices development, battery efficiency and battery-free operation.
- Degradable devices and energy autonomous devices that uses ultra-low power radios and harvest the needed energy.

SRIA 2022 Chapter 9 Contributors

- André Bourdoux (editor)
- Jan Craninckx
- Piet Wambacq
- Aarno Pärssinen
- Didier Belot
- Yao-Hong Liu
- Ullrich Pfeiffer
- Antonio Manzalini
- Peter Ossieur
- Fredrik Dahlgren
- Achouche Mohand

- Maziar Nekovee
- Alexandre Valentian
- Said Hamdioui
- Francky Catthoor
- Gouri Sankar Kar
- Valerio Frascolla
- Ovidiu Vermesan
- Luis Perez-Freire
- Georgios Karagiannis
- Damir Filipovic

THANK YOU FOR YOUR ATTENTION

networldeurope.eu