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9.1.3 AI/ML for the Physical Layer
The ever increasing exigence of higher throughput, lower latency and extremely high density of connections is taking the Physical Layer to approach its ultimate performance limits. This implies dealing with channel and transceiver impairments that were usually discarded in the interest of understandable and tractable models. AI and ML can be very helpful tools, also for the design of new transmission and reception techniques, when we cannot rely on the classical models and optimization approaches.
In this regard, there are essentially two kinds of problems where AI/ML may help:
· Offline design of elements or algorithms that may be possible to generalize to a wide variety of scenarios and used afterwards as building blocks of the transmit-receive chain.
· Online optimization of some elements or even the whole transmit-receive approach, that may be able to adapt to the changing (and difficult to model) characteristics of the channel and interference.
Obviously the requirements for both are quite different. While offline optimization requires - but also withstands - training with a large amount of diverse-enough data, the convergence time and complexity are key requirements for the online optimization in real time. These may be achieved by reinforcement learning (RL), a method that interacts with a dynamic environment by producing a series of actions and receives rewards according to the performance of such action with respect to the environment situation.
An example of the offline approach is the use of modern evolutionary computation techniques as solvers of several complex optimization problems. Evolutionary computation [185] is a subfield of AI and soft computing, which is composed of global optimization techniques based on mimicking biological evolution. In [186] it is used to propose novel constellation designs for non-coherent massive MIMO. A different approach is used in [187] where the learned constellation with unsupervised ML mitigates nonlinear effects of the optical fibre channel.
End-to-end learning aims to learn transmitter and receiver implementations optimized for a specific performance metric and channel model. It was first presented in [188]. The idea is to interpret the whole communication chain as an “autoencoder”, an unsupervised learning technique. Here the communications system design is conceived as an end-to-end reconstruction task that seeks to jointly optimize transmitter and receiver components in a single process.
ML may also allow us to understand and model channels for new applications, such as molecular communications. In [189] the diffusion-based molecular MIMO channel is modeled with an artificial neural network (ANN).
Learning from the physical layer may also bring us a better knowledge and use of the channel state information, which may be helpful, for example, to locate people or detect their movement, gesture or activity.
Immediate problems to solve are the need for algorithms that have speed and complexity compatible with the real time data transmission. Also, the availability of large and representative data sets for training and benchmarks are less developed than in other current applications of AI/ML.
9.1.4 Terabit DSL
The ideal of offering ubiquitous broadband for all requires a high capillarity of high speed wireline access, even to facilitate wireless connections. Today DSL is an alternative to the deployment of optical fibre. Will we be able to count on the already deployed copper wire infrastructure to support 5G and future networks? The possibility of reaching data rates in DSL comparable to fibre would be instrumental to providing universal broadband connectivity in a cost-effective and quick way. However, current DSL technologies seem to have achieved their maximum potentiality with downstream transmission rates of up to 100 Megabits per second at a range of 500 meters, and more than 1 Gigabit per second at shorter distances.
In [190] the channel properties of a 200 GHz signal transmitted through a waveguide structure that is designed to approximately emulate the type of paired phone cable typically used for DSL transmissions are investigated. They find that aggregate data rates on the order of Terabits per second are feasible over short distances.
Transmitting Terabits per second through a copper pair’s sub-millimetre waveguide modes is an emerging technique that would allow us to continue leveraging the copper infrastructure for wireline access and also contribute to accelerate the deployment of small cells with reduced infrastructure cost. Future research needs to bring this idea from the lab to practical applications, solving issues such as how to extend the system to a larger range by reducing the amount of energy lost due to resistance.
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