

Strategic Research and Innovation Agenda Webinar 12,13th January 2023

SYSTEM ARCHITECTURE

Artur Hecker, artur.hecker@huawei.com

SRIA 2022 Webinar, Jan 12, online

ADMINISTRATIVE OVERVIEW

OVERVIEW

- SRIA2022 Tech. Annex System Architecture section (pp. 39-84)
 - Originated at VFCS 2017 and in SRIA 2018 as Network Architecture
 - Substantially extended to a System Arch in the SRIA 2020 version
 - Basis for System Architecture in 6GIA European industry 6G Vision WP
 - Basis for SNS JU Phase 1 Work Programme, Stream B, mainly B-01-01
 - SRIA 2022: updated and refreshed version of SRIA 2020
- Proposes a vision based on the actual evolution of ICT services
- Specifies a system architecture, as a real generalization of current models
 - Many (all?) current trends can be expressed as specializations
- Identifies technical areas required for a resilient operation on and of such a system

3

• SRIA 2022 - System Architecture

- 45 pages, 7 sections, 15 Research Topics, **27 contributors**, 1 editor
- Identifies 15 Research Topics, along with their descriptions, key outcomes (KPIs), contributions to the overall vision and/or society and required research actions

Research Theme	Virtualised Network Control for Increased Flexibility			
Research Challenges	Timeline	Key outcomes	Contributio	ons/Value
Pervasive Resilient Autonomic Resource Control	Mid-term	Flexibility and universality Sustainability (in time) Trustw orthiness		(in time)
		Research Theme Virtualised Network Control for Increased Flexibility		
		Action	Pervasive Resource Control	Separation of Controllability and Con
		International Calls		
		International Research	Х	
		Open Data		
u o ot		Large Trials		
pact		Cross-domain research	Х	Х

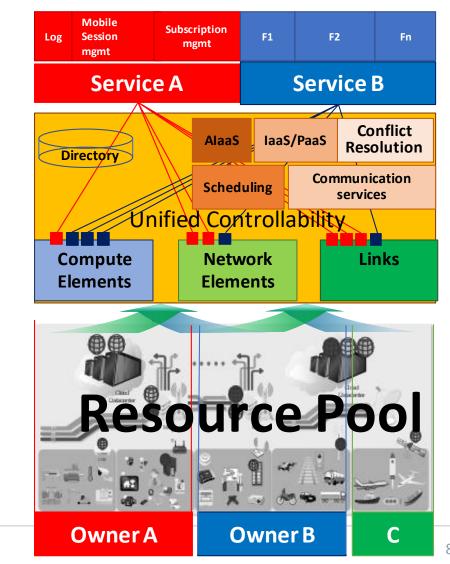
- SNS Phase 2 Work Programme – direct impact on Strand B-01-01, System Architecture

TECHNICAL OVERVIEW

MAIN RECOGNIZED TRENDS

- Nature of Communications: from servers to services
 - Previously single-client to single-server to client to data centre with a PoP (big ICT, CDN, etc)
 - E.g. 61% of Asian Pacific Internet traffic actually served by CDN in 2021
 - → We estimate about 90% of traffic to be concentrated in customer access networks
- Nature of Services: from monolithic to service chains
 - Advances in microservices: easier to develop, maintain, analyze. Emergence of middleboxes.
 - → Single server replaced by chains of (collaborative) transactions, from DNS+IP to e.g. IETF SFC
- Nature of Provisioning: virtualization, diversity
 - Containers, unikernels replaces bare metal and increases deployment dynamics
 - Private / public, terrestrial / non-terrestrial, virtual / physical, remote / local, application / networking, compute / transport, etc.
 - Services can be dynamically provisioned on load, concentration, under-performance, etc.
- Integration of application and network, different service invocation model, different trust situation

TOWARDS SMART GREEN SYSTEMS



- Problem for collaborative services: how to overcome traditional separation in silos?
- Future research must address inter-computing
- Opportunities:
 - Stronger and more capable devices in the network, at the edge and in the core
 - Proliferation of virtualization, providing portability and adjustable resource granularity
 - Densification of infrastructures, allowing to localize execution, loads, impacts, governance issues
 - New design, optimization and adaptation means, e.g., based on the advances of AI/ML
- Expected effects
 - Co-existence of physical and virtual entities, explicit involvement of different types of resources
 - Higher dynamics in both services and in the infrastructure

SYSTEM ARCHITECTURE VISION

6G as a Smart Service Execution Platform

Mobile System ArchitectureS: per tenant needs!

Governance

through

- Customization
- Local compliance
- Security, isolation
- Correctness
- of the service execution

- Accounts for the novel variety of the tenant types (NPN vs. MNO, compute integration, subscriber support for data governance)
- Mobile system architectures allocated as a service function chain: preserves and upholds the flexibility of the modern infrastructures
- Emergence of new types of functions within the user, control and management planes to adapt to the capabilities of the infrastructure
 - Mobile systems will look like computer programs executed within the • programmable infrastructure

Sustainability

through increase of

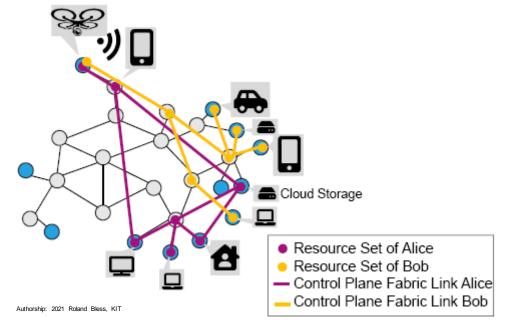
- Universality
- Cooperation
- Efficiency

at the resource level

Infrastructure: multi-tenant, composable, elastic

- Full-service platform (IaaS), commonly deployed and available to all
 - MNOs, NPNs, OTTs, subscribers, novel players
- Native integration of all ICT resources, of any kind
- Native integration of AI/ML as platform capability (particular PaaS), usable both for the system itself and for the executed services over APIs
- Native and natural integration of terminals just as of any other resource

HOW CAN THIS WORK? REQUIREMENTS


- Resource continuum: need to support a dynamic pooling of various types of resources from diverse participating tenants, systems, devices and objects.
- Flexibility in services, with recursion: enable seamless allocation of complex IT objects over selected (groups of) IT objects and controllable resources
 - IT objects: ranging from atomic modules to compound services. Allow object reuse (APIs, control)
 - Controllable resources: depending on the controlling entity, this is what ends the recursion
- Self-sustainability: need to integrate autonomics to enable both self-organized, resilient programmability and elastic, correct execution of any IT objects.
- AI/ML integration: as IT objects of particular interest, AI/ML objects offer programmable analytics and cooperative machine learning to the respective service layer through open interfaces.

PERVASIVE RESOURCE CONTROL

Problem

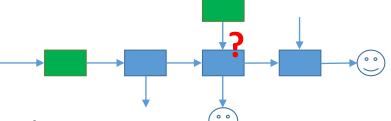
- Assuming a changing resource pool, how can a tenant control the assets?
- What if somebody else's management decisions look like sudden failures?
- What if your own decisions can disconnect some assets?
- Needed:
 - Scalable, Flexible, Zero-touch routing protocol
 - Suitable for virtualized and highly dynamic environments

TOWARDS COMPUTE INTER-CONNECTION

Problem

- Service understanding and invocation both radically changed from " $A^x \rightarrow B$ " to "A: f(x)"
- Requires collaborative computing by some capable entities/objects
 - How to break f(x) into blocks? How to find realizations for blocks? How to assign them in runtime?
- Chicken-Egg: even if many things can be allocated or programmed what is the common basis?
 - Which layers? Which addressing? What is allocated where?
- Needed: support for highly performant inter-computing
 - Novel user plane protocols with novel semantics, supporting user-to-system interaction
 - Some sort of semantic addressing
 - Runtime selection of resources for identified tasks (not necessarily optimal)

EFFICIENCY AND RESOURCE MANAGEMENT



Resource Scheduling

- How to guarantee / uphold extra-functional properties facing
 - Dynamics
 - Multi-tenancy
 - Large scale
- Needed: integrated efficiency and correctness mechanisms
 - Distributed Runtime Service Scheduling
 - Distributed Conflict Handling means (avoidance / resolution)
 - Networked Garbage Collection

NATIVE INTEGRATED AI/ML

Problem

- How to bootstrap AI/ML instrumentation along with the network?
 - Transform "network" to a multi-user, cooperatively set up, distributed AI/ML system
- Needed
 - Truly distributed AI/ML instrumentations (beyond federated learning)
 - Reliable AlaaS support, including on transient / limited resources
 - Resource-aware or Net-zero AI/ML (including auto-awareness)
 - AI/ML driven system updates, system self-evolution

DEEP EDGE, TERMINAL AND IOT INTEGRATION

• Problem

- How to integrate deep edge resources?
- How to integrate terminals into the system and service provisioning?
- How to integrate potentially weak terminals, like IoT devices?
- How to feed back new capabilities in e.g. sensing, autonomics, etc. to devices?
 - Device augmentation
- Needed
 - Integration of IoT architectures as typically considered service, with special constraints
 - User centric dynamic virtualization support (include terminals into virtualization platform)
 - Edge intelligence

CHANGELOG: SRIA2020TO SRIA2022

- General: refresh with precisions on
 - Architecture (layers, modules, required services / support at different layers)
 - KPIs, value and purposes of all technologies
 - Energy consumption / Carbon footprints of the future compute-integrating networks
- AI/ML: underlined the importance of
 - Distributed AI/ML, now stressing the potential for learning on constrained devices
 - Resource-aware AI, i.e., AI that considers its own costs
 - Self-programmability: precisions on creation of NFs and SFs by the integrated AI

- User plane now more explicitly integrates compute capabilities
 - Transport as a multi-point Compute-Inter-Connection facility

- Terminal / Deepest Edge integration
 - Specific architectural needs for e.g. IoT
 - Reliable service execution on transient resources, i.e. confined to the edge/terminals
 - Edge AI considerations, with inference support on the terminals directly

CONCLUSION

- Proposed System Architecture
 - Is a real generalization of existing architectures
 - Explicitly tries to support radically different services on different resource pools, as per tenants
 - Breaks down this to a set of required research advances
- The architecture explicitly addresses sustainability
 - In time: through performant new protocols/architectures/addressing for CIC and flexible service definition, evolvable design, including in its own functions
 - In governance: through support of specifically crafted, e.g. specifically localized executions, as per tenant & service & user requirements
 - In energy: through support for (autonomic) resource overhead limitations and (intelligent) dynamic assignment

THANK YOU FOR YOUR ATTENTION

And special thanks to all contributors!

networldeurope.eu