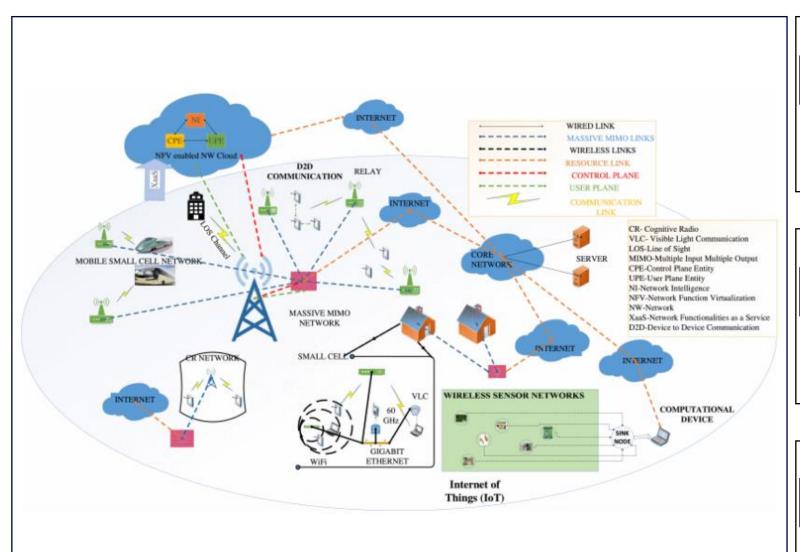


Energy saving and carbon reduction potential of digital technology and standardization

Qi Shuguang 2022.03.02

01. Energy saving potential of digital technology


目录

Directory

02. Standardization work in green digital technology

Overall Structure of Communication Network and Various Products CAICT

Communication Base Station

Refrigeration **Equipment**

Power Supply and Distribution Equipment

IT **Equipment**

Communication Room

Refrigeration Equipment

Power Supply and Distribution Equipment

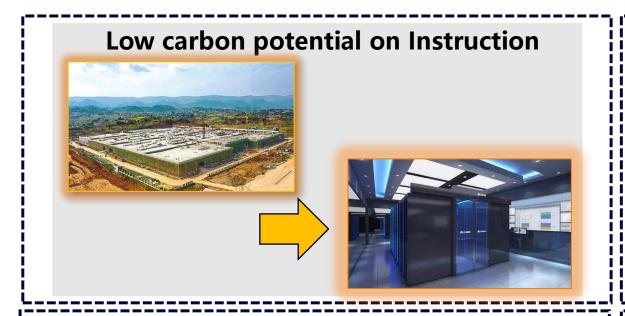
IT **Equipment**

Data center

Refrigeration **Equipment**

Power Supply and Distribution Equipment

IT **Equipment**

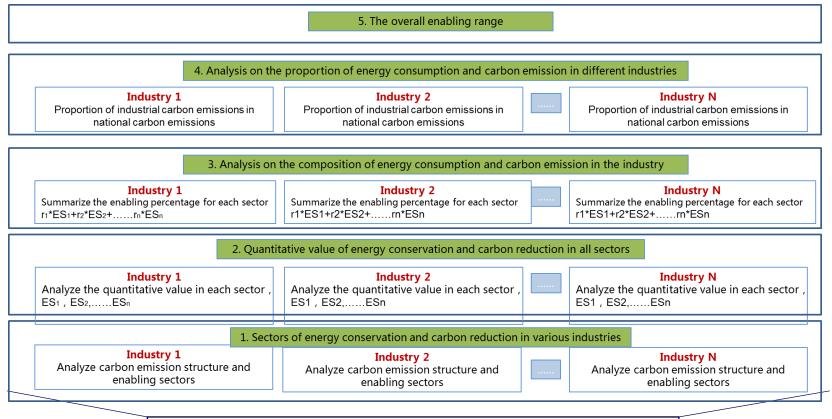


CO2 reduction of Data center and base station

Low carbon potential on Maintenance

Enablement of digital technology to decrease the Carbon Emissions

ICT technology can reduce carbon emissions by 15% - 40% for the whole society



ICT technology can reduce carbon emissions by 20% for the whole society

ICT technology can enable industries to reduce their carbon emissions by up to 10 times.

ICT technology enabling range in 2030: 11.9% ~ 21.7%

Low carbon potential in other industries with digital technology

Low carbon potential on Industry

Distribution Automation Outage Management Outage Management Customer Service Customer Service Customer Service Customer Service Customer Service Residential Resid

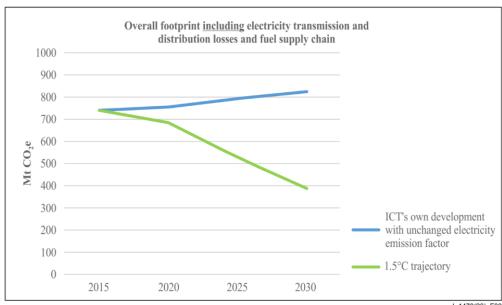
Low carbon potential on Architecture

Low carbon potential on traffic

ITU-T standards: Energy efficiency, Smart Energy and Sustainabet ICT Buildings

- Recommendations ITU-T L.1220, ITU-T L.1221, and ITU-T
 L.1222: Innovative Energy storage technology for stationary use:
 - Part 1: Overview of energy storage
 - Part 2: Battery
 - Part 3: Supercapacitor technology
- Recommendation ITU-T L.1305: Data centre infrastructure management system based on big data and artificial intelligence technology
- Recommendations ITU-T L.1380, ITU-T L.1381, and ITU-T L.1382: Smart Energy Solutions for:
 - Telecom sites
 - Data Centre
 - Telecommunication rooms
- Recommendation ITU-T L.1370: Sustainable & intelligent building services
- Recommendation ITU-T L.1371: A methodology for assessing and scoring the sustainability performance of office buildings

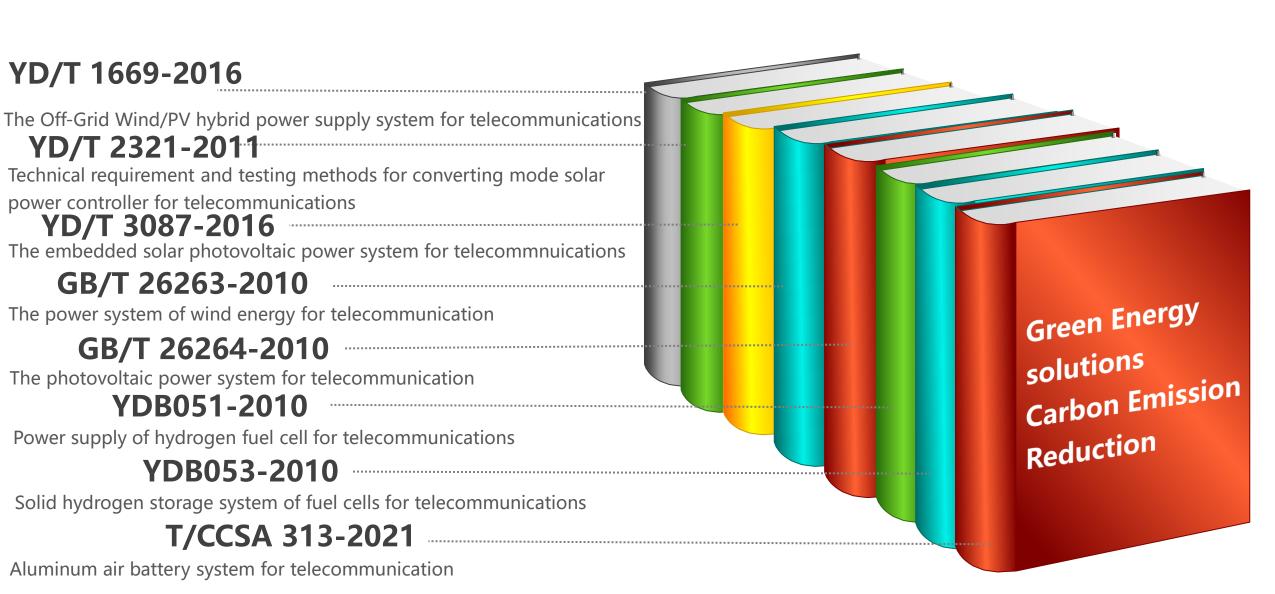
ITU-T standards: E-waste and Circular Economy



- Recommendation ITU-T L.1020: Circular Economy: Guide for Operators and Suppliers on approaches to migrate towards circular ICT goods and networks
- Recommendation ITU-T L.1021: Extended producer responsibility -Guidelines for sustainable e-waste management
- Recommendation ITU-T L.1022: Circular Economy: Definitions and concepts for material efficiency for Information and Communication Technology
- Recommendation ITU-T L.1023: Assessment method for circular scoring
- Recommendation ITU-T L.1024: The potential impact of selling services instead of equipment on waste creation and the environment – Effects on global information and communication technology
- Recommendation ITU-T L.1032: Guidelines and certification schemes for e-waste recyclers
- Draft Recommendation ITU-T L.1033: Guide for the institutions of higher learning to contribute in the effective life cycle management of eequipment and e-waste
- Draft Recommendation ITU-T L.1050: Methodology to identify the key equipment in order to assess the environmental impact and e-waste generation of different network architectures

ITU-T standards: Climate Actions to reach Net Zero CAICT

ICT sector trajectory including electricity grid losses and supply chain



L.1470(20) F03

- Recommendation ITU-T L.1450: Methodologies for the assessment of the environmental impact of the information and communication technology sector
- Recommendation ITU-T L.1451: Methodology for assessing the aggregated positive sector-level impacts of ICT in other sectors
- Recommendation ITU-T L.1470: GHG emissions trajectories for the ICT sector compatible with the UNFCCC Paris Agreement
- ITU-T L.Suppl.37 to ITU-T L.1470: Guidance to operators of mobile networks, fixed networks and data-centres on setting 1.5°C aligned targets compliant with Recommendation ITU-T L.1470
- ITU-T L.Suppl.38 to ITU-T L.1470: Guidance for information and communication technology manufacturers on setting 1.5°C aligned targets compliant with Recommendation ITU-T L.1470
- Recommendation ITU-T L.1471: Guidance and criteria for information and communication technology organisations on setting Net Zero targets and strategies

CCSA standards: Green Energy

CCSA standards: Energy Efficiency and low acarbon technology

YD/T 2435.3-2020 Guide for energy saving technology of power supply and Room environment for telecommunications— Part 3:Grade of energy efficiency of power supply

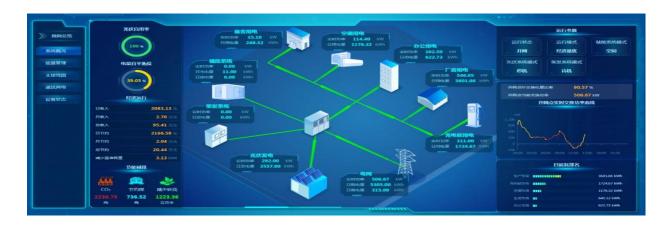
YD/T 2435.4-2020 Guide for energy saving technology of power supply and room environment for telecommunications-Part 4: Classification of airconditioners energy efficiency

YD/T 2897-2015
Parameters and test
methods for the
energy efficiency Optical transport
network (OTN)
equipment

YD/T 2898-2015
Parameters and test
methods of energy
efficiency for optical
transport equipment Packet Transport
Network (PTN)
equipment

YD/T 2899-2015
Parameters and test
methods of energy
efficiency for optical
transport equipment
Multi-Service transport
platform (MSTP)
equipment

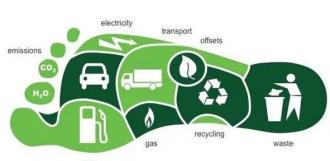
GB/T 26262-2010
Guide for classification
of telecommunication
equipment energy
efficiency


YD/T 3032-2016 Energy efficiency requirements and measurement methods for power and cooling systems in telecommunication rooms and stations

1	Vo.	Number	Title
	1	GB/T 28520-2012	Intelligent heat exchanger for telecommunication stations/sites
	2	GB/T 28521-2012	Intelligent energy saving system by fresh air for telecommunication stations/sites
	3	YD/T 1968-2009	Intelligent heat exchanger for telecommunication stations/sites
	4	YD/T 1969-2009	Intelligent Energy Saving System by Fresh Air for Telecommunication Stations/Sites
	5	YD/T 2061-2009	Constant temperature & humidity air conditioning system for telecommunication room
	6	YD/T 2318-2011	Technical requirements and test methods of the integrated air conditioner with fresh air cooling for BTS
	7	YD/T 2557-2013	Technical requiements and testing methods for CRAC with refrigerant pumping-compressing dual cycles
	8	YD/T 2768-2014	Thermal control equipment for outdoor telecommunication enclosure Part 1:embedded thermal control equipment
	9	YD/T 2769-2014	Thermal control equipment for outdoor telecommunication enclosure Part 2:temperature control equipment with PCM
	10	YD/T 2770-2014	Technical requirements and experimental methods of heat pipe exchanger for communication base station
	11	YD/T 3033-2016	PCM Energy storage equipment for telecommunication stations/sites
	12	YD/T 3223-2017	Integrated heat pipe air conditioner for telecom stations/sites
	13	YD/T 2435. 1-2012	Guide for energy saving technology of power supply and Room Environment for telecommunications Part 1:General Rules
	14	YD/T 2435. 2-2017	Guide for energy saving technology of power supply for telecommunications and room environment-Part 2: Application conditions
	15	YD/T 2435.5-2017	Guide for energy saving technology of power supply for telecommunications and room environment-Part 5:Airflow
	16	YD/T 3320.1-2018	The high heat density thermal control equipment for telecommunication Part 1:In-row air conditioner
	17	YD/T 3320. 2-2018	The high (heat) density thermal control equipment for telecommunication room-Part 2:Rear door heat exchanger
	18	YD/T 3320.3-2020	The high heat density thermal control equipment for telecommunication— Part 3: Overhead convective unit
	19	YD/T 3767-2020	Technical Specifications of the hybrid Architecture with both commercial Power and uninterruptable Power Supply in Data Center
	20	YD/T 3768. 1-2020	Technical requirement and test methods of echelon using EV batteries for telecommunication—Partl: LiFePO4 battery
	21	YD/T 3004-2016	Technical requirements on modular telecommunication room
	22	· 1D/1 3008. 1 ⁻ ZUZU	Technical requirements for telecommunication base station infrastructure— Part 1: General principles

CCSA standards: Management in Energy Consumption and CAICT **Carbon Emission**

YD/T 3548-2019 Technical specifications of Energy Consumption Measurement & Management System for **Communication Operators**



YD/T 3048.1-2016 Technical requirements for assessment of carbon footprint of communication products Part 1: Mobile phone

YD/T 3048.2-2016 Technical requirements for assessment of carbon footprint of communication products Part 2:

Ethernet switch

On going work in standardization

Standards of Green Energy

- Renewable energy used in data center, telecommunication room and base station;
- New type of energy storage like hydrogen fuel cell and Aluminum air battery;
- Standards of energy intelligent application and comprehensive energy management are promoted simultaneously.

Standards of Energy Saving and Recycle

- Energy saving Technology and product: HVDC, free cooling,
- System level or room level energy saving standards: especially on digital and smart application together with under developing standards;
- Recycle and reuse of energy or materials: residual heat dissipation standard.

Standards of Energy Efficiency

- Product level : IT devices, infrastructure devices;
- System level: IT system, power supply system and air cooling system;
- Network level: Telecommunication room, base station and network system.

Standards of Carbon Emission

- GHG emission calculation and report (manufacturing and operating corp.);
- Carbon footprint of products (IT and infrastructure)
- Limitation and low-carbon evaluation(data center, telecommunication room, base station, etc.
- Management and Service.

感谢观看 THANKS

