Satellite Communication Technologies Chapter 9 of the SRIA

Alessandro Vanelli-Coralli

University of Bologna (alessandro.vanelli@unibo.it)

This presentation is based on Networld2020 SRIAv3.0 Chapter 9. It reflects the Author views and not necessarily those of the Networld2020

The European Technology Platform for communications networks and services

Outline

- Chapter contributors
- Content of the Chapter
- Vision and Architecture
- Research challenges
- Conclusions and take away messages

Contributors & Section Editors

- Marco Andrenacci, MBI
- Antonio Arcidiacono, EBU
- Tomaso De Cola, DLR
- <u>Thomas Delamotte, UniBW</u>
- Barry Evans, University of Surrey
- Alessandro Guidotti, UniBo
- Marko Höyhtyä , VTT
- Hans-Peter Huth, Siemens
- Andreas Knopp, UniBW
- Eva Lagunas, Univ. of Luxembourg
- Michele Luglio, Univ. of Rome Tor Vergata
- Mario Marchese, Univ. of Genova

- Ana Pérez, CTTC
- Luis Perez-Freire, Gradiant
- Jose Manuel Sanchez, Integrasys
- Pouria Sayyad Khodashenas, i2CAT
- Rute Sofia, Fortiss
- Juergen Sturm, TI
- Attilio Vaccaro, MBI
- Alessandro Vanelli-Coralli, UniBo
- Miguel Ángel Vázquez, CTTC
- A. Vazquez-Castro, UAB
- Florian Zeiger, Siemens

Chapter Content

- Satellite Communications (Chapter 9 of the SRIA 2021-2027)
 - 9.2 System architectures
 - 9.3 Evolution of Networking Architectures
 - 9.4 Hybrid infrastructures: Broadcast/Multicast/Unicast/Storage EdgeCasting
 - 9.5 Smart Satellite Networking
 - 9.6 Optical based Satellite Communications
 - 9.7 Software Defined Payloads
 - 9.8 Radio Access Network beyond 5G and 6G
 - 9.9 Antennas
 - 9.10 Spectrum usage
 - 9.11 Artificial Intelligence for SatCom
 - 9.12 Security
 - 9.13 Communication, Computation and Storage
 - 9.14 Plug and Play Integrated Satellite and Terrestrial Networks

Unified networks and access technologies for Smart Services

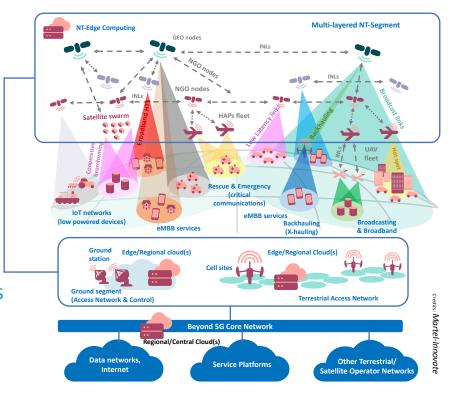
SERVICE UBIQUITY, CONTINUITY, SCALABILITY, RELIABILITY, AND COST EFFICIENCY

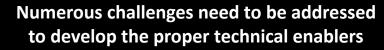
UNIFIED ACCESS TECHNOLOGIES

DEVICES

Smartphones

Computers


HETEROGENEOUS DEVICES



3D multi-layered unified architecture

- A global, flexible infrastructure providing service ubiquity, continuity, scalability, reliability, and cost efficiency to heterogeneous devices
 - Multi-dimensional (3D)
 - Terrestrial (2D) + Non-Terrestrial
 - Multi-layered NTN
 - GSO, NGSO, HAPs, UAV constellations
 - space-borne and air-borne flying nodes
 - Inter-node vertical and horizontal links
 - Horizontal: same constellation nodes
 - Vertical: terrestrial/NTN, GSO/NGSO, NGSO/HAPs...
 - Unified architecture
 - No distinction between T and NT elements

RESEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE: a single access network	 Three-dimensional unified T/NT architecture Integrated and communicating hierarchical layers Softwarization, Virtualization, and Disaggregation (ground and space)
CONSTELLATIONS: hierarchical design	 Hierarchical constellations: From single (layers) to multiple orbits (layers) Incomplete constellations and nodes platooning (Low-cost design) Beyond geographical coverage: user-centric beamless communications
SMART NTN: edge computing and storage	 Processing and communication in the sky – Smart Edge Flying Nodes Non-Terrestrial Cloud Space Information Networks (SIN)
RESOURCE OPTIMIZATION: infrastructure as a resource	 Beyond the bandwidth, time, power, and space concepts: infrastructure as a resource Infrastructure reconfiguration: a network of networks Network elements orchestration
SPECTRUM USE: coexistence, sharing, new freq.	 New spectrum (THz and optical): user/feeder/Inter-node Optical communications: Horizontal and vertical links Coexistence and Sharing: inter-segment (T & NT) and inter-layer
LINIEIED BAN DESIGN:	Waveform design T/NT channels: Doppler/Delay/Vertical handover

Distributed MIMO and beamforming (node cooperation)

Network predictive configuration and maintenance

New physical layers, medium access layer, resource management, etc. approaches

Quantum Communications

Quantum Key Distributions

THz & Optical devices (Rx & Tx)

System Complexity management

Blockchain technologies

Software Defined Payload

Resiliency by design

Antenna, Amplifiers

UNIFIED RAN DESIGN:

flexibility and adaptability

SECURITY:

a secure resilient network

COMPONENTS:

supporting technologies

ARTIFICIAL INTELLIGENCE:

exploitation of NT dynamics

Conclusions and Take away messages

- NTN recognized as a key enabler to achieve B5G and 6G KPIs:
 - Improvements of Coverage, Reliability, and Resiliency
 - Infrastructure flexibility and adaptability
 - Spectrum and energy efficient multicasting, broadcasting, and edge delivery
- Benefits of the NTN related development
 - Contribution to a greener and sovereign worldwide competitiveness of the European (NTN) industry
 - Contribution to an autonomous European Digital SNS industry with global reach
- Trends in R&I
 - Holistic architecture vision
 - Unification of Terrestrial and Non-Terrestrial networks
 - Technical, standardization, and regulatory needs

THANK YOU

Alessandro Vanelli-Coralli alessandro.vanelli@unibo.it

