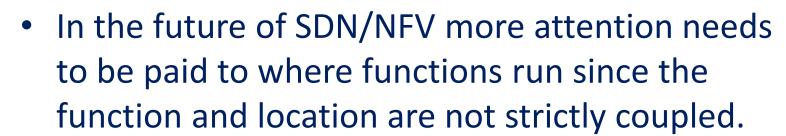


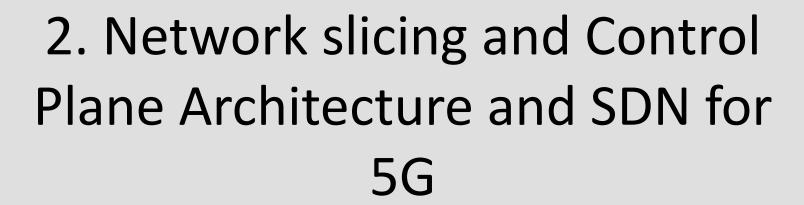
Topics Treated

- 1. Overall 5G RAN design and Overall 5G architecture
- 2. Network slicing and Control Plane Architecture and SDN for 5G
- 3. Security
- 4. Air interface design
- 5. Complexity
- 6. Usecases, models & performance

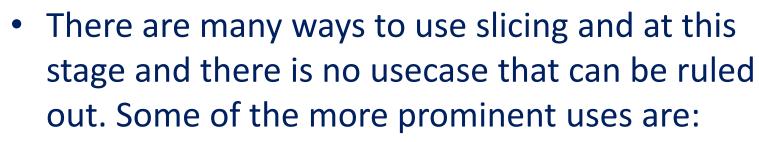
1. Overall 5G RAN design and Overall 5G architecture


Presentations and presenters Session by: METIS-II

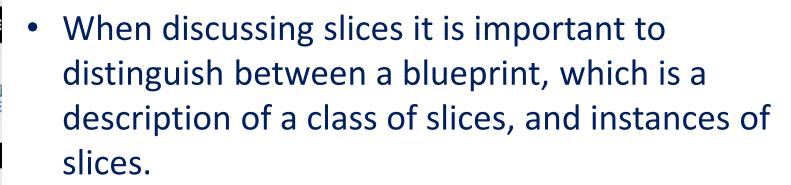
- METIS-II Considerations on 5G RAN Architecture
 METIS-II Patrick March, Oemer Bulakci
- Architecture concepts, Architectural aspects of mm-wave RAT integration with low-band support mmMAGIC- <u>David Gutierrez Estevez</u>
- Architecture concepts, Putting them in practice, Challenges
 Superfluidity - George Tsolis


Summary

- Splitting control and user plane from each other and across deployments requires care when deciding where to split.
- A number of technologies for LTE and NR interworking has been developed and seem to work.



- Application of SDN/NFV paradigms to operational windparks
 VirtuWind George Petropoulos
- RAN Slicing
 5G NORMA Mark Doll
- Control Plane Architecture for 5G Systems
 CONFIG <u>Riccardo Trivisonno</u>
- 5G-XHaul approach on Network Slicing
 5G-XHaul Paris Flegkas
- Network Slicing in Transport, Definition and implementation
 5G-Crosshaul <u>Andres Garcia Saavedra</u>
- Slicing
 CHARISMA <u>Konstantinos Katsaros</u>
- Impact of Slicing in the RAN
 METIS-II <u>Panagiotis Spapis</u>



- Separating businesses
- Separating services with different quality requirements
- Hierarchical use cases, e.g. a many service slices exists inside one network slice
- It is necessary that all use cases are catered for in the design.

Summary (2/2)

 In 5G PPP there is a growing consensus on what functions that can be shared between slices and which functions that need to have one (or more) instance per slice

- 5G Security
 5G ENSURE <u>Pascal Bisson</u>
- Security aspects in CHARISMA
 5G CHARISMA Eleni Trouva
- Symnet: scalable symbolic execution for modern networks
 SUPERFLUIDITY - <u>Matei Popovici</u>
- Some thoughts about 5G Security from RAN perspective
 METIS-II Olav Queseth

Major findings 1/3

- Presentations from each of the 4 contributing projects to the 5G Security session (i.e. 5G-ENSURE, CHARISMA, SUPERFLUIDITY and METIS II) very much appreciated by the audience since raising additional awareness on 5G Security for the benefit of the whole 5G-PPP Programme
 - Each of the presenters got couple of questions they did answer
- Opportunity was also taken to inform on 5G-PPP Security WG and activities performed there since relevant

5G Infrastructure PPP European path towards global next general

Major findings 2/3

- A number of major (actionable) results on 5G
 Security have been reported at the Session.
 - 5G Security Architecture, 5G Security enablers, 5G
 Security testbed (5G-ENSURE); Virtualised security
 (CHARISMA)
 - 5G-PPP Projects collaboration actions on the security area (workshop and testbed experimentation)

• In a but

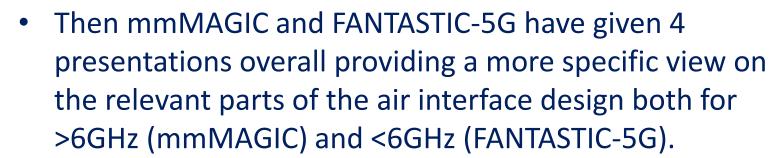
Major findings 3/3

- In addition to this, additional security enabler but also perspective (i.e. on RAN Security) where brought respectively by SUPERFLUIDITY and METIS II that we can only welcome to join 5G-PPP Security WG to further discuss and exchange
- Overall we are confident that results of interest would be valued by the projects attended.

4. Air interface design

- Design framework and suitability assessment proposal for 5G air interface candidates
 METIS-II – <u>Tomasz Mach</u>
- mm-Wave Radio Interface mmMAGIC - <u>Jian Luo</u>
- Phase Noise Analysis for 5G NR mmMAGIC - <u>Ali Zaidi</u>
- Link design: Investigation and outcomes
 FANTASTIC-5G Hao Lin
- Agile Multi-Service Network Design, with emphasis on RRM
 FANTASTIC-5G - Klaus Pedersen

Summary (1/3)


- The 3 5G PPP projects working on the air interface design (METIS-II, mmMAGIC, FANTASTIC-5G) have shared their main findings.
- METIS-II having a more global and integrative point of view – has presented their views on how to set up the design framework and how to do the suitability assessment for 5G air interface candidates
- It became apparent that the relevant projects share a very consent view on this

Summary (2/3)

- Aspects being specific to the respective frequency range have been presented and discussed such as:
 - For >6GHz: initial Access & multiple Access techniques when having a beam-centric system and isseus related to phase noise at higher frequencies.
 - For <6GHz: Complementary set of network-based ICIC techniques for macro-cellular networks and relevant PHY techniques for the efficient support of MMC.

Summary (3/3)

- Waveform design: all projects have a rather aligned view on basic aspects related to the waveform selection.
- Frame design: both mmMAGIC and FANTASTIC-5G
 are proposing rather compatible frame
 configurations and numerology choices supporting
 the strong emphasize of METIS-II to have both
 frequency ranges to be designed in an harmonic
 manner.

5. Complexity

Presentations and presenters Session by: flex5Gware

Waveform complexity and implementation aspects

Flex5Gware - Miquel Payaro

 We have now available results on the required processing for new waveforms in terms of complexity and silicon area.

• The results can be used when making the design tradeoff(s) for 5G waveforms.

6. Usecases, models & performance

- COHERENT George Agapiou
- 5G CHARISMA, 5G-XHaul Konstantinos Filis
- Flex5Gware Fredrik Tillman
- METIS-II <u>Michal Maternia</u>, <u>Salah-Eddine El</u>
 <u>Ayoubi</u>
- FANTASTIC-5G: Integration of the AI
 Components and Performance Evaluation –
 Malte Schellmann
- mmMAGIC Miltiadis Filippou

Summary

- Projects moved to performance evaluation phase (cf. presentations from FANTASTIC-5G, METIS-II, mmMAGIC), first 5G performance values available
- 5G-Xhaul is investigating energy efficiency of transport network that could complement results for RAN

- Bandwidth and channel bandwidth scalability
- Coexistence with LTE
- Deployment in IMT bands
- Interworking with 3GPP legacy technologies and 802.11 WLAN
- Operations above 6 GHz
- Spectrum flexibility and sharing
- Support of wide range of services
- Low cost requirements

Where do we stand with 5G requirements? KPIs evaluated by analysis (pen and paper)

KPI	Requirement	METIS-II performance	Key contributor
C-Plane latency	< 10 ms	7.125 ms	RRC Connected Inactive, reduction of processing time in BS and UE
U-Plane latency	< 1ms	0.763 ms	Shortening of TTI, reduction of processing time in BS and UE
mMTC energy efficiency	> 10 years on a single 5 Wh battery	> 10 years on a single 5 Wh battery	Extension of DRX, C-Plane latency reduction, deep sleep energy conservation features
Peak data rates	> 20/10 Gbps for DL/UL	21.7/12.4 Gbps for DL/UL	MIMO spatial multiplexing (for lower frequencies), exploitation of mmW bands
Mobility interruption time	0 ms	0 ms ss אין שכי worksnop	Multi-connectivity + make-before- brake
ZU1/-UZ-U/	۷1		

	KPI	Requirements	METIS-II performance	Comments
	User throughput (use case 1, UC2 and UC3)	UC1: 300 Mbps UC2: up to 5 Gbps UC3: 50/25 Mbps for DL/UL	UC1: 1 Gbps+ UC2: up to 7.85 Gbps UC3: 50/25 Mbps for DL/UL	Only DL values for UC1 and UC2 Different methodology applied for UC3 evaluation
A	mMTC device density (UC4)	> 1 mln/km ²	4 mln/km ²	Depends heavily on the traffic/report periodicity of mMTC devices. 1 upload of 1000 bits every 100 s was used in METIS-II
	Reliability (UC5)	99.999% at 50/1000m for urban/highway	99.999% at 45/150m for urban/highway	For highway scenario, requirements seems very difficult to meet (revision needed?)
	Network energy efficiency (UC1, UC3)	Should follow (at least) capacity improvement	For the capacity x1000, network energy efficiency improvements of 350-7500 were reported	Evaluation done only for Dense Urban environment. Savings depend on the load level in LTE-A/5G network
雅莊	2017-02-07		3ra Cross 5G PPP Workshop	28

Pictures etc.

5G Infrastructure PPP communication networks

Opening session

