
D2.3 Updated Requirements and Architecture Design

Project Acronym SONATA
Project Title Service Programing and Orchestration for Virtualized Software Networks
Project Number 671517 (co-funded by the European Commission through Horizon 2020)
Instrument Collaborative Innovation Action
Start Date 01/07/2015
Duration 30 months
Thematic Priority ICT-14-2014 Advanced 5G Network Infrastructure for the Future Internet

Deliverable D2.3 Updated Requirements and Architecture Design
Workpackage WP2 Architecture Design
Due Date October 31st, 2016
Submission Date December 8th, 2016
Version 1.0
Status To be approved by EC
Editor Michael Bredel (NEC)
Contributors all Partners
Reviewer(s) Phillip Eardley (BT), Geoffroy Chollon (THALES), Sonia Castro (ATOS)

Keywords:

architecture, service platform, software development kit

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Deliverable Type

R Document X
DEM Demonstrator, pilot, prototype
DEC Websites, patent filings, videos, etc.
OTHER

Dissemination Level

PU Public X
CO Confidential, only for members of the consortium (including the Commission Ser-

vices)

Disclaimer:
This document has been produced in the context of the SONATA Project. The research leading to these results has
received funding from the European Community’s 5G-PPP under grant agreement n◦ 671517.
All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is
merely representing the authors’ view.

ii Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Executive Summary:

This document presents the revised and updated overall architecture of the SONATA system as
well as new and updated use-cases and requirements. It is based on the previous deliverables D2.1
and D2.2 and allows for the lessons learned during the implementation phases of work packages
WP3, WP4, and WP5. To this end, it describes the current state of the SONATA SDK and
Service Platform as well as future work items for WP3 and WP4. We highlight, however, that this
deliverables strongly focuses on the updates, changes, and novelties compared to D2.1 and D2.2.
Thus, we expect the reader to be familiar with these deliverables as well.

The overall contributions of D2.3 can be summarized as follows:

� Revision and zooming in the use-cases of SONATA in order to highlight the use-cases that
will be most likely be implemented as pilots.

� Revision and prioritisation of requirements for the revised use-cases.

� Revision of the descriptors, packages, and catalogues based on our learnings with respect to
the first prototype in order to strengthen the CI/CD and DevOps approach for NFV.

� Revision and update of the SDK architecture.

� Introduction of novel service validation and profiling tools.

� Revision of the Service Platform architecture.

� Introduction of an enhanced Service Platform management.

� Introduction of container support for NFV in the Service Platform.

� Discussion and revision of the security aspects of the SONATA platform.

� Integration of slicing in the SONATA platform.

� Elaboration on the relationship between the SONATA architecture and the ETSI reference
architecture.

SONATA Public iii

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Contents

List of Figures vii

List of Tables 1

1 Introduction 2
1.1 Structure of this Document . 2

2 Use Cases and Requirements 4
2.1 Virtual Content Delivery Network . 4

2.1.1 Description . 4

2.1.2 Sequence of Actions . 6

2.1.3 New Requirements . 7

2.2 Personal Security Application . 8

2.2.1 Description . 8

2.2.2 Sequence of Actions . 9

2.2.3 New Requirements . 9

2.3 Service Provider to Service Provider . 10

2.3.1 Description . 10

2.3.2 Sequence of Action . 13

2.3.3 New Requirements . 14

2.4 Requirements Analysis and Consolidation . 15

3 Architecture and Design 17
3.1 Descriptors, Packages and Catalogues . 17

3.1.1 Function and Service Descriptors . 17

3.1.2 Updated Catalogues . 19

3.2 Software Development Kit (SDK) . 20

3.2.1 Developing for Continuous Integration and Continuous Deployment 21

3.2.2 CI/CD support tool . 23

3.2.3 Profiling for NFV-based Network Services . 24

3.2.4 Service Validation . 32

3.2.5 Monitor Data Transfer from the SP to the SDK 33

3.2.6 SSM-FSM Development Support . 36

3.3 Service Platform Architecture . 37

3.3.1 Component Interfaces . 38

3.3.2 Service Platform Monitoring Framework enhancements 40

3.3.3 Additional Infrastructure Abstractions . 42

3.3.4 Service Platform (SP) Security . 48

3.4 Service Platform Management and Setup . 56

3.4.1 Service Platform Installation . 57

3.4.2 Service Platform Removal . 58

iv Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

4 Integration of Network Slicing in SONATA Platform 59
4.1 High Level Requirements for Slice Networking . 59
4.2 Network Slices - Key Terms and Characteristics . 61

4.2.1 Managing a Network Slice . 62
4.3 Integration of Network Slicing in the SONATA platform 63

5 Relationship between SONATA and the ETSI Architecture 65
5.1 Update on the ETSI architecture . 65

5.1.1 Requirements for MANO’s functionalities . 65
5.2 Mapping between SONATA and ETSI Interfaces . 68

5.2.1 General mapping between ETSI and SONATA reference points 69
5.2.2 Specific mapping between ETSI and SONATA interfaces 69

6 Conclusion 73

A Bibliography 74

SONATA Public v

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

List of Figures

2.1 vCDN Network Service Deployment . 5
2.2 SP2SP master slave approach . 11
2.3 SP2SP umbrella approach . 11
2.4 NFVIaaS provided by serving operator to client operator 12
2.5 Cooperating global and local operator implemented as client and two serving operators 13

3.1 The relations between Network Service (NS), Virtual Network Functions (VNF),
VNF Components (VNFC), Virtual Deployment Units (VDU) and their instances.
The NS is comprised of one or multiple VNFs that again contain one or multiple
VDU-instances, where VDU-instances of the same type are clustered as VNFCs. . . 18

3.2 Development and test environments for CI/CD . 22
3.3 High-level DevOps architecture with integrated offline profiling solution [33] 26
3.4 Generic profiling SFCs: (a) direct application profiling (b) installing a dedicated

SFC with Test VNFs (c) larger SFC topology with multiple test-VNFs and Profiling
Manager. 28

3.5 NFV Profiling mapped to the ETSI MANO architecture 29
3.6 SONATA profiling concept based on the SDK tool son-profile that integrates with

son-emu or (optionally) the service platform . 31
3.7 SONATA profiling concept used for service validation 31
3.8 Example of a Service Network Topology . 33
3.9 Retrieval of Monitoring Data . 35
3.10 SSM-FSM registration process . 36
3.11 SP Component Interfaces . 38
3.12 Calico network architecture (source: [30]) . 45
3.13 Flannel network architecture (source: [18]) . 46
3.14 OVS network architecture (source: [31]) . 47
3.15 Romana network architecture (source: [34]) . 47
3.16 SONATA Platform Users and Roles . 49
3.17 User Registration, Authentication and Authorization 51
3.18 SP Architecture: centralized approach . 52
3.19 Micro-Service Registration and Authorization . 52
3.20 Executive plugins acting as a security border between FSMs/SSMs and the MANO

framework . 52
3.21 User Management sub-module architecture . 53
3.22 Service Platform Installation . 57
3.23 Service Platform Uninstallation . 58

4.1 Network Slicing Models . 62
4.2 Integration of Network Slicing in the SONATA Platform 63

5.1 High level view of the development and definition phase 66
5.2 High level view of the instance life-cycle view . 66

SONATA Public vii

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

5.3 High level view of the in-life phase . 67
5.4 Basic entities of a layer MANO . 68
5.5 Mapping of reference points between SONATA (top) and ETSI NFV-MANO (bot-

tom) reference architectures . 71
5.6 Logical view on the SONATA service platform architecture and its interfaces 72

viii Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

List of Tables

2.12 New SONATA requirements consolidation . 16

3.1 Test support . 22
3.2 Test types . 23
3.3 Monitoring data transfer methods . 34

5.1 SONATA reference points and their mapping to ETSI 69

SONATA Public 1

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

1 Introduction

Deliverable D2.3 is the third specification document of the SONATA project, which presents the
current outcomes of the second phases of task 2.1, task 2.2, and task 2.3 as well as additional inputs
for WP3 and WP4 with regard to the design and specification of the SONATA overall system
architecture. Based on our learnings from the implementation of the first SONATA prototype,
comprising an innovative SDK, support for DevOps and Continuous Integration and Delivery, and
a comprehensive Service Platform, D2.3 presents updates of the use-cases, requirements, and the
system architecture. We highlight, however, that this deliverables strongly focuses on the updates,
changes, and novelties compared to D2.1 and D2.2. Thus, it presents the deltas to the previous
documents and we expect the reader to be familiar with these deliverables as well.

In particular, we elaborate on new features and adaptions regarding the SONATA descriptors,
packages, and catalogue system. We aim at further improving the support of NFV developers by
enabling re-usage of existing artefacts, like VNF and Network Service descriptors, in an easy way.
Moreover, the SDK moves on even further and implements various features to support Continuous
Integration and Delivery paving the way for an holistic DevOps approach. To this end, we enhanced
the test and profiling support of the Service Development Kit. Thus, we can create performance
profiles for VNFs and Network Services that can be used to optimized placement decisions for
example. This document describes the feature, as well as requirements and some implementation
details. Likewise, we integrated a validation tool to validate various aspects of Network Service
already during development time.

With respect to the SONATA Service Platform, we adapted the monitoring framework and
increased its reliability and scalability. Another major improvement of the Service Platform is the
support of container based VNFs. To this end, we integrate a new Virtual Infrastructure Manager,
i.e. Kubernetes, into the Service Platform. Evidently, this feeds back to our SDK tools and
descriptors, as they have to deals with two different kind of images, namely Virtual Machine images
and container images. Moreover, we performed a detailed analysis of existing slicing approaches
and added native slicing support to the Service Platform.

Finally, we performed a detailed comparison between the SONATA architecture and the ETSI
reference model. Further, we describe and map the actual interfaces that built these reference
points in more detail clarify how third party components may interface with the SONATA Service
Platform or individual platform components.

1.1 Structure of this Document

The remainder of the document is structured as follows. First, chapter 2 revises the use cases
and details some of their implications. Next, chapter 3 reveals the requirements based on the use
cases. Then, chapter 4 revises the main components of the SONATA architecture. It especially
highlights and motivates the changes compared to the initial architecture. Therefore, it provides the
updates on the descriptors, packages, and catalogues. It focuses in detail on the SDK adaptation
and introduces some new components, like the profiling tools for network services, and addresses
the updates and innovations of the Service Platform, including the security checks that have been
introduced. Chapter 5 describes network slicing and its impact on the SONATA architecture.

2 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Chapter 6 outlines the relation, similarities and differences, between the SONATA architecture and
the ETSI reference model. Here we provide a detailed analysis of the SONATA interfaces and
the ETSI interfaces specification and show how the SONATA system could be placed in an ETSI
reference implementation. Finally, chapter 7 concludes the document, covers some open issues that
are addressed by different work packages, and provides an outlook on SONATA future work.

SONATA Public 3

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

2 Use Cases and Requirements

This section attempts an update of the uses cases and related requirements considered in year
one. In the frame of a technical analysis that was performed in Work Package 6, contributed in
Deliverable 6.1 [17], and also the recommendations after the first project periodic report, we are
presenting and updating only the UCs that are considered for the project’s pilots. The pilots’ fine
details are subject of Work Package 6, we are providing an updated description and a high-level
description of the workflow for each one. The anticipated pilots are namely: (i) Virtual Content
Delivery Network (vCDN); (ii) Personal Security Application (PSA) and (iii) Service Provider to
Service Provider (PS2PS).

2.1 Virtual Content Delivery Network

2.1.1 Description

As presented previously in D2.1 (initial use case discussion) and D6.1 (pilot discussion), this use
case focuses on showcasing and assessing the SONATA system capabilities in order to enhance a
virtual CDN service with elasticity and programmability. The business case of Content Delivery
Networks is well established in the current telecommunications environment. A series of business
relationships are affected by various deployment scenarios that are possible within the current
setting. SONATA is building upon the aforementioned status in order to allow for an enhanced
vCDN service, focused around enablers provided by the Service Platform that allow high levels of
programmability and flexibility. Two scenarios are anticipated for this Use Case, namely:

� Classic vCDN mode: Content originates from a single content provider or multiple ones,
distributed across the vCaches and eventually delivered to a huge number of subscribers.
This scenario will be used to highlight placement and scaling functionalities of the SONATA
SP.

� User Generated Content (UGC) based vCDN mode: Content also originates from the end-
users (allowing various sub-cases of social networking content exchange). The SONATA SP
allows the flexibility of dynamically extending the vCDN service, accommodating additional
sources from alternative Content Providers. The twist of this scenario is that the UGC
content is identified and cached at the edges, allowing resource optimisation at the edges. This
scenario, reveals the interaction of the Service Platform with information that stems from the
network (either as traffic information or content information or end-user information) in order
to dynamically configure and optimise the CDN for an improved user experience.

An extension to the above functionalities can be seen by the introduction of an additional func-
tionality for the vCDN. As non-linear editing tools normally produce non-adaptive MP4 media,
which need to be transcoded and segmented to provide best user experience (QoE) for the available
bandwidth, the vCDN service will optimise the QoE for the End Users of the service by introduc-
ing in the forwarding graph of the service a vTranscoder. This functionality can adapt the content
per combination of elements (end-user profile/context, available bandwidth, terminal information,

4 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

etc.) by choosing the best suitable transcoding and segmentation to ensure the best QoE. Place-
ment of vTranscoder will be decided at the service instantiation and on-demand according to the
situation and customer request. During operation, based on the monitoring from the network and
End-user terminal consuming the vCDN service, the vTranscoder will adapt the video transcoding
and segmentation for improved QoE.

SONATA, through the SSM/FSM structure and the DevOps approach, allows developers to
reuse and ingest external sources and components in addition to theirs, for the development of a
functional composed Network Service. In this context the SONATA SP offers the unique capability
to have a fully composed service allowing interaction between the various VNFs in order to enrich
their functionalities and implement value added NS. To our knowledge, no other Orchestration
Platform that assumes composition of NS with third party VNFs offers this capability. In this
context, it is interesting for SONATA to implement and demonstrate this particular Use Case.

Figure 2.1: vCDN Network Service Deployment

Assessing the implementation feasibility of the discussed Use Case, most of the components
that are considered will not be developed from scratch rather than readily available VNFs or
modified versions of existing ones will be used. SSM and FSM plugins will be developed in order to
implement the required functionalities at the management level. In this view, the implementation
is realistically possible. The overall deployment of vCDN Use Case is illustrated in Figure 2.1.
Groups of End Users are connected at the edges of the network (connectivity is out of the scope
of SONATA), some End-Users are also able to generate content (UGC-green group). In the same
figure, the upper orchestration and management layer is illustrated. For the whole service, a SSM
is used in order to manage the placement of new VNFs as well as the service scaling decisions.
In addition, for each VNF (i.e. instances located at various PoPs), FSM plugins deal with the
placement and scaling of the VNF Components of each VNF. For example, additional instances of
Virtual Traffic Classifier (VTC) DPI engine might be required to cope with the traffic load at certain
PoPs. At the same time, new edge locations demand the deployment of additional vCDN VNFs
(i.e. vCaches). All the interactions are driven by the monitoring and traffic analysis capabilities
at the locations participating in the Network Service. The metrics are both generic (i.e. CPU,
interface traffic, memory, etc.) and VNF specific (i.e. hit ratio, content classification, etc).

SONATA Public 5

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

2.1.2 Sequence of Actions

� The SONATA framework is used for the development and instantiation of a vCDN Network
Service (not part of the UC).

� The service is deployed over the Service Provider infrastructure (as requested by the customer
(i.e. vCDN operator), a slice is allocated for the particular tenant.

� FSM plugins and SSM plugins are instantiated along with the respective VNFs.

� Initial placement of the VNFs is done according to the planed deployment.

� Various quality metrics (relevant to those of a vCDN) are monitored since the instantiation
of the service, i.e. traffic load at the edges, content popularity, cache hit ratio, etc.

� End Users are located at various locations at the edges of the provisioned slice, consuming
content.

2.1.2.1 Scenario 1 - Network Service reconfiguration

� Customer demands that additional resources at a new edge should be provisioned and should
be accommodated within the same vCDN service.

� SONATA SP provisions the additional resources and updates the slice topology.

� SONATA SP deploys the required VNFs and integrates them under the same SSM instance.

� Users at the newly provisioned edge are serviced through the local cache.

NOTE: this could be the case where the edge resources are provisioned but not used until the
SSM spawns the VNFs at that location based on demand increase (not scaling).

2.1.2.2 Scenario 2 - Scaling

� New load is gradually introduced at some of the edges of the provisioned slice.

� FSM for the running VNFs at those locations sends alerts for certain metrics that are used
for triggering the scaling lifecycle either at VNF or NS level.

� SSM receives request for certain actions regarding to the scaling, i.e. by requesting the
permission to spawn an additional VNFC for scaling out the VNF, or by instantiating a new
VNF in order to load balance the traffic at certain edge locations.

2.1.2.3 Scenario 3 - User Generated Content Classification

� In an already established vCDN deployment, new functionality of User generated content
caching is required.

� New SSM and FSM that will allow the management of such functionality are instantiated.

� SSM decides on the placement of VNF capable of content identification and classification.

� VTC is deployed at identified location and the service forwarding graph of the Network Service
is reconfigured.

6 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� VTC redirects identified UGC traffic to the local vCaches.

� Local content is cached and optimal use of resources is achieved as the connections of the
PoP to the content servers is less utilised.

2.1.2.4 Scenario 4 - QoE enhancement

This scenario is an extension of the vCDN service including a DASH transcoding unit.

� The SONATA framework is used for the development and instantiation of a vCDN Network
Service. (not part of the UC)

� The service is deployed over the Service Provider infrastructure (as requested by the customer
(i.e. vCDN operator), a slice is allocated for the particular tenant.

� FSM plugins and SSM plugins are instantiated along with the respective VNFs.

� Initial placement of the VNFs is done according to the planed deployment

� Various quality metrics (relevant to those of a vCDN) are monitored since the instantiation
of the service i.e. traffic load at the edges, content popularity, cache hit ratio etc

� End Users are located at various locations in the network topology

2.1.3 New Requirements

In addition to the system requirements, elicited by this Use Case during the first phase of the project
and also detailed in the Deliverable D2.1 [12], the following requirements are also considered for
the second phase of the project.

New Requirement Name Scaling (updated)

Description Developer MUST specify in the VNF Descriptor the initial number of instances and upper
bounds of each VNF Component (VNFC) part of the VNF. The Service Platform will
use this information for initial placement. For each VNF, the FSM will be responsible for
deciding on the scaling and placement of new VNFCs in order to scale-out/in the VNF
according to certain policies. In turn the SSM based on FSMs information will decide
upon the Service level scaling approach i.e. instantiation of more VNFs to facilitate the
additional load.

KPIs Definition of VNFD and NSD to transfer the required information.
Category Mandatory

New Requirement Name SFC dynamic update

Description The Service Platform SHOULD allow the dynamic configuration/modification of any
given service function chain within a Network Service in order to insert/remove additional
VNFs into the topology of the Network Service (i.e. Network Forwarding Path).

KPIs Convergence time
Category Mandatory

SONATA Public 7

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

New Requirement Name Traffic Steering among NFVI-PoPs

Description The Service Platform MUST be able to steer traffic between the PoPs according to the
Network Service definition. The implementation SHOULD be technology agnostic, using
the modular implementation for the support of different WAN Infrastructure Managers
(WIM).

KPIs Level of isolation between tenants/networks, time for convergence.
Category Mandatory

2.2 Personal Security Application

2.2.1 Description

Network Service Operators are taking a page from the Software-Defined Networking (SDN) and
Networking Function Virtualisation (NFV) world to allow new services and to keep up with a
fast changing consumer demands around interactive services, social networks, smart devices and
Internet of Things. Network Service Operators are providing device and pervasive access pro-
tection from Internet threats by offloading execution of common security applications away from
user devices with the help of Virtual Network Security functions (VNSF), like VPNs, firewalls,
or parental controls services. The idea can be furthered by personalizing these VNSFs per cus-
tomer’s requirements, i.e. the subscribers want to remove the boundaries and limitations to create
a better personalized experience. The new devices installed to deliver the connected home are all
required the web-based services to much greater degree than before and, with the current route
based customer premises equipment (CPE), it is very complicated to enable these innovative new
services, taking into assumption that managing these services in an operator’s network is already a
complicated operational task. The solution is a combination of a bridge, installed in the residence
(Physical CPE), and a remote hosted Virtual CPE (VCPE) service which may consist of one or
more VNSFs. These VNSFs may include:

� Firewalls, Antivirus, IPS - They provide protection to the home environment.

� Parental control components - They allow control of the consumed web content by device
level.

� VPN Servers - They provide remote accesses to the user LAN.

The VCPE is required to support a large number of applications and services driven by the end
users’ dynamics, allowing them to define their own rules and policies for security. This revised PSA
use case focuses on the parental control flavor of a VCPE service. Furthermore, this use case makes
the assumption that the network service operator is also the VNSF developer which allows him
to gather registered end user security requirements and customizes the VCPE service accordingly.
This use case also considers large network service providers with multiple SP deployments and the
possibility of end users being in another SP domain than where the service is deployed.

For this UC two scenarios are envisaged. The first one is related to the prevention of DDoS
attacks originating from arbitrary places of the customer network (usually from the edges). The
immediate response of the PSA service will be to dynamically respond to the threat by eliminating
the offending traffic, at the points of origin. The second scenario is that of Parental Control,
allowing classification of family members and applying certain policies according to the end-user
requirements. The next subsection elaborates on the sequence of actions for each scenario.

8 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

2.2.2 Sequence of Actions

� The SONATA framework is used for the development and instantiation of a PSA Network
Service (not part of the UC).

� Differentiating from the previous UC, for each End-User a separate VNF FG is created,
initially with only basic gateway functionality and a default configured firewall (vFW).

� The service is deployed over the Service Provider infrastructure (as requested by the customer,
a slice is allocated for the particular tenant.

� FSM plugins and SSM plugins are instantiated along with the respective VNFs.

� Initial placement of the VNFs is done according to the planed deployment, end-user location,
etc.

� Various quality metrics are monitored since the instantiation of the service, i.e. traffic load
at the edges, content popularity, cache hit ratio, etc.

� End Users are located at various locations at the edges of the provisioned slice.

2.2.2.1 Scenario 1: Parental Control

� The End-User through a GUI or even off-line requests particular security functionalities is
able to modify the firewall rules.

� The End-User, through a GUI or even off-line, requests the Parental Control functionality to
be enabled.

� SSM for the PSA will react to the request in order to instantiate the required VNF (i.e.
vPROXY) and embed it in the already established SFC.

� Upon instantiation the End-User will be able to administrate the creation of family member
accounts and permissions for each one.

� Family members accessing the internet through their browsers will need to authenticate them-
selves in order to have access to a permitted set of websites according to their profiles.

2.2.2.2 Scenario 2: DDoS attack mitigation

� In a running PSA NS with a large number of End-Users (multiple chains), The SP wants to
be able to identify DDoS attacks when they occur and blocks the traffic at the origin places.

� When requested by the SSM, IDS VNFs are instantiated in the end-users SFCs.

� If an attack is observed, the alerting system at the SSM level allows to pin point the origin
and compute the policy to be applied.

� The reaction is to either instantiate vFW at certain locations protecting the end-users or
passing new rules to some currently running vFW instances for each end-user.

2.2.3 New Requirements

SONATA Public 9

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

New Requirement Name SFC update for running network service

Description The SONATA Service Platform SHOULD provide the means to modify SFC of any de-
ployed Network Service to allow VNSF insertion/removal flexibility into the topology of
the Network Service to adapt to the new conditions/situations.

KPIs Time required to complete the SFC update
Category Mandatory

New Requirement Name Service-User spanning over Multi-SP deployments

Description The SP platform SHOULD allow required interfaces to accommodate service and user
spanning over two different SP deployment under the same network service provider.

KPIs Service provisioning across multiple SP deployments
Category Optional

There are no more new requirements for the updated PSA use case. The requirements of the use
case are covered by requirement VNF Catalogue (4.2.1.1), Service Chaining (4.2.1.3), Placement
Constraints for VNFs (4.2.1.8), Security VNF Availability (4.2.1.10), Personalized VNF (4.2.1.11),
Security Simulation Tools (4.2.2.5), VNF Real-time Monitoring (4.2.4.4) and VNF Reporting to
BSS/OSS and Subscriber (4.2.4.5) reported in Section 4 of D2.1 [12].

2.3 Service Provider to Service Provider

This use case considers the scenario where there are two cooperating Service Platforms (SPs) for
rapid and dynamic service provisioning in a NFV environment. From a business perspective, there
can be situations that justify this SP to SP cooperation:

1. One operator has segmented its network and has several service platforms that need to col-
laborate in order to deploy NFV end to end services across the network.

2. One operator provides NFV-Infrastructure, or even NFV Network Services, to another oper-
ator. The business relationship is a client-server one.

3. Two operators cooperate directly, for example when an instance of an NFV service function
chain (SFC) spans across both operators. The business relationship is a peer-to-peer one.

SONATA does not address the business aspects of a multi-operator scenario, but the technical
approaches are in scope.

2.3.1 Description

The first scenario shows a common situation in an operator. The network is segmented according
to multiple criteria such as isolation of administrative domains, rationalisation of resources, etc.
The situation occurs when an extended network service needs to be deployed and controlled across
multiple service administrative domains, all of which are controlled by the operator. Various
solutions are possible - for example, each segment could be a separate Service Platform or separate
NFV Infrastructure (each running a VNF or a group of VNFs).

A trusted collaboration mechanism is needed between, for example, the service platforms. Two
options can be considered as schematically depicted in the next figure:

10 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� A first alternative, which is depicted in ??, is that Service Platform 1 (SP1) adopts the
role of ’master’ and requests the second ’slave’ SP (SP2) to deploy VNFs. This requires
a west/east-bound API between SPs, which allows the management of services on another
SONATA Service Platform. The SPs need to be able to negotiate the roles of master and
slave, and then orchestrate resources.

� A second alternative, which is shown in ??, is the establishment of a SP hierarchy where
an ’umbrella’ SP manages the two platforms that controls the service admin domains. This
requires one level of recursivity of the SONATA service platform. The umbrella SP controls
both ’underlying’ SPs through the north/south-bound interface. Thus the approach is based
on a hierarchical approach in MANO orchestration.

Figure 2.2: SP2SP master slave approach

Figure 2.3: SP2SP umbrella approach

SONATA plans to pilot at least this scenario targeting the recursivity solution as a baseline.
The second scenario explores an extension of today’s scenario where a “wholesale operator” offers

connectivity as a ‘wholesaler’ to other operators, but doesn’t have a business relationship with end
customers. Motivations include that it allows the wholesaler to pool the compute, networking and
storage resources across several ‘end customer’ operators; it enables an “end customer operator”
to provide a better performance (latency, reliability), at lower cost and /or earlier than it could do

SONATA Public 11

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

by its own (as a single, vertically integrated operator); and finally, some operators may prefer to
keep different departments working separately, or regulation may require them to do so.

In the NFV world, there are several possibilities for what the wholesaler provides (as described
in the on-going ETSI NFV EVE work on “end to end process”):

� NFV Network Service as a Service (NSaaS) – one operator uses a NFV network service from
another operator as a component in their overall network service.

� NFV Infrastructure as a Service (NFVIaaS) – one operator uses the NFVI owned and oper-
ated by another network operator; the NFVI provides virtual machines connected by virtual
networks for the hosting of VNFs and providing the interconnectivity between VNFs.

� Connectivity as a Service – this is the traditional role of a wholesaler, in which one operator
uses a connectivity service from another operator. It is often implicit in the previous two
bullets, in order to interconnect the NFV nodes of the NFVI for instance.

As an example, the figure Figure 2.4 shows the NFVIaaS use case.

Figure 2.4: NFVIaaS provided by serving operator to client operator

SONATA’s layered architecture approach is designed so that an operator uses components sup-
plied by another operator – exactly as required by the scenarios above. The architecture is also
recursive, meaning the number of layers is arbitrary, so that a service platform, as well as using
components from others, can also supply extended services across service domains from others.

The SONATA project is addressing the technical, but not the business and legal aspects of the
multiple operator scenario. In the Pilot we target to understand and demonstrate somehow the
necessary SP data synchronization in the first bullet.

The third scenario with two SONATA operators is a peer-to-peer scenario. This is an extension to
today’s situation where a “global operator” provides networking to global companies, but cooperates
with a “partner operator” that provides local access in countries where it doesn’t have a presence.
Motivations in the NFV case are similar, for example: it may be important that some VNFs
are implemented close to the end customers site, to reduce latency or improve the efficiency of
localised services (where the traffic is turned around); commercial sensitivity or regulation (such as
data privacy rules) may require processing at a local site on country; or it may be that the “partner
operator” performs some specialist function that the global operator lacks.

12 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

It would be possible to implement this scenario through direct peer-to-peer cooperation. However,
another way is technically similar to the first scenario, though the commercial arrangements would
be different. In the example shown in the figure Figure 2.5, the “global” (or ’client’) operator offers
a service to the customer, which it decides to implement with three component VNFs, two of which
it runs itself and one that it gets as a VNFaaS from a “local” (or ’serving’) operator. The global
(“client”) operator implements this as a layered architecture, where it has two serving operators,
one of which it actually runs itself. Although this appears to mean it implements the three sets
of capabilities (for development and definition, instance life cycle, and in-life operations) twice for
two of the VNFs, note that this can be optimized (for example, calls to a common database). It
also has the advantage that the global operator can readily decide to get the other VNFs from
different operators, and it has a structured (hopefully standardized) way of negotiating with the
local operator about in-life operations.

Figure 2.5: Cooperating global and local operator implemented as client and two serving operators

Again, the SONATA project is addressing the technical, but not the business and legal aspects
of the peer-to-peer scenario - since we are implementing a use case where the service involves a
chain of VNFs (SFC) spread across multiple PoPs of single operator, in which two SONATA service
platforms collaborate as ’master-slave’ (once agreed this as the peer-to-peer mechanism).

2.3.2 Sequence of Action

� Schematic Workflow

1. A user (OSS) interacts with the SONATA Service Platform to enable an extended net-
work service (NS) that goes beyond the service domain (NFVI resources and topology)
that the SP manages.

2. This originator SP requires other SONATA SPs the usage or/and deployment of VNFs
that make part of the extended network service.
Note: The type of interactions here are different depending on the adopted technical
approach to address this situation.

SONATA Public 13

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3. If the technical solutions opts for a peer-to-peer case, the SPs will agree the master
(originator) / slave roles through the east/west-bound interfaces.

4. If the solutions involves the existence of an umbrella SP, this SP instance takes the
control of the request and initiates the deployment over the other SPs in a client/server
mode via north/south-bound interfaces.

5. The SPs verify the existence of available resources. Initial placement strategy is used.

6. The necessary FSM / SSM plugins are initiated together with the respective VNFs and
NS.

7. The deployment and interconnection of the VNF chain is executed.

8. Multiple metrics information needs to be exposed and synchronized among the SPs for
overall control and status management.

9. After running instances and controlled shut-down of the extended network service is
performed and collaboration links between SPs removed.

2.3.3 New Requirements

New Requirement Name Support for Self-contained logical administration of services

Description The logical administration of each layer SHOULD be self-contained, in that it administers
full control of the services it provides. Therefore each layer must have a full set of
administration functions which support the full life-cycle of the layer service:

� the Development and Definition of the service, to create a template which describes
the service before being uploaded to a catalogue of service/function types which
can be instantiated within the layer

� the Instance Life-Cycle across service domains, to instantiate an instance of the
service/function and request resources from the underlying layers, and also remove
instances and free the resources when no longer required

� the ‘In-Life’ of the service, to monitor and maintain the instance across service
domains.

SONATA’s SDK tools and Service Platform implement these three sets of administration
functions. At first glance it appears that the first two items can be readily supported,
whereas the in-life activity requires more work.

KPIs Successful self-contained administration of services
Category Mandatory

14 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

New Requirement Name One level of SP recursivity

Description For the umbrella approach, at least one level of SP recursiveness SHOULD be supported,
i.e.,

� (required) a northbound service API, which offers services to the layer(s) above
that can be a direct customer OSS request or another SONATA SP request

� (required) a southbound API, which interacts with the service API of the layer(s)
below that can be another SONATA SP or directly the NFVI

KPIs Availability of North-bound and South-bound APIs
Category Mandatory

New Requirement Name East/West-bound API

Description For the peer-to-peer approach, an east/west-bound API for the SONATA SP is required
to enable communication between the two peer SPs.

KPIs Availability of East/West-bound APIs.
Category Mandatory

New Requirement Name Master/Slave SP Negotiation protocol

Description For the peer-to-peer approach, to resolve master/slave role definitions a negotiation proto-
col SHOULD exist. It will require a west/west-bound API to negotiate roles and establish
the communication exchange means. In this case, SPs act at same level which may include
synchronization of catalogues (optional), exposure of monitoring information (optional),
etc but each part being fully responsible over its service admin domain.

KPIs Successful selection of Master and Slave(s) in case of more than one SP.
Category Mandatory

New Requirement Name Dedicated GUI or interface for any manual intervention

Description For both approaches, a GUI or human interface for anything which needs manual inter-
vention (note that such actions are not done via the service API)

KPIs Successful completion of required task via the GUI.
Category Optional

New Requirement Name SONATA SPs synchronization

Description For both cases, synchronization of status information, catalogues, exposure of monitoring,
etc., SHALL be provided.

KPIs Successful synchronization/coordination of two SPs in terms of status, catalogues, and
monitoring.

Category Mandatory

2.4 Requirements Analysis and Consolidation

This subsection attempts the consolidation of the new requirements emerging from the updated
SONATA use cases. The number of new requirements are comparatively less and one of the main
reasons is the exhaustive requirements elicitation based on six different use cases that lead to a
total number of 83 consolidated requirements (reported in D2.1).

SONATA Public 15

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Table 2.12: New SONATA requirements consolidation

No. New Requirement vCDN PSA SP2SP Related
Require-
ments
from
D2.1

1 Dynamic SFC update 2.2.1 2.2.1 4.2.1.3
2 Scaling (Updated) 2.2.2 4.2.2.3,

4.2.3.9
3 Traffic Steering among NFVI-

PoPs
2.2.3 4.2.3.2,

4.2.3.10,
4.2.3.13

4 Support for Self-contained logi-
cal administration of services

2.2.4

5 One level of SP recursivity 2.2.5 2.2.5 4.2.3.12
6 East/West-bound API 2.2.6
7 Master/Slave SP Negotiation

protocol
2.2.7

8 Dedicated GUI or interface for
any manual intervention

2.2.8 4.3.3

9 SONATA SPs synchronization 2.2.9 2.2.9

16 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3 Architecture and Design

3.1 Descriptors, Packages and Catalogues

As outlined already in deliverables D2.2 [13], D3.1 [14] and D4.1 [15], SONATA uses a variety of
descriptors, catalogues and repositories to describe and store data or information regarding artefacts
such as Virtual Network Function Descriptors (VNFD), virtual machine images, and Network
Services Descriptors (NSD) and network service instances. The initial design and implementation,
especially of the function and service descriptors, has been widely based on an early ETSI draft.
However, throughout our implementation and evaluation phase, we identified several shortcomings
and hence adapted our system in order to better support development workflows and our envisioned
Continuous Integration/Continuous Deployment and DevOps approach. In the following sections,
we describe changes and architectural improvements over the descriptors, packages and catalogues
system characterized in D2.2 [13].

3.1.1 Function and Service Descriptors

In Network Functions Virtualisation (NFV), various descriptors are used to specify and describe
artefacts and resources that constitute a virtual network service. To this end, you might find a
Network Service Descriptor (NSD) that specifies the service characteristics, such as monitoring
parameters and scaling behaviour. It also contains references to other service components, such
as Virtual Network Functions (VNFs) and Physical Network Functions (PNFs). The PNFs again
are specified in PNF Descriptors (PNFD) whereas the VNFs are described by VNF Descriptors
(VNFDs).

Figure 3.1 depicts the various components that constitute a network service. In general, a network
service contains one or multiple VNFs which again contain one or more VNF Components (VNFCs).
Moreover, a VNFC contains all scaled-out instances of a Virtual Deployment Unit (VDU). To this
end, a VDU-instance is a single instantiation, i.e. a running virtual machine or a container, of
a VDU template that specifies the characteristics of, say, the virtual machine, e.g. in terms of
CPU, RAM, and storage. In addition, the VDU template names the function of the VDU, e.g. by
referring to a virtual machine image.

In SONATA the first ideas and implementation of descriptors were widely based on the pre-
liminary ETSI work. However, during our implementation exercise, we added some room for
improvement and evaluation. Thus, SONATA has adapted its initial descriptors as outlined below.

3.1.1.1 Identification of Artefacts

From the beginning, we found that the ability to identify the various artefacts in a unique way
within and across descriptors is crucial for sophisticated development workflows. For instance, the
re-use of artefacts, say re-using a VNF descriptor in different service descriptors, is only possible
if it can be referenced uniformly. To this end, SONATA has introduced the vendor-name-version
tuple to identify descriptors. Throughout our work, we further found that it is beneficial to identify
more artefacts, such as network interfaces and connection points within a function descriptor, in
a unique way, as it simplifies and assures consistency. Thus, we created an entity relationship

SONATA Public 17

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.1: The relations between Network Service (NS), Virtual Network Functions (VNF), VNF
Components (VNFC), Virtual Deployment Units (VDU) and their instances. The NS is
comprised of one or multiple VNFs that again contain one or multiple VDU-instances,
where VDU-instances of the same type are clustered as VNFCs.

18 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

diagram and developed an unique (hierarchical) identifier for all artefacts. This not only allows the
re-use of all the artefacts across multiple systems, but also ensures consistency by using globally
unique, but human-readable, identifiers.

3.1.1.2 Recursiveness

SONATA, in principle, addresses two types of recursiveness. First, the platform recursiveness
where a SONATA Service Platform acts as a Virtualised Infrastructure Manager (VIM) to another
SONATA Service Platform. And second, service recursiveness where a network service (description)
becomes part of a new even richer network service by acting as a network function. Evidently, in
the scope of descriptors we address the latter. To this end, the SONATA network service descriptor
facilitates the SONATA identifiers, i.e. the vendor-name-version fields, to reference existing virtual
network services and integrate them the same way we do with virtual network functions. Thus, we
can create a hierarchy of network services which simplifies the development of rich network services
significantly.

3.1.1.3 Network Interfaces, Connection Points and IPv6 support

Network Interface and Connection Point descriptors characterize the various inputs and outputs
of a network function or service. We enhanced our initial descriptor design in a way that we now
can differentiate between internal (private), external (public) and management inputs or outputs.
This simplifies the integration, say of the FSMs and SSMs, which can be only connected to internal
interfaces, and increases security as, say management interfaces, are not reachable from public IP
addresses any more. Moreover, we enhanced the descriptors in order to support IPv6 addresses for
ingress, egress and management ports.

3.1.1.4 Slicing

Slicing is an important aspect of arising NFV and 5G networks. And from a SONATA point of
view, network services could run within resource slices that might be created by an operator using
the SONATA Service Platform. However, slices are not created by the network service itself, which
is why slicing is not considered within the descriptors.

3.1.1.5 Security and Licensing Aspects

Security and licensing of virtual network functions and services are complex tasks that need to be
addressed at all the different layers of a NFV ecosystem. For example, in the SONATA descriptors
family, the package descriptor contains basic security measures, like MD5 hashes for consistency
checks and cryptographic signatures to check for authenticity. The next version of the SONATA
descriptors now also contains reference fields for license information. Thus, we can link descriptors
to external licensing systems, say a license manager, and include a variety of license systems in an
easy and flexible way. The implementation and compliance assurance, however, is left to the Service
Platform and might be realized by an additional SP plugin that handles the license information
stored in the descriptors.

3.1.2 Updated Catalogues

Catalogues, as outlined in deliverable D2.2 [13] already, play an important role in the SONATA’s
DevOps approach. The various catalogues, like the SDK catalogue and the Service Platform cat-
alogue, store complex artefacts, such as packages, descriptors, and allow to query, search, and

SONATA Public 19

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

exchange those artefacts between developers and across platforms. Based on our findings during
the first SONATA prototype, we adapted and improved the catalogues in various ways. We in-
cluded comprehensives authentication, authorization, and accounting functionalities where it was
necessary. Moreover, we improved performance and added functionalities to enhance the DevOps
idea even further. Please find a description of the most important advances below.

3.1.2.1 Improved SONATA Catalogue System

For the second version of the SONATA system, the SDK and the Service Platform catalogues have
been adapted independently.

The SDK catalogue, which resides on a developer system, say a notebook, has been quite complex
in its former version. It consisted of a NoSQL database and had to be executed as a constantly
running service. In order to simplify this catalogue and optimize resource utilization, we migrated
the catalogue system from a daemon-based approach to a file system based approach where the
SDK catalogue can be directly accessed by the SDK (CLI) software. Instead of saving the artefacts
in a database, they are stored directly on disk. That is, a developer can query a 3rd party catalogues
or SONATA SP Catalogue for pre-existing artefacts and store them directly on its disk.

The Service Platform catalogue has been enhanced by addition of security features in the SP,
i.e. by introduction of comprehensive authentication, authorization, and accounting functionalities
to address security and licensing issues. Moreover, we enhanced automated checks and tests in
order to detect malformed descriptors and cyclic dependencies. Furthermore, meta-data is added
for each artefact to facilitate versioning and certificate of authenticity to improve integrity of stored
artefacts. Finally, we introduced the notion of a resolver that is used to resolve dependencies within
packages and descriptors for downloading missing artefacts to make them available to the SONATA
system.

3.1.2.2 Resolver

Using the SONATA identifiers, i.e. the vendor-name-version tuple, we can reference various arte-
facts and link them together. These references, however, have to be resolved and made available to
the executing system, like the SDK or the Service Platform. In order to simplify the resolution and
to further enhance the SONATA DevOps approach, we introduced a new component to the overall
architecture, namely a resolver. The resolver component can be configured to communicate with
various catalogues in order to acquire a specific artefact. Moreover, it takes SONATA identifiers as
input and tries to find the related artefact in all its known catalogues. When found, the resolver
downloads the artefact to the local catalogue and makes it available for the local system. The
artefact may then be used by the local Service Platform. Thus, the resolver facilitates the re-use
of existing artefacts as it abstracts and simplifies their retrievals.

3.2 Software Development Kit (SDK)

Deliverable D2.2 [13] documented the initial SONATA SDK architecture, consisting of editors,
workspace and project functionalities, packaging tools, an emulator, a catalogue, monitoring, de-
bugging and analysis functionalities. Each of these components follows a light-weight independent
usage model, similar to the GIT-tools. This implies that each of those tools can be installed/used
without necessarily requiring another SDK component. The programming model itself is heavily
determined by the schema and the corresponding descriptors, which have been updated in this
document’s previous sections. Meanwhile, initial versions of most of these components have been
implemented, and the core functionalities were described in D3.1 [14]. Since the initial release of

20 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

the SDK, its components have changed and evolved, which only modestly have an impact on the
original SDK architecture.

In this document we address the following aspects:

� The impact of a deeper integration of a CI/CD DevOps process on the level of service devel-
opment and deployment.

� Describing the concept and architectural impact of introducing additional SDK components
such as a profiling component, a new service validation tool, improved interaction between
monitoring between the SDK and the SP, and SSM/FSM development support.

3.2.1 Developing for Continuous Integration and Continuous Deployment

The support of DevOps, which is deeply integrated in SONATA, means that development and
deployment of SONATA services can happen based on the level of components. Any component
part of a service can be developed, deployed, updated, and moved between environments in a
seamlessly and individually manner, without requiring the entire service to be updated, reducing
the number of manual steps required to do so. The entire process supporting this should, however,
be equally reliable as the traditional process involving a split between Development and Operations
environments, which acts on silos and only considers updates of full service releases, potentially
requiring a set of manual interventions.

The components and processes which are required for such an approach are the following:

� A set of independent, parallel environments/platforms enabling the development of ser-
vices and components in an isolated and sufficiently realistic manner.

� Testing functionality in these environments enabling to run developer-driven tests as well
as more generic and policy-related Service Platform operator-driven tests.

� Transition processes enabling to activate services and components in a controlled manner
from one environment to another, following a well-defined order of increasing reliability and
production readiness.

� Mechanisms to maintain or migrate service/component-level state, enabling hitless ver-
sion updates of services or components in the same or between environments.

3.2.1.1 Development and test environments

The development and operations environment as described in D2.2 [13] is largely dichotomous. On
one hand, it involves a developer-focused SDK environment, consisting of a set of development tools
and an emulator to help the developer in the design and implementation process. On the other
hand, the operations-focused Service Platform is the environment where services and functions
are instantiated upon user’s requests. This can be considered as a minimal viable approach for
DevOps, however it largely ignores the different stages of integration, testing and staging which
are required for a reliable and production-proof DevOps process. Here we refine this 2-level model
into a multi-stage and a multi-environment setup.

As depicted in Figure 3.2, we propose a flexible multi-stage environment enabling multiple phases
of testing, integration and staging, splits into a developer-controlled pipeline (the upper-side of the
figure), an operator-controlled pipeline (the lower part of the figure), and an interaction point
where the control is transferred from the developer to the operator. This approach extends the ex-
isting pipeline which includes the current minimal viable DevOps approach containing two distinct
environments:

SONATA Public 21

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

1. A SDK-empowered Developer Sandbox environment on the very left of the figure.

2. The SP-enabled Operator Production Environment on the very right.

Figure 3.2: Development and test environments for CI/CD

In the new refined DevOps model, both the developer and the operator have integration, quali-
fication and production environments.

3.2.1.2 Test support

A true DevOps process welcomes well-defined testing processes at different levels and granularities.
As indicated in Table 3.1 below, tests can be executed either in an automated or on-demand way,
before or after service deployment. Pre-deployment testing encompasses the checks which may be
executed solely by inspecting the service and/or NF package, its descriptors and required images.
Such tests may, for example, check for syntax errors or inconsistencies in the descriptors.

Table 3.1: Test support

Before Deployment After Deployment

Automated Execution Example: automated syntax check of
descriptors upon the generation of the
service package

Example: execution of connectivity
verification checks after deployment

On-demand Example: check of reachability be-
tween NFs after editing the NSD based
on encoded forwarding rules

Example: check configuration state of
NF once deployed

Post-deployment testing might involve different types of testing. The first type could contain
basic testing of the underlying Service Infrastructure, for example to ensure that NFs are up, and
that the required links between them are operational. These types of tests usually do not need to
be encoded in the service package or descriptor themselves, as they are agnostic to the considered
service. Secondly, functional testing is specific to the considered service or component, and might
involve particular tests to validate if the configuration of the component is operational. Such
types of tests are usually implemented by the developer of the component and referred/included in
the corresponding descriptors. Besides functional tests, testing might involve performance-related
checks, for example to ensure that adequate QoS is reached by a deployed service (e.g. ensuring
that a FW can handle the required number of packets per second). All levels and types of testing
should be able to be triggered in an automated way throughout the DevOps process, implying that

22 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

upon each transition of a component from one environment (SDK or SP) to another (SP), pre- and
post deployment checks can be possibly triggered at a functional or performance level.

Table 3.2: Test types

Description Service/Function
Dependent

Example

Service Infrastructure
Test

Test to validate the base of a
service infrastructure in order
to implement NFs, and if links
interconnecting NFs are opera-
tional.

No - NF liveness check - Service
link check - Reachability check

Functional Test Service or NF-specific test in
order to verify if the compo-
nent is functionally working.

Yes - Check if FW is blocking
appropriate traffic - Check if
DHCP server is reacting on re-
quests

Performance Test Test which verifies if the per-
formances of a service or a
NF are correct against expec-
tations

Yes - Check if FW achieves re-
quired number of pps

3.2.1.3 Transition procedures

As indicated in previous deliverables, D2.2 [13], D3.1 [14] and D4.1 [15], the interface between
the SDK and the SP is defined by a REST API triggered by the son-push tool from the SDK,
and implemented by the Gatekeeper of the SP. This API is also specified in section . Once a
service or component has passed all checks in one environment, it might be considered for a next
stage environment (e.g., from Qualification environment to Production). Such a transition can
be triggered by accessing the GK of both SDK or SP using the same REST API. However, it
might be the case that this API will be further extended to facilitate the transition of finer-grained
components (or versions of components), as well as the selection of multiple components.

3.2.1.4 State handling support

When a version of a component or service is updated in an environment, running instances using
prior versions can be either upgraded or not. When upgrading the instance, runtime state (e.g.,
the configuration of a Firewall) can, and in most cases, should be migrated towards the instance
of the component with a higher version. This process might either be in the responsibilities of
the service or component itself (e.g., using SSM or FSM functionality to migrate state between
NFs, or using data persistence techniques to store and retrieve data during the version swapping
of components), or might rely on the MANO functionality of the SP itself. In the latter case, an
API could be defined between service components and the MANO framework in order to pull and
push service-related state. Such an API could for example build further on the OpenNF API [x].
Ideally, such process could happen in a hitless way, enabling zero-downtime for the service.

3.2.2 CI/CD support tool

Although each of the above considered functionalities could be achieved using existing SONATA
CLI tools, DevOps shines when these steps can be visualized, persisted and automated in a common
environment. Traditional software development relies on so-called CI/CD tools for managing such
functionality. These tools ease the introduction of new environments and management of existing
ones, the definition of development and deployment pipelines, providing means to manage and
store test procedure collections, visualize the state of components in the pipeline, and provide one-
click interfaces to trigger the execution of transitions and associated tests and state migrations.

SONATA Public 23

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Natural candidates to support such an approach are automation servers such as Jenkins [26]. In
SONATA context, these will need to be customized and potentially extended in order to support
the NFV-focused workflows. Both the developer and the operator might incorporate his/her own
CI/CD support tool. Future releases of the SDK and/or SP might therefore include support for
automation tools optimized for the SONATA workflows.

3.2.3 Profiling for NFV-based Network Services

Future 5th generation telecom networks are adopting new standards regarding the agility of network
services. It envisions fast provisioning cycles, not only at the initial service deployment, but during
its whole lifetime. This means that events such as configuration changes and service updates, like
scaling actions, must happen with a ‘zero-perceived’ downtime for the service user. Nothing may
interrupt the expected service quality. Furthermore, this high reliability of the service needs to
go hand in hand with an optimized resource usage. It adapts the service resources elastically to
the required processing power in quasi real-time, limits over-provisioning, but further stresses the
assurance of the service quality. Network Function Virtualisation (NFV) offers many new degrees of
flexibility to implement and deploy network functions, previously provided by dedicated hardware
or middleboxes. The softwareised nature of these VNF implementations implies, however, that the
performance of NFV-based services relies on a number of variables:

� The underlying software platform (e.g. programming language, compiler)and implementation
quality.

� The architecture of the underlying hardware platform (e.g. ARM vs. x86, number of cores,
clock speed, memory and/or available storage).

� The potential variability of the interconnecting networks between VNFs due to their flexible
deployments on different locations in the network and SDN-based dynamic traffic steering.

This shows that, to support the development of new VNFs and network services, not only ed-
itors are of importance, but also tools that can test and monitor them. It also illustrates that
the advantages of a NFV-based network service come with a trade-off regarding its performance
reliability. NFV performance profiling can remove this trade-off by linking performance metrics to
underlying resource parameters. Network service developers do not only need to implement and
specify their services before deployment, they also need to test them and validate their perfor-
mances. Further, MANO systems do benefit from performance information of a certain service or
VNF, for example, to know if a VNF performance benefits from adding additional CPU cores to
it. This performance information, also called performance profiles, can have various practical use
cases as described further.

The SONATA Software Development Kit (SDK) aims to be the starting point for both NFV-
based service development and deployment. It allows to first test and validate a service in the
local SDK environment, to give confidence on the correct configuration and implementation before
the service is deployed in production on the Service Platform. SONATA plans to support service
developers with a set of profiling solutions like already indicated in D2.2 Section 4.2.4 [13]. In this
section we describe these solutions more in detail and present the SONATA approach for VNF and
service profiling that is based on [33]. The ideas described here were not yet discussed in earlier
deliverables and therefore this section is more elaborate than other ones in this deliverable.

24 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.2.3.1 Profiling as Part of the NFV DevOps Cycle

The overall goal of the DevOps methodology is to bridge the gap between development and oper-
ation of services. New service versions are directly deployed into production after they have been
quickly tested in an automated fashion. In addition, information collected during service operation
can be considered in the development phase to improve the service.

As a result, extensive tests on lab testbeds should be removed from the development cycle. This
becomes challenging for NFV where the services are always expected to meet certain SLAs. On one
hand, it becomes hard for service developers to validate that their changes result in the expected
performance improvements before they put their service in production. On the other hand, MANO
systems will be continuously faced with the management of new service versions, which means that
their resource allocation algorithms, e.g., scaling algorithms, have to be continuously adapted. This
can be tricky because historical monitoring information, available from old service versions, might
not provide correct assumptions about the new version. For example, assume a developer fixes a
performance bug in an intrusion prevention system (IPS) that reduces its resource requirements;
a MANO system will not know about this and it will allocate too much resources to a new IPS
instance.

To overcome this, a mechanism is needed that automatically gathers performance information
about a service prior to its deployment without requiring dedicated testbeds or other special hard-
ware setups. This is called offline profiling [33].

Another important point that motivates the need for offline profiling is based on the assumption
that low-level metrics, like throughput, are often not sufficient to perform good resource allocation
decisions. Especially for Quality of Experience (QoE) optimizations of application-level metrics,
like frames/s or lag ratio of a video stream, are more interesting. However, due to encryption and
privacy issues, it is not always possible to collect such metrics from operating services, e.g., when no
deep packet inspection mechanisms (DPI) are available. In contrast to an offline profiling solution
where a developer is allowed to collect all performance metrics he is interested in. But it is also
possible, for example, to add additional measurement VNFs, called probes, to a profiled service
chain.

Figure 3.3 shows a high-level NFV DevOps architecture. It contains artefacts and components
that exist in most of today’s architectures including service definitions, consisting of network service
descriptors (NSD), VNF descriptors (VNFD), and VNF images as well as the MANO system that
manages the service.

The figure added some components (filled boxes) to this architecture to integrate an offline
profiling solution into the DevOps cycle. First, there is the main profiler component that is part of
the service development toolchain and can be executed on the developer’s laptop. This profiler gets
the service definition and VNFs that should be profiled. Additionally, the developer specifies which
resource configurations should be tested throughout the profiling runs and which performance
metrics should be collected. The profiler then executes the service and its VNFs with different
resource configurations and outputs profiling results for both the network service as a whole, called
network service profile (NSP), and each constituting VNF, called VNF profile (VNFP). Optionally,
topology information about possible target environments can be fed to the profiler. Based on this
information topology-specific profiling runs can be performed in which the target topology, e.g.,
a multi-PoP topology with realistic inter-PoP delay, is emulated and the service is tested in this
topology. The additional profiling results are called topology profiles (TP).

The profiling output of such an offline profiler highly depends on the host machine on which the
profiling run was performed. This makes it harder to reuse them in other environments or compare
them. Hence, a normalizer component is foreseen to be part of the profiling tool that normalizes
the results with respect to the underlying machine.

SONATA Public 25

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.3: High-level DevOps architecture with integrated offline profiling solution [33]

The final, normalized profiles are then bundled with the service description and pushed to the
operation side, namely the MANO system. By doing so, the MANO system has much more infor-
mation about resource requirements available than in existing approaches. A predictor component
inside the MANO system would be needed that uses these information to calculate the absolute
resources required to meet the given SLAs in the target environment. Since the described perfor-
mance profiles only provide relative profiling data and no absolute performance numbers for the
target environment, the predictor is required to interpret the available information and predict the
resource requirements of the target environment, e.g, by identifying trends in the profiles.

This approach would still be combined with monitoring-based management solutions and should
not be seen as a replacement for performance monitoring functionalities. In the proposed scenario,
monitoring information that becomes available after the initial deployment of a service would be
used to continuously improve and refine the initial performance profiles and thus the decisions made
by the management system.

3.2.3.2 Other Use-Cases for NFV-based Profiling

Next to the above described DevOps cycle, other use-cases for profiling exist:

� VNF Benchmark-as-a-Service (VBaaS): VNF benchmarking or profiling can be offered
as a service by the SP [35]. This has the main advantage that it avoids continuous monitoring
overheads. Similar to the DevOps approach, VBaaS is only provided on-demand whenever
new or updated infrastructure resources are required or a service update needs to be tested.
This is now done offline but on the production environment’s infrastructure. This creates the
possibility to estimate and compare the predictable behaviour of VNFs in different hardware
environments or datacenter loads. If the VNF profile is considered reliable and its performance
becomes very predictable, then this might reduce the amount of parameters to continuously
monitor during the service lifetime. The QoS performance is then guaranteed as long as the
profiled hardware resources are available.

26 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� Automated SLA translation: Automated SLA translation to deployable VNF chains is
researched in [36]. However, these efforts only take high-level policy descriptions into account
and rely on a pre-defined mapping from policy expressions to deployable VNFs. It is clear that
the missing link in this process is a mechanism that automatically calculates these mappings,
i.e. the service or VNF performance profile. Of course the mapping becomes more complex
as more parameters have to be taken into account, proportionally to the level of detail in the
SLA and policy description.

� Support for automated scaling/decomposition decisions of a MANO system:
Model-based service decomposition allows a step-wise translation from of high-level (mono-
lithic) service functionality into more elementary or atomic VNFs, which are eventually de-
ployed on the infrastructure. It is therefore an important part of the Service Fulfilment
process. In a NFV context, the terms scalability, elasticity and decomposition are in fact
related. They all depict the dynamic mechanism of deploying more or less VNF resources in
function of the requested functionality, workload and hardware availability. Profiling helps
to define the correct KPI threshold to trigger a scaling action for a VNF.

� Training data for performance (prediction) models: Profile datasets are necessary as
training data for advanced resource prediction models such as neural networks, as illustrated
in [27]. These machine learning techniques promise better correlation results than classic
regression analysis but rely on a slow training phase which requires an earlier monitored
dataset [28].

3.2.3.3 Requirements

A profiling solution that provides the functionalities described in the last section has to fulfil the
following requirements:

� R1: Profile production-ready VNFs. In a DevOps approach time matters. Thus, a profiling
system has to be able to execute the same VNFs that will later be executed in the production
environment.

� R2: Profiling could be done offline. Network service and function developers want to quickly
check the impact of their changes before a service is put to production.

� R3: Support profiling of complex service chains. Profiling a service chain as a whole will give
more detailed insights about relative resource requirements of its parts.

� R4: The profiling process has to be fully automated. NFV is about automation. Thus the
profiling step has to be automated as well.

� R5: Profiles should contain fine-grained performance results. Fine-grained performance pro-
files will make the MANO system better support prediction and decision algorithms.

3.2.3.4 SONATA Profiling Approach

There are two types of profiling approaches that can be applied to NFV use cases. The first
one utilizes cloud testbeds to execute VNFs in realistic environments under different resource
configurations. To do so, a VNF is executed as a VM with a pre-defined resource configuration,
e.g., 2 vCPU cores and 2 GB of memory, and its performance is measured, e.g., its throughput.
After this, the VM is destroyed and a new one with another resource configuration is started,

SONATA Public 27

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

e.g, 4 vCPU core and 2 GB of memory. Based on this, performance values for different resource
configurations can be measured, which creates a mapping from available resources to resulting
performance. This approach provides only a limited set of possible resource configurations (CPU
cores, memory, disk space) and it requires a lot of effort to configure and provision the needed VMs.

The second approach executes a single VNF and sends varying amounts of workload to it. During
this, its resource consumption, like CPU and memory, is measured so that the results reflect a
mapping from workload to resource usage. The benefit of this approach is that it comes with less
configuration overhead. However, it does not generate results about the behaviour of a VNF under
different resource limitations, e.g., different numbers of available CPU cores.

SONATA follows a hybrid approach and allows developers to specify both the resource configura-
tions to be tested during a profiling run as well as the used traffic generators and their parameters.
It utilizes the emulation platform with its container-based VNF execution that allows to control
the resource configurations, such as CPU cores, available CPU time, memory and block I/O, in a
very fine-grained way for each of the VNFs in a profiled service. The main challenge here is to come
up with a profiling solution that supports network service developers and automates the profiling
process as much as possible to make it applicable in a DevOps environment.

To automate the deployment and test execution as much as possible, a profile test setup is defined
as a Service Function Chain (SFC), where a Test VNF is chained to the input/output of the VNF
under test. The Test VNF is a dedicated VNF that can generate/analyse traffic and export the
derived metrics to the monitoring framework for further analysis. In the SONATA framework, this
translates to a Network Service Descriptor (NSD), which describes how the VNFs in the test setup
are linked. The NSD points to Virtual Network Function Descriptors (VNFD), which describe the
exact VNF images to be deployed.

Figure 3.4: Generic profiling SFCs: (a) direct application profiling (b) installing a dedicated SFC
with Test VNFs (c) larger SFC topology with multiple test-VNFs and Profiling Man-
ager.

Figure 3.4 illustrates some generic profiling SFCs, deployed in a Virtualised Infrastructure. In a
cloud computing context option Figure 3.4(a) can yield reliable results. This represents a VNF that
is profiled without external chaining. So its workload is not provided via the normal networking but
directly fed into the NFV application (e.g. an encryption function that processes local files). The
difference with a NFV-based context can be seen in Figure 3.4(b), where the traffic flowing through
a SFC is loading both the guest and the host. Ideally, this complete load and overhead should be
taken into account when deriving a performance profile of a VNF. The principle of using SFCs to
generate performance profiles is further exploited in Figure 3.4(c) to measure the performance of
larger services, consisting of multiple VNFs in a graph-like topology including specific control plane
VNFs. Similarly, multiple test VNF endpoints can be combined and controlled from a centralized
profiling manager (the profiler in section Section 3.2.3.1). This can create an aggregation of very

28 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

large streams, or emulate a large set of different users (e.g. useful for testing vEPC functionality
in a mobile network). The 2 latter options are further developed in SONATA.

Profiling Implemented in the ETSI NFV MANO Architecture

The automatic deployment and execution of profiling test runs, can be mapped on the general
ETSI-MANO architecture, as shown in Figure 3.5. ETSI recommendations and methods for pre-
deployment testing of the functional components of a NFV environment can be found in [25]. The
modular approach of the SONATA framework can be mapped on the ETSI-MANO architecture, as
discussed in earlier deliverables. The same modular implementation of profiling functionality can be
followed in SONATA. This enables not only the deployment but also validation of the performance,
reliability and scaling capabilities of Network Services.

Figure 3.5: NFV Profiling mapped to the ETSI MANO architecture

� Profiling SFC: As described in the previous section, this is a dedicated profiling SFC with
specialized test VNFs. The SFC needs to be described in the NSD format supported by the
SONATA framework. VNFDs for the test VNFs and profiled VNFs need to be available.

� Profiling Environment: The virtual resources exposed by the Infrastructure. The VNFs
in the Profiling SFC are mapped and deployed here. In SONATA, the emulator in the SDK
environment will be used as infrastructure for the first profiling experiments. The emulator
has been designed to be deployed on generic Linux based compute nodes so it can be used to
deploy profiling setups on various hardware. We will further investigate if the emulator can
also have a dedicated VIM on the SP itself.

� VNF Manager (VNFM): This entity configures the VNFs in the Profiling SFC (e.g. setting
the correct traffic parameters in the Test VNFs via a REST API). The VNFM can also expose
performance metrics of the deployed VNFs. In the SONATA framework, this translates to a
dedicated FSM plug-in. In the SONATA SDK environment, this functionality is implemented
as an external layer above the emulator, adapted to be used with specific Test VNFs.

SONATA Public 29

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� Profiling Catalogue: This catalogue contains the SFCs that define different profiling runs
and their configuration. Additionally, also the measured and validated datasets are stored
for later use. In a first phase these will be locally stored files which describe the measured
performance metrics in relation to the used resources. As described in previous sections,
they can be used for further FSM/SSM development to derive the resource-optimized scaling
mechanisms.

� NFV Orchestrator (NFVO): This block adopts the function of general ’profiling manager’.
It provides access to the Profiling Catalogue, deploys the SFC unto the infrastructure and
gathers the monitored performance metrics from the VNFM and resource parameters from
the VIM. In the SONATA framework, this can be implemented as a SSM plug-in module,
dedicated for profiling. In a first phase we will focus on implementing the profiling functional-
ity in the SONATA SDK environment, implemented as an external layer above the emulator.
This will allow the creation of NSDs, deployment on the emulator, metric validation and
analysis.

SONATA Profiling Toolchain

SONATA is developing a profiling approach that is based on the ideas of [33] and is implemented as
a part of the SONATA SDK. Its main component is called son-profile which is a command line tool
that supports network service developers by automating big parts of the profiling process. This
tool interfaces with other SONATA components, like son-emu or son-monitor in order to create a
complete profiling pipeline.

Figure 3.6 shows the high-level profiling concept developed by SONATA. A network service
developer first creates the service package to be tested and defines a so called Profiling Experiment
Descriptor (PED) which contains all information needed to automatically execute profiling runs
with different resource setups and parameters. A developer can, for example, specify that each
VNF in his service should be tested under different CPU resource allocations. Further, a PED file
defines which traffic generator tools are used to measure the performance of the profiled service,
e.g., iperf. To simplify these definitions, PED files allow to define parameter studies using a simple
macro syntax that is inspired by Omnet++ [29] configuration files which are well known in the
networking community.

The PED as well as the service package are then read by the son-profile command line tool
(1) which then computes all possible configurations that should be tested based on the parameter
studies defined in the PED file. After this, son-profile generates a set of new service packages
(2), where each package contains exactly one service configuration that will be used for a single
experiment executed during the profiling process, e.g., the package contains the service to be profiled
and its resource configuration that should be tested. These service packages are then deployed on
the emulation platform which also executes the defined traffic generators (3). At runtime, the
performance, e.g., throughput or delay, of the tested network service is measured, e.g., using son-
monitor, for each configuration (4). The results can then be post-processed by son-profile and
be combined into a single performance profile that describes the behaviour of the profiled service
under different resource configurations (5).

The benefit of our design, with its intermediate service package generation for each configuration
to be tested, is that it can conceptually be integrated with other platforms apart from son-emu. It
can for example be connected with a real service platform as long as the corresponding platform
offers a way to monitor the performance of the tested service.

Another approach is to use the son-profile functionality to enhance SDK-based service validation,
as illustrated in Figure 3.7. Here, only a single profile test setup is generated that links the needed

30 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.6: SONATA profiling concept based on the SDK tool son-profile that integrates with son-
emu or (optionally) the service platform

Test-VNFs to the VNF or Service under test. Once this test setup is deployed, both its resource
and functional configuration can be altered during runtime by son-profile. This can include actions
such as altering CPU/memory allocation, modifying traffic generation in the Test VNFs or changing
the functional configuration of the VNFs under test. The son-profile tool can read in a PED file
as described above to define the parameters that can be configured. Additionally, a Monitoring
Service Descriptor (MSD) describes all metrics that need to be monitored and exported. By
analysing the monitored metrics, the configurations’ parameters can be steered, for example to
identify bottlenecks or debug anomalous behaviour.

Figure 3.7: SONATA profiling concept used for service validation

More details about son-profile and its design will be presented in D3.2. The detailed implemen-
tation is involving these WP3 repositories (also further described in D3.2):

� son-emu : The emulator that deploys SONATA service packages consisting of Docker-based
VNFs on a user-definable infrastructure topology.

� son-cli : A toolset (including son-monitor) that enables SFC creation and customizable
monitoring of the deployed service, as illustrated in [38].

SONATA Public 31

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� son-analyze : An environment where monitored sets of metrics can be further analysed (e.g.
statistical or regression analysis)

3.2.4 Service Validation

The service validation tool, namely son-validate, aims at supporting the development of services
by providing examination algorithms. son-validate addresses the following validation scopes:

� Syntax

� Integrity

� Network Topology

3.2.4.1 Syntax

The service descriptor and corresponding function descriptors are syntactically validated against
the schema templates, available at the son-schema repository.

3.2.4.2 Integrity

Service descriptors contain references to the function descriptor files that compose the service itself.
This referencing relies in the combination of the vendor, name and version of the VNF. Thus,
a referencing validation is performed to assert the existence of the referenced VNF descriptors.
The inter-connection between the service and functions is carried out using connection points
and the links associated with them. Connection points of the service are defined in the service
descriptor itself, whereas VNF connection points are defined in the VNF descriptor and referenced
in the service descriptor. Therefore, a verification of the correct relation of defined and referenced
connection points must take place.

3.2.4.3 Network topology

The son-validate provides a set of mechanisms to validate and aid the development of the network
connectivity logic. Typically, a service contains several inter-connected VNFs and each VNF may
also contain several inter-connected VDUs. The connection topology between VNFs and VDUs
(within VNFs) must be analysed to ensure a correct connectivity topology. The son-validate

tool comprises the following validation mechanisms. Figure 3.8 shows a service example used to
better illustrate validation issues.

� unlinked VNFs, VDUs and connection points - unconnected VNFs, VDUs and unref-
erenced connection points will trigger alerts to inform the developer of an incomplete service
definition. For instance, VNF#5 would trigger a message to inform that it is not being used.

� network loops/cycles - the existence of cycles in the network graph of the service may
not be intentional, particularly in the case of self loops. For instance, VNF#1 contains
a self linking loop, which was probably not intended. Another example is the connection
between vdu#1 and vdu#3 which may not be deliberate. The son-validate tool analyses
the network graph and returns a list of existing cycles to help the developer in the topology
design. In this example, son-validate would return the cycles:

– [VNF#1, VNF#1]

32 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

– [vdu#1, vdu#2, vdu#3, vdu#1]

� node bottlenecks - warnings about possible network congestions, associated with nodes,
are provided. Taking into account the bandwidth specified for the interfaces, weights are
assigned to the edges of the network graph in order to assess possible bottlenecks in the path.
As specified in the example, the inter-connection between vdu#2 and vdu#3 represents a
significant bandwidth loss when compared with the remaining links along the path.

Figure 3.8: Example of a Service Network Topology

3.2.5 Monitor Data Transfer from the SP to the SDK

The monitoring framework in SONATA is based on the Prometheus open-source software, as de-
scribed in D2.2 section 5.4 [13] and D4.1 section 5.2.4 [15]. In them, it was already explained
that a developer/BSS can access the monitoring framework on the SP via the Gatekeeper and the
Monitoring Manager. After Service deployment on the SP, it is possible in the SDK environment
to:

� Receive alerts from the SP, as defined in the monitoring part of the service descriptor via the
message broker and given that the developer has subscribed to specific message broker topics.

� Retrieve monitoring data from the deployed service via a REST API using the Monitoring
Manager to relates each metric in the Prometheus DB with SONATA’s monitored entities
like NS/VNFs.

� Modify the monitoring configuration via the same REST API, the developer can add a new
metric, change the monitoring frequency of an existing metric or even include a new alerting
rule.

In addition to this, a new way of streaming monitor data from the SP to the SDK is introduced, to
further close the DevOps cycle between service development and operation. This further enhances
the SONATA monitoring framework allowing to inspect monitored data of a deployed network
function or service in different ways:

� Past monitored values are stored in the Prometheus Database at SDK-side when a service is
deployed via the SDK’s service emulator.

� Past monitored values are stored in the Prometheus Database at SP-side when a service is
deployed via the SP.

� Upon request, the SDK can request the SP to start streaming monitored data to the SDK
(filtering the data first then specifying service/VNF and time-period).

SONATA Public 33

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

A service developer should be able to process all monitored data of his/her services with these
SDK tools, whether a service is deployed locally in the SDK’s emulator or in production on the
SP. The SDK has advanced debug and analysis tools that are not available in the SP, using the
functionalities implemented in the SDK’s: the son-analyze tool for example. This way the developer
can write customized functions to process several time series metrics and do things like anomaly
detection or load prediction. By implementing an automatic data transfer mechanism, we avoid
that the SDK must continuously poll the SP to check if new data is available.

3.2.5.1 Finding the correct data transfer method

Since we have a Prometheus Push Gateway and Database both at the SDK side (for the emulator
monitoring) and at the SP side, we can connect both sides together using these tools. We explore
different data transfer mechanisms before settling with a push model, where the SP pushes data to
the SDK, through dedicated websockets per user and service.

Table 3.3: Monitoring data transfer methods

Data transfer method Explanation Pro Con

Pull from SDK via
REST API

Use the GK’s API to query
data from the SP’s Prometheus
DB

Already implemented SDK is polling, SP is
loaded with multiple
REST GET requests

Push from SP via web
hook

data transfer using POST re-
quests from the SP to the SDK

SP can push and
stream data when it is
available

SDK needs to be reach-
able via a public IP ad-
dress

Push from SP via
web socket

SP acts as a server where the
SDK can connect to

SDK can connect to
the Monitoring Man-
ager public IP address

SP needs to open a
dedicated websocket
for each SDK/user
that wants to receive
data

The last method where the SP pushes metrics into a web socket seems to be the most preferred
one. It satisfies the need for an automatic data transfer, without needing the SDK to continuously
poll the SP for new data. We must ensure that the SDK can connect to the web socket at the SP
side and read from it. Data received at the SDK side should be placed in the Prometheus DB for
later use, or it could be streamed directly to the input of a monitor data analysis tool.

Push from SP based on websockets

In this push-based mechanism, we need the SP to actively send the metric values out of the SP.
The disadvantage of this model is that the SDK side must be reachable for the SP. This can cause
extra overhead e.g. requiring a public IP or a tunnel setup. But, as discussed in the table above,
this can be avoided by using web sockets. This mechanism can be explained as the SDK being a
client that automatically receives data from a server (the SP). The SDK is like a client browser
and the GK is like a webserver that pushes data to the client. The GK can make the websocket
available at its public IP. The normal GK authentication and authorization mechanism can be used
to securely connect the SDK.

This is illustrated below in the Figure 3.9. Upon a request from the SDK, a web socket is opened
on the SP (via the GK) where metric values can be pushed into. The SP is in control of the data
transfer and it can choose to push monitored data as soon as it is available. The SDK can connect
to this web socket to automatically receive the (filtered) monitored data.

34 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.9: Retrieval of Monitoring Data

3.2.5.2 Secure the monitoring data transfer

The Gatekeeper in the SONATA SP will be the first point of access to reach the SP from the
SDK. A service developer can use his/her identity from the SDK to access monitor data from the
SP. This user authentication and authorization step is described in Section 3.3.4. After successful
AuthN/AuthZ phase, the developer is granted a session token to access a dedicated web socket on
the Monitoring Manager. Multiple developers will use different web sockets to receive their own
set of allowed monitor data.

It is preferred that the Gatekeeper would be transparent in the websocket data transfer (acting
like a proxy, apart from the AuthN/AuthZ phase). It will be further explored in D4.2 how this can
be implemented. Either the session token will be validated in the Gatekeeper before the request is
transferred to the Monitoring Manager, or the Monitoring Manager should query the Gatekeeper
to check the session token itself first.

Optionally, the Gatekeeper could filter non-numerical monitored data (e.g. obfuscate domain
names, ip/mac addresses) transferred in logfiles or packet streams. However, the data export
described here only addresses numerical data gathered via the Prometheus Framework (containing
compute, network and storage metrics). The export of this numeric monitor data is filtered in
another way: per SDK/developer there is only a limited set of metrics that is allowed to be
exported; these are only the metrics specified in the NSD/VNFD. So metrics of another user, other
services not started by the developer or the SP itself can never be queried by the SDK. Also, next
to this, other limits can be installed:

� Limited number of metrics at once.

� Limited quantity of data.

� Limited time frame during which metrics are exported.

SONATA Public 35

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.2.6 SSM-FSM Development Support

This section describes tools that SONATA provides to support developers in the context of Service
Specific Managers (SSM) and Function Specific Managers (FSM).

3.2.6.1 SSM-FSM general template

SONATA’s SDK provides a template that can be used by service developers to create a new
SSM/FSM. The template is a Python class containing functions that are needed to register a
FSM/SSM into a Specific Manager Registry (SMR). A SMR is a MANO framework component,
responsible for managing SSMs/FSMs lifecycle including SSM/FSM on-boarding, instantiation,
updating, and termination. The SSM/FSM instantiation starts with registration which deals with
storing a corresponding record in the SSM/FSM repository; that is done by the SMR.

Figure 3.10 illustrates the process of FSM/SSM registration which is implemented in the FSM/SSM
template. It starts with the initialization function, responsible for receiving the SSM/FSM record.
The record consists of the SSM/FSM name, type (either SSM or FSM), id number, version, and
description. The next step, validation, checks whether the received record is valid or not, e.g.,
checks if the chosen SSM name can be used as a container name or not. Now that the received
data is validated, the registration function can be triggered. The registration function forwards
the record to the SMR through the message broker and waits for the response. Eventually, the
SSM/FSM will be started if the SMR replies by a message containing “Registration OK”.

Figure 3.10: SSM-FSM registration process

Since all SSM/FSMs are required to have the registration functionality, the template can help
developers to accelerate the SMM-FSM development.

3.2.6.2 Placement and Scaling SSM-FSM template

Placement and scaling SSM/FSM templates are designed to provide not only the SSM/FSM reg-
istration but basic placement and scaling algorithms as well. These templates can be used by
developers to develop placement/scaling SSM/FSMs based on their own policy, e.g., developing
scaling FSMs based on different CPU usage thresholds.

36 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

The input data that a SSM-FSM needs to process, is received via the SP’s message bus. To
further enhance the debug possibilities during SSM-FSM development, two approaches will be
further investigated:

1. The SDK can have its own isolated message bus where a SSM/FSM can connect to and
receive alerts.

2. The SP as a whole can be run locally on the developer’s machine, so the same message bus,
SLM and other SP functional blocks are available at the developer’s side.

In both cases, the developer has access to the message bus and can publish messages on it.
The SDK will provide a sequence/set of messages that tests the behaviour of the placement/scaling
algorithm when published. Since the developer has access, he/she can create additional messages to
test another functionality that is not covered by the messages provided by the SDK. The messages
provided by the SDK can contain varying topologies to test the performance of the placement
algorithm, monitoring alarms that trigger the scaling, etc.

SDK support for Scaling SSM-FSM

Optimized, dynamic resource allocation is a main functionality for a service scaling algorithm. The
resource usage must at all times be adapted to the required traffic load, limiting over-provisioning
and meeting QoS requirements. As explained in Section 3.2.3, performance profiling of NFV-based
services gives a mapping between the required resources and the expected performance of a certain
VNF or service. This can serve as input for a scaling algorithm. The format of the profiles generated
by the tools described in Section 3.2.3 will be devised so that a parsing library for these profile
results can be easily implemented in the scaling SSM/FSM. The datasets derived during profile
runs initiated from the SDK, will therefore support the implementation of service specific scaling
algorithms.

SDK support for Placement SSM-FSM

The SDK emulator supports the emulation of custom, virtualised infrastructure topologies. Differ-
ent datacenters can be placed in a network, where additional bandwidth and delay constraints can
be applied to the infrastructure links. The network and datacenters are implemented by virtual
switches. On service deployment, the different VNFs in the service need to be connected to those
datacenters. The placement algorithm that maps each VNF to a certain virtual switch, can be eas-
ily customized. A default round-robin placement algorithm is installed as example, but a service
developer can implement and test any of his/her mapping algorithms on user-defined infrastructure
topologies.

3.3 Service Platform Architecture

This section describes the Service Platform’s architecture, focused on its modularity. We present
both the existing architecture, as well as the expected changes for its second release.

We start by describing the main Service Platform’s components and (briefly) their interfaces
(these will be covered in detail in another deliverable [16]). Then, we highlight changes to be made
in the Monitoring and to the Infrastructure Abstraction components of the Service Platform, in
order to accommodate a different kind of VIM, based on containers. Next, we explain the security
aspects we are including in this second version and detail how the entire Service Platform can
programmatically be installed and uninstalled on our infrastructure.

SONATA Public 37

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.3.1 Component Interfaces

This section describes the interfaces between the components in the SONATA Service Platform,
and between the Service Platform’s components and external entities: the Software Development
Kit (on the left hand side of Figure 3.11) and the Network Function Virtualisation Infrastructure
(on the right hand side of Figure 3.11).

These interfaces are listed per component duo that interacts with each other. The interfaces can
be divided into two main categories:

1. RESTful interfaces (which are listed first)

2. Message based publish/subscribe interfaces.

The message based publish/subscribe interfaces are realised by a RabbitMQ message broker.
Figure 3.11 shows the different components that are listed in this section, and the interfaces between
them.

Figure 3.11: SP Component Interfaces

Interfaces to the outside components of the Service Platform, already described in [15], are
implemented with a REST [20] API over HTTP. These components are the SDK and the NFV
Infrastructure (NFVI) (which contains the VIM for the computational and storage resources, and
the WIM for the wide-area network resources).

The son-push module of the SDK accesses the Service Platform through the Gatekeeper’s API,
which then delegates to other micro-services. These micro-services are then responsible for con-
necting with the other components of the Service Platform.

The Gatekeeper is built by several micro-services:

� API, playing the role of an API-Gateway;

� Package Manager (PKG), which receives, validates and stores packages;

38 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� Service Manager (SRV), which manages service instantiation requests and queries on ser-
vice descriptors;

� Function Manager (FNCT), which manages queries on function descriptors;

� Record Manager (REC), responsible for gathering service and function instance records
and providing them to the developer;

� VIM Manager (VIM), which manages the set-up of VIMs through the GUI.

There are two different applications under the Gatekeeper’s scope that access its resources
through the API:

� GUI, a (Web) Graphical User Interface that allows the configuration and generic management
of the Service Platform;

� BSS, representing the Business Support System, facing the End-User (who might be a
person or a company).

In the second year version the following modules will be added to the Gatekeeper:

� User Manager, concentrating all the authentication and authorisation mechanisms the Ser-
vice Platform will support;

� Licence Manager, with a first implementation of a licence mechanism that allows the
monetisation of services and functions;

� KPIs, where the Key Performance Indicators will be stored/calculated.

The Catalogues and Repositories are components that were available from the first version,
and they are where descriptors and records are stored.

The MANO Framework is the core of the Service Platform. Here, all components talk to each
other through the Message Broker. These components are the following:

� Plugin Manager (PM): accepts, validates and controls all plugins of the MANO Framework;

� Service Lifecycle Manager (SLM): one of the main components of the Framework, accepts
requests related to the service lifecycle and passes them to the FLM (for the function-related
lifecycle) and the IA (the WIM part, see below);

� Function Lifecycle Manager (FLM): accepts requests related to the service lifecycle and
passes them to the IA (the VIM part, see below);

� Service Specific Manager(s) (SSM): one of the key innovations of SONATA, together
with FSMs (see below), these components are meant to adapt the behaviour of the Service
Platform in certain and controlled ways, specific to the service it is related to. SSMs are
usually specific to one feature, like scaling, placement, etc.;

� Function Specific Manager(s) (FSM): similar to the SSMs, they deal with function specific
aspects, like scaling, placement, etc.;

� Specific Manager Registry (SMR): is responsible for managing the deployment and life-
cycle of the F/SSM containers as such;

SONATA Public 39

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� Placement Executive (PX): responsible for interfacing with the placement SSMs/FSMs
that are uploaded to the platform;

� Scaling Executive (SX): responsible for interfacing with the scaling SSMs/FSMs that are
uploaded to the platform.

Besides the above shown MANO components, there are a few additional components responsible
to manage the platform as such that aren’t shown for the sake of simplicity.

The Infrastructure Abstraction (IA) allows for the transparent usage of different kinds of
VIM/WIM infrastructure, like OpenStack, Kubernetes, etc.

The Monitoring components were already available from the first year, although specific ex-
tensions are planned for the second year, as described in the relevant sections of this deliverable.
In particular, the extensions can be categorized to:

� those related to the scalability and reliability of the monitoring framework,

� the extensions to monitoring metrics (with an emphasis on the support of custom metrics
defined by the developers),

� those related to the integration with SONATA Service Platform as a whole.

The fine details of these interfaces are left for D4.2 [16].

3.3.2 Service Platform Monitoring Framework enhancements

This section describes and specifies the additional functionalities and enhanced operational char-
acteristics of the SONATA monitoring framework to be developed on top of the characteristics
achieved during the first year of the project.

In particular, during the first year, and in accordance with the description presented in the
respective section in Deliverable 4.2 [16], the monitoring framework has been designed, developed
and implemented as an integral part of the SONATA Service Platform. The components that the
Monitoring Framework consists of have been developed, tested (both as separate units as well as
in conformance with other SONATA components), validated and integrated.

However, since new technologies as well as functional and non-functional requirements are added
to the SONATA Service Platform (also adopted by other components of the Service Platform and
SDK), there is a clear need for adaptations and additions on the architecture of the Service Platform
to allow for supporting the new functionalities from the monitoring system, in parallel with the
developments already planned for the second year of the project (see the relevant section concerning
the monitoring framework roadmap in Deliverable 4.2 [16]).

In the following sections, all planned activities related to the extension of the SONATA moni-
toring framework during the second year of the project are analysed.

3.3.2.1 Monitoring framework scalability & reliability

One of the major objectives regarding the development planned for the second year, is related to the
extension of the SONATA Service Platform to more than 2 PoPs and VIMs. From the monitoring
framework viewpoint, this means modifications and adaptations of the current implementation in
order to address issues related to scalability and reliability.

40 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

API enhancements

The first version of the API calls provided by the Monitoring Manager has been already available
during the first year of the project. However, specific needs have arisen, especially with regard
to the ability to modify the configuration of the monitoring parameters and metrics in the VNFs
(either deployed within containers or VMs) deployed in the NFVIs. Moreover, due to the decision
to support streaming data from the Service Platform to the SDK, some new API calls must also be
designed and implemented, providing management capabilities to the developers and thus closing
the DevOps cycle that is followed in SONATA.

Implementing filtering mechanisms in monitoring probes

During the testing of the monitoring framework, a large flow of data from the monitoring probes to
the Monitoring Server and its respective database has been identified that might affect the Service
Platform performance in extreme cases, without adding knowledge to the system. In this respect,
an architectural decision to address this scalability issue was to support a distributed architecture
regarding the monitoring server and its database, working in a cascaded fashion along with proper
modifications on component level. In particular, the functionality of the monitoring probe will
change so that it will not send data to the monitoring server in cases where the value difference is
less than a threshold defined by the developer. The same will be the case in the communication
between the monitoring server within a NFVI and the monitoring server in the Service Platform.

Homogenize databases and schemas

Last but not least, an important decision towards achieving better scalability and reliability re-
sponse, databases and schemas will be modified accordingly. This will also simplify maintenance
effort of the SONATA platform as a whole.

3.3.2.2 Monitoring metrics extensions

One of the issues that are of paramount importance for the second year is the support of the
SONATA’s Use Cases to be demonstrated as pilots during the project lifetime. From the monitoring
point of view, addressing this issue comes with a plethora of requirements for supporting custom
metrics, as discussed below.

Development of the monitoring mechanism to collect data from OpenFlow switches (ODL
server)

It is a priority of the project to finalize the development and implementation of a mechanism that
will not only collect data from OVS switches (through the SDN controller) but most importantly
handle the data and trigger the actions from the developer (or SSM/FSM) side.

Support metrics for VMs/Containers and custom developer metrics

Moreover, in order to support the SONATA’s Use Cases, there is a clear need to extend the current
list of supported metrics and rules. This extended list of metrics and rules does not only include
metrics tailored to specific deployment technologies (such as Virtual Machines, LXC, etc.) but also
the development and support of any stringent requirement for integration of user-specific metrics
(either related to business or technical characteristics). This case also includes the definition of a
clear strategy on the way that a custom metric software will be automatically installed along with
the VNF, without the need for any human intervention, just as it is the case until now.

SONATA Public 41

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Rules based on multiple metrics (running on different VNFs/POPs)

Another capability that will be supported on the new version of the monitoring framework release,
as described in D4.2 [16], will be the ability for a developer to define metrics and thresholds on
each VNF (even if deployed in different PoPs) and further define alerting rules for the monitoring
framework at the Service Platform level. Thus, it would be possible to define a rule such as: “send
an email when the packet loss on VNF #1 deployed on PoP #3 exceeds 30% AND when the latency
in VNF #2 deployed on PoP #2 exceeds 200msecs”.

3.3.2.3 Integration with other SONATA components and adopted mechanisms

The monitoring framework is part of the SONATA solution as a whole, and in this sense, it has
to comply with rules implied by other components. As it became evident in previous deliverables
that, the monitoring framework communicates with several components (e.g. SLM, IA, GK, GUI,
SSM/FSM, etc).

For the second year, and given the functionality enhancements and priorities described in the
rest of the SONATA components, the monitoring framework will comply with the mechanisms
presented in the following components.

Integrate AuthN/AuthZ mechanism with monitoring framework

The existing solution will be enhanced, providing much more secure communication not only be-
tween end-users and the SONATA Service Platform but also between the SP’s components them-
selves.

In this respect, monitoring data must be part of this concept, requiring to follow specific archi-
tectural decisions, as described in the respective section of the deliverable.

Align with SONATA user management policies

Moreover, one of the main concerns of the potential customers of SONATA with regard to its adop-
tion, is the user management policies enforced (or foreseen) in this context. Thus, the monitoring
framework will take all the appropriate development actions to support user management at the
Service Platform level.

Extend unit and integration tests

As part of the activities related to the seamless integration of the monitoring framework with the
rest of the SONATA components, it is foreseen that the list of unit and integration tests will be
enhanced, targeting the successful deployment of a Network Service without compatibility issues
in the Operational environment of the SONATA ecosystem.

3.3.3 Additional Infrastructure Abstractions

During the second iteration of requirements elicitation and use cases definition, the addition of new
features at the infrastructure abstraction layer is considered. The new additions are:

1. IPv6 Support

2. Support for alternative VIMs.

For the latter topic, SONATA targets a complete implementation for a suggested VIM deployment
(after analysis of the candidate technologies). Whereas for the first topic an assessment approach
is anticipated, based on the fact that IPv6 support is considered mainstream for most of the
technologies used at the Infrastructure substrate, although levels of support may vary.

42 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.3.3.1 IP Protocol Version 6 support

The project will consider support for IPv6 both for the deployment of the Service Platform itself,
but also for the instantiation of Network Services (NS) on top of IPv6 NFVI-PoPs. The activity
and implementations related to this topic will initially include assessments of the current level of
support of all involved components of the SP. The process will allow fixes in communication between
the components following the DevOps approach used for the IPv4 version of the SP. In cases where
dual stack approaches are operational, implying existence of both protocols, no modification on the
current implemented SP components will be made.

In relation to the support for the deployment and instantiation of NS, the support of IPv6 at the
PoP level is required. SONATA involvement in this layer is only for integration and deployment
of particular features required for the integration, qualification and demonstration environments.
In this context, the current implemented NFVI-PoPs are based on OpenStack. The used version
is Juno, which natively supports IPv6. More specifically, OpenStack allows the following features:

� Dual-stack (IPv4 and IPv6 enabled) instances.

� Allocation of instance with an IPv6 address.

� Communicate across a router to other subnets or the internet.

� Interaction of instances with other OpenStack services.

Since Kilo, OpenStack supports for ensuring the tenant network can handle dual stack IPv6 and
IPv4 transport across a variety of configurations. This same level of scrutiny has not been applied
to running the OpenStack control network in a dual stack configuration. Similarly, little scrutiny
has gone into ensuring that the OpenStack API endpoints can be accessed via an IPv6 network. At
this time, Open vSwitch (OVS) tunnel types (STT, VXLAN, GRE) only support IPv4 endpoints,
not IPv6, so a full IPv6-only deployment is not possible with that technology.

In addition to the above, it has to be noted that the deployment of VNFs on top of OpenStack
requires steps and implementations from the developers to support IPv6 (single or dual stack too).
The anticipation is that in this assessment, IPv6 ready VNFs will be used in order to assess the
level of SONATA support for IPv6 considering the whole provisioning chain, from the development
to the deployment and instantiation of an IPv6 enabled NS.

3.3.3.2 Alternate VIMs support

An extension of the set of VIMs supported by the SONATA service platform requires an analysis
on the implications brought by different kind of virtualisation technologies available. An initial
analysis was done as part of deliverable 6.1 [17]. This section contains a comparison between the
technologies that have been taken into consideration, focusing on the functionalities they offer and
on the implication of their usage on the whole SONATA architecture. The section is divided in
two parts: the first part analyses the VIMs based on hypervisors, offering services in the form of
virtual machines similarly to OpenStack (the first VIM managed by SONATA). The second section
analyses VIMs based on Linux Container.

Virtual Machine based VIM

The available VM-based VIMs can be further divided in two sets: open source VIMs that are more
targeted to the research community, and enterprise solutions, widely accepted and used both in
operators and cloud companies. We took into consideration a total of three VIMs, as detailed

SONATA Public 43

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

below.

OpenVIM [21] - is an open source VIM available under the Apache 2.0 license. It is a VIM
aiming to be optimized for VNF high and predictable performance. Although it is comparable to
other VIMs, like OpenStack, it includes control over SDN with plugins (floodlight, OpenDaylight)
aiming for high performance data plane connectivity. It offers a CLI tool and a northbound API.
The orchestration component (OpenMANO) uses this northbound API to allocate resources from
the underlying infrastructure; which includes the creation, deletion and management of images,
flavours, instances and networks. OpenVIM provides a lightweight design that does not require
additional agents to be installed on the managed compute nodes.

VMWare vCloud Suite [39] - VMWare vCloud Suite is an integrated solution that blends to-
gether VMware’s vSphere hypervisor and VMWare vRealize Suite cloud management platform.
This combined solution allows the infrastructure owner to offer to the SONATA platform APIs to
deploy VMs on the flight.

Amazon Web Services (AWS) [5] - AWS is a well-known platform for cloud computing offered
by Amazon. The API offered by the system to deploy virtual machines is extensive and used as
reference in many other cloud managers. Anyway, since the service is operated as a black box,
it offers limited programmability and flexibility to the service platform, in terms of placement or
advanced networking features.

In general these VIMs offer a good start for supporting SONATA adoption in an industrial context.
As different VIM backends expose an heterogeneous set of APIs, it increases the effort needed to
design the proper infrastructure adaptor in the relevant architectural layer. But they may natively
offer an extended support for security, resource isolation and advanced features for networking
(support for tenant networks , facilities for function chaining). These native features ease the de-
velopment of the SONATA IA. As a final note, these solutions come with license constraints and
limited terms of use, due to their corporate nature. Moreover they offer limited support for trial.

Container Based VIM

Software containers are being more popular these days. Even if VNF development had mainly used
VM, software development heads more and more towards the use of containers. It is easy, fast to
deploy and the application have a much lighter overhead than with VMs. Moreover using VNF VM
image with docker is possible by converting it to a Docker image [7]. Various add-ons are available
and various software such as Kubernetes [8], Swarm [11] and CoreOS [6] provide infrastructure for
container clustered deployments.

Kubernetes - Among these tools, Kubernetes is the most complete. It is quite mature and used
by other projects such as MESOS, Mesosphere and DC/OS. Kubernetes is a container (Docker)
manager that provides a platform for automating deployment, scaling, and operations of applica-
tion containers across a cluster of hosts. It provides, for example, an automatic DNS for service
discovery or Virtual IPs for services load balancing. Kubernetes could be considered as a VIM

44 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

abstraction by itself. If so, SONATA would be compatible with any IaaS, as long as you can create
a Kubernetes cluster inside it. The implications of using this model would be many, in terms of
resource allocation and isolation. In particular, the control over resource allocation might become
more loose. Currently, the Infrastructure Adaptor takes care of steering traffic around the WAN,
inside the NFVi-PoP, within the OpenStack (VIM) tenant network and, later, inside the Kuber-
netes space. By using a higher level of abstraction, this architecture provides more granularity to
control and manage the network.

Unfortunately Kubernetes doesn’t manage the network, it delegates the responsibility to an
underlying backend. So there isn’t any network resource to manipulate in Kubernetes apart for the
network policies [9]. The network policies are “firewall” rules for isolating the flow across containers.
But there are several projects that work on the networking aspects of Docker based orchestration.

� Calico networking relies on BGP routing tables to steer traffic corresponding to a FG or a
SFC. Calico creates a L3 network fabric using the components displayed in the Figure 3.12.
Moreover Calico supports OpenStack and is able to talk to Neutron. The choice of BGP is
to mimic the internet architecture and to provide a high level of scalability. But relying on
BGP is old fashion while OpenFlow allows much more flexibility and control for implementing
SFC.

Figure 3.12: Calico network architecture (source: [30])

� Another alternative is to create an overlay network to connect containers running on different
hosts. It can be achieved using projects such as Weave [40] or Flannel [18]. Among these
tools, Flannel is the most complete and compatible with Kubernetes. The Figure 3.13 shows
the internal setup of a Flannel overlay network. It manages IP addresses and reserves a
subnet to each host with containers. Then the packets are boxed into a VXLAN frame.
The Flannel daemon customizes the OS routing table to relay the packet to the correct host
onto the underlying private network. With its current form, a SFC is not available without
customizing the Flannel daemon or injecting new rules.

SONATA Public 45

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.13: Flannel network architecture (source: [18])

� The next option is to create a GRE mesh and to configure Kubernetes on top of OVS. This
option is more difficult but takes full advantage of SDN’s features by having a more flexible
network and Service Function Chaining through OpenFlow rules. The challenge will be to
manage a controller and push the adequate rules. The Figure 3.14 shows a simplified setup
based on OVS.

� Romana is a L3 fabric that try to avoid the overhead of encapsulation. It uses a complex
IP Address Management (IPAM) to split the IP range into buckets. Each bucket level has
its own semantic: host, tenant or segment. The Figure 3.15 shows how Romana controls
the kernel routes to forward packets to the corresponding destination using the information
stored into the IP.

3.3.3.3 Implications on SONATA’s Architecture

In order to support two different virtualisation technologies, the service platform should offer a
furthered level of validation to service on-board in the catalogue. In fact specific Service Platform
instances could be configured to use just NFVi-PoP where a VM-based VIM is deployed, or vice
versa. In this case, developers can on-board, into the Service Platform, just services and VNFs based
on the technology that matches the one available in the platform. To this aim, the Gatekeeper
must validate each on-boarded function against the list of available NFVi-PoP and the relevant
deployed VIMs.

46 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.14: OVS network architecture (source: [31])

Figure 3.15: Romana network architecture (source: [34])

SONATA Public 47

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

In the most general case, a Service Platform instance offers both NFVi-PoPs based on hypervisors
and NFVi-PoPs supporting container virtualisation. Therefore during the instantiation of a network
service, the default placement algorithm, or the placement-SSM shipped with the service, are
responsible of selecting, for each VNF deployed, a PoP(VIM) which matches the VNF virtualisation
technology. To this aim the Infrastructure Abstraction layer offers the functionality to retrieve the
list of PoPs and the relevant VIMs deployed in them.

Container Based Options with VM isolation

For VNF development, we have mainly two approaches. Use the most conservative, but also secure
approach by embedding the network function into VM. In the other side, developers can also choose
the container approach. This option has many advantages, the VNF is much lighter, faster but its
isolation is less efficient and secure compare to a VM. In contrast with VMs that rely on hypervisors
and hardware instructions for isolation, all containers, running on the same host, share the same
kernel and rely on kernel tools such as cgroups and namespace for isolation. As a consequence,
the container based option is considered less secure than the VM based solution. Each approach
has pros and cons. But if a developer wants to provide his VNF in the two worlds, it requires
two separate developments tree. The container based option with VM isolation not only allows
a developer to develop his VNFs for containers but also to run them with VM isolation. The
container may be executed through a hypervisor to bring the extra level of security that a VM can
assure.

This setup is possible by using Kubernetes with Rkt. Kubelet must be configured to use Rkt
as the container runtime. Then, Rkt brings an extra level of flexibility by being able to launch
Docker image with basic namespace/cgroups isolation (default) but it is also able to run Docker
image under the KVM hypervisor [10].

3.3.4 Service Platform (SP) Security

This section describes different security aspects taken into account by the SONATA SP in terms
of its operation. The main security approach of SONATA SP is to verify “Who” can access
(Authentication) and “What” can be accessed (Authorization). As SONATA is pure software
project, the security of the SONATA code plays a vital role in improving the security of SONATA
SP as a platform. However the security related to the SONATA source code will be dealt in detail
in D5.3, as it is related to the CI/CD process of SONATA development. This section covers:

� User Management.

� Micro-Services Security.

� SONATA Catalogues Artefacts Security.

3.3.4.1 User Management

This section treats the user management of the SONATA Service platform, under the scope of the
users and their respective roles.

The planned features that will be included in the SONATA architecture are:

� Single Sign-On (SSO) with a centralized user authentication and authorization approach.

� Social login: a single sign-on procedure using existing information from a social networking
service such as GitHub, Twitter or Google+ (Git accounts in case of SONATA), to sign with
a third party site instead of creating a new login account.

48 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� The use of HTTPS protocol and digital certificates.

Users and Roles

There are two types of users in SONATA: the SONATA SP users and the End-Users of the deployed
services on the SONATA SP. This document only contemplates the Service Platform users and
assumes that the service End Users shall be managed by the business logic of each service itself.

Figure 3.16 shows the roles in which the SP users can be classified: platform admin, customer
or service manager and developer.

Figure 3.16: SONATA Platform Users and Roles

Attending to the roles, the different SONATA platform users can be:

� Developer: responsible to provide and support VNFs and NSs as products to some service
customers or service providers. Responsibilities:

– Create/Develop NS/NFVs for the platform.

– Deploy NS/NFVs into the platform for later instantiation.

– Monitor instances to understand the requirements to build/modify a NS/VNF (issues,
bugs, etc.).

� Customer: responsible for the operation of network services, for service users to consume
them. Responsibilities:

– Request new instances of the NSs.

– Request management operations after a service is deployed: pause, resume, retire, up-
date/upgrade.

– Monitor instances.

� Service Provider: offers the SP’s infrastructure, management and orchestration services to
the service customers, in order to host instances that support service customers’ users. Re-
sponsibilities:

– Request management operations after a service is deployed: pause, resume, retire, up-
date/upgrade.

– Monitor instances.

– Manage customer permissions through the User Management Module.

� Platform admin

SONATA Public 49

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

– Manage the resources, the NFV specs, the NFV instances, the NS specs and the NS
instances, allowing their publications and instantiations.

– Operational management based on security, SLAs (scale up), resources (scale down),
malfunctions, etc.

User Authentication and Authorization

Figure 3.17 describes the user registration, authentication and authorization process.

The current focus on the User Management component is to use OpenID Connect (OIDC),
OAuth 2.0 and Json Web Tokens (JWT). OpenID Connect 1.0 is a simple identity layer on top
of the OAuth 2.0 protocol. It allows Clients to verify the identity of the End-User based on the
authentication performed by an AuthC/AuthZ Server, as well as to obtain basic profile information
about the End-User in an interoperable and REST-like manner.

In this context, the user management architecture can be split into two main components:

� the son-gtkuser adapter: the sonata component who connects the user clients (GUI/BSS)
with the authorization and authentication system.

� the identity and access manager open source tool.

3.3.4.2 Micro-Services Security

As SONATA’s architecture is based on micro-services, it considers the micro-services security in
terms of authentication and authorization. That is, all the micro-services in the SONATA SP can
be authenticated and regulated based on defined policies. Every micro-service can register itself
with the AuthZ/AuthZ module in the Gatekeeper and receive a token. This token refers to both the
identity and the policy/role of the service and hence it can be used for authorized communication
with other micro-services. The AuthC/AuthZ module keeps tracks of all the valid and revoked
tokens and any micro-service can query this module for validating a token. Figure 3.18 represents
the centralized architecture that will be used for micro service authentication/authorization:

Figure 3.19 shows the message sequence chart that describes the Micro-Service Registration and
Authorization process.

The Gatekeeper serves as the first point of contact for the rest of the world and, with its Au-
thC/AuthZ module, it ensures strict user authentication and authorization, hence reducing the
chances of external attacks. On the other hand, SONATA SP plans to implement all its micro-
services’ API using HTTPS to improve the overall security. In that light, implementation of
micro-service authorization is not necessary. However, if required, it could be achieved as described
above. Even after all this, a rogue developer may try to execute malicious code by exploiting
the SSM/FSM feature of SONATA architecture. This potential vulnerability is addressed in the
subsequent subsection.

FSM/SSM security considerations

Function-/Service-Specific Managers (FSMs/SSMs) are executed in the service developer’s domain,
in complete isolation and with controlled interfaces towards the Service Platform. As shown in
Figure 3.20, each FSM/SSM can only communicate with the corresponding executive plugin through
an isolated message broker. The executive plugin controls and, if necessary, filters the information
that the FSM/SSM requires (e.g., information about underlying network resources). Similarly,
the results produced by the FSM/SSM are checked by the executive plugin, to make sure no
unauthorized action is taken by the FSM/SSM.

50 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.17: User Registration, Authentication and Authorization

SONATA Public 51

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.18: SP Architecture: centralized approach

Figure 3.19: Micro-Service Registration and Authorization

Figure 3.20: Executive plugins acting as a security border between FSMs/SSMs and the MANO
framework

52 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.3.4.3 SONATA Catalogue Artefacts’ Security

As mentioned before, the SP Catalogues store different artefacts including Package Descriptors
(PDs), NSDs, and VNFDs. It is of utmost importance to be able to verify the authenticity and
integrity of these artefacts. That is, to ensure

� the identity of the developer who is submitting the artefact to the SP via the Gatekeeper

� the integrity of the artefact itself

The above two elements are important to avoid malicious users submitting bogus or pernicious
packages to the SP Catalogues and also to mitigate Man-in-the-Middle attack where a user session
hijacking is followed up by changing the package contents, thus compromising the integrity of the
package. The User Management module, in the Gatekeeper, handles the former one to only allow
access to registered developers (over HTTPS). The latter one is addressed with aid of accompanying
digital signatures and message authentication codes (MAC) using certificates for the artefacts. The
certificates of each artefact are also stored in the SP’s Catalogues along with them as meta-data.

3.3.4.4 User Management Module design

This section defines the User Management module architecture which is responsible of users and
services authentication and authorization.

Module architecture

The User Management module architecture defines two main components:

� Adapter (son-gtkusr)

� Identity and Access Management open-source tool (Keycloak)

These two components communicate through secured RESTful interfaces as they follow the
micro-service architecture pattern inside the module.

The Figure 3.21 shows the initial design for the User Management module architecture where
the Adapter component enables an Access REST API and interacts with the Access Management
and Identity Provider tool.

Figure 3.21: User Management sub-module architecture

SONATA Public 53

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

The Adapter (son-gtkusr) will be implemented from scratch using Ruby Programming language
and Sinatra Framework (following the Gatekeeper philosophy). It will communicate with the User
management - Identity Provider securely for the authentication and authorization processes.

The open source tool Keycloak has been chosen to act as Identity / Authority Provider, while
other candidates were Hydra or Anvil Connect. However, we foresee that some features may require
implementation that can be integrated into the son-gtkusr as a Ruby plus Sinatra microservice with
the support of a Database.

Keycloak is an open source identity and access management solution that enables authentica-
tion to applications and secure services. It supports features like Social Login (Github accounts),
Standard Protocols such OpenID Connect and OAuth 2.0, and it is lightweight, fast and scalable.

The Adapter acts as a Resource Provider (RP) and uses the Keycloak to provide access to
external interfaces. Keycloak exposes the endpoints that the Adapter component functionalities
require. Currently 3 main functionalities have been identified for the Adapter:

1. Set/Get configuration: The Adapter must be configured to obtain the endpoints available
from the Access/Identity Provider and act as a client with admin credentials. The Adapter
can request a special access token or use certificates to communicate securely with the Ac-
cess/Identity Provider.

2. Get access: The Adapter will be a microservice using the OAuth 2.0 specification using admin
Client Credentials as authorization grant, which is obtained using its Client ID/Secret pair
or Private/Public key pair. Microservices inside/outside the Platform will be using Client
Credentials grants (Services accounts), while users will be using Resource Owner Password
Credentials grants (User accounts).

3. Requests/Responses: The Adapter will enable a REST API to accept operations from users/
microservices. However this API will expose public interfaces (e.g. register to the Platform)
and secure interfaces (e.g. authenticated/authorized processes). The secure interfaces of the
API will work with JWT tokens and OpenID Connect protocol (on top of OAuth 2.0).

Identity and permissions management

The Access/Identity Provider needs to feature SSO and Social-Login (Git accounts) from external
Identity Providers. OpenID Connect allows to generate Access/Authentication Tokens to support
SSO, where a user is granted with an access token for sending requests to the Platform until the
access token expires.

� Authorization will be based on roles/scopes encoded on granted tokens.

� Roles/Policies can be matched to Groups for different types of users (e.g. End-user).

Identity: OpenID Connect

OpenID Connect (OIDC) is an interoperable authentication protocol based on the OAuth 2.0
family of specifications. It is the new emerging standard for Single Sign-on (SSO) and Identity
Provision on the internet. Its formula is based on simple JSON-based Identity Tokens (JWT) and
uses straightforward REST/JSON message flows allowing clients of all types, including Web-based,
to request and receive information about authenticated sessions and end-users.

While OAuth 2.0 is only a framework for building authorization protocols, OIDC is a full-fledged
authentication and authorization protocol. JWT standards and OIDC define an identity token
JSON format and ways to digitally sign and encrypt that data in a compact and web-friendly way.

54 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

There is really two types of use cases when using OIDC:
An application client asks the Keycloak server to authenticate a user. After a successful login,
the application receives an Identity Token and an Access Token. The Identity Token contains
information about the user and other profile information. The Access Token is digitally signed by
the Authorization Server and contains access information (like user role mappings) that determines
what resources the user is allowed to access.

� An application client wants to gain access to remote services. In this case, the client asks
Keycloak to obtain an Access Token it can use to invoke on other remote services on behalf
of the user. Keycloak authenticates the user and the client receives the Access Token. This
Access Token is digitally signed by the Authorization Server. The client can make REST
invocations on remote services using this access token. The REST service extracts the access
token, verifies the signature of the token, then decides based on access information within the
token whether or not to process the request.

OpenID Connect is used for authentication and authorization following the “Authentication using
the Authorization Code Flow”. When using the Authorization Code Flow, all tokens are returned
from the Token Endpoint, from Keycloak through the Adapter. The Authorization Code Flow
returns an Authorization Code to the end-user client, which can then exchange it for an ID Token
and an Access Token directly. The Authorization Server can also authenticate the client before
exchanging the Authorization Code for an Access Token. The Authorization Code flow is suitable
for clients that can securely maintain a client Secret between themselves and the Authorization
Server. The Adapter forwards an end-user or service client authentication and authorization request
to the Authorization Server, Keycloak. It directly authenticates and authorizes the client with an
Access Token.

The User Management module will consider two types of accounts regarding end-users or services:

� User Account

� Service Account

User Account

Each user has a User Account and will belong to a particular type of User as defined above. This
account uses the User Credentials grant type (a.k.a. Resource Owner Password Credentials) when
the user has a trusted relationship with the client, and so can supply credentials directly.

This is covered in the OAuth 2.0 specification under Resource Owner Password Credentials Grant
[23].

Use Cases:

� When the user Client wishes to display a login form

� For applications owned and operated by the Resource Server

� For applications migrating away from using direct authentication and stored credentials

Service Account

This feature allows to authenticate the client application with an authentication and authorization
server and retrieve the access token dedicated to this application. No interaction with users is
needed. This is great for tasks executed on behalf of a service instead of individual user. Any
registered micro-service will be assigned a Service Account.

SONATA Public 55

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

To support service accounts, Client Credential grant type is used to retrieve access token granted
to the client. The Client Credentials grant type is used when the client is requesting access to
protected resources under its control (i.e. there is no third party).

This is covered in the OAuth 2.0 specification under Client Credentials Grant [24].
Use Cases:

� Service calls

� Calls on behalf of the user who created the micro-service client

Permissions

From the Authorization Server (Keycloak), a permission associates the object being protected
and the policies that must be evaluated to decide whether access should be granted. To protect
resources of the Service Platform and authorize actions, policies and permissions have to be created.
Role-Based policies define conditions for permissions where a set of one or more roles is permitted
to access an object or perform an action. Roles assigned to a policy will grant access if the user
requesting access has been granted any of these roles. Permissions provide more granularity to
define allowed access to resources and the actions that can be performed on them. Permissions can
be created based on two main types of objects:

� Resources, e.g. descriptors in the Service Platform Catalogue

� Scopes, e.g. what actions an end-user is allowed to perform

3.4 Service Platform Management and Setup

The SONATA Service Platform (SP) can be deployed and managed by the ”son-cmud.yml”[37]
Ansible playbook.

� Create a new SP from the scratch

� Manage the SP or just individual services (eg., start, stop, restart)

� Upgrade the SP (not implemented yet, but in the roadmap)

� Destroy the SP or just individual services (ie., remove/uninstall from the system)

In the SP version 1, all services run inside Docker containers behaving as isolated micro-services
with interfaces and dependencies among them. The following sub-chapters present the correct
sequence that is applied due to the precedence on individual services.

The execution of the playbooks in the next sub-chapters will act over the SP with the following
options:

� Target: is the VM where the SP will run

� Operation: is the operation to execute, namely: INSTALL, MANAGE, UPGRADE or DE-
STROY

� Service: is the SP service, namely: ALL or a specific service

� Env: is one of the environments defined, namely: INTEGRATION, QUALIFICATION or
DEMONSTRATION

56 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� Distro: is one of the Linux distros supported to run the SP, namely: Ubuntu 14.04 (trusty),
Ubuntu 16.04 (xenial) or CentOS 7

The “son-cmud.yml” playbook looks like:

- name: SONATA-NVF Service Platform CMUD

hosts: "{ { target } }"
become: true

- include: "./ { { operation } } / { { service } }.yml"

3.4.1 Service Platform Installation

The Service Platform is installed by executing an ansible-playbook, like in

$ ansible-playbook son-cmud.yml -e "target=localhost operation=install \
service=all env=’’ENV’’"

Figure 3.22 depicts the sequence for the installation of the Service Platform.

Figure 3.22: Service Platform Installation

The Ansible playbook for the “son-cmud.yml” INSTALL operation looks like:

- include: common.yml

- include: docker.yml

- include: pgsql.yml

- include: mongo.yml

- include: repos.yml

- include: broker.yml

- include: gtkall.yml

- include: mano.yml

- include: ifta.yml

- include: monit.yml

In this case, the playbook just includes other playbooks, where more detailed instructions are
defined.

SONATA Public 57

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.4.2 Service Platform Removal

The execution of the following playbook will deploy a full SP to a specific environment and/or
distro:

$ ansible-playbook son-cmud.yml -e "target=localhost operation=destroy \
service=all env=’’ENV’’"

Figure 3.23 shows the sequence for the removal of the installed Service Platform.

Figure 3.23: Service Platform Uninstallation

The Ansible playbook for the “son-cmud.yml” DESTROY operation looks like:

- include: monit.yml

when: service == "all" or service == "monit"

- include: ifta.yml

when: service == "all" or service == "ifta"

- include: mano.yml

when: service == "all" or service == "mano"

- include: gtkall.yml

when: service == "all" or service == "gtk"

- include: broker.yml

when: service == "all" or service == "broker"

- include: repos.yml

when: service == "all" or service == "repos"

- include: mongo.yml

when: service == "all" or service == "mongo"

- include: pgsql.yml

when: service == "all" or service == "pgsql"

As before, this playbook is just a collection of includes of other, more specific, playbooks,
but now this inclusion is restricted to a given condition (in this case, the value of the service

parameter).

58 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

4 Integration of Network Slicing in SONATA
Platform

This chapter describes the technical requirements and the related reference model for the integrating
network slicing in the SONATA platform, allowing for functional and protocol specifications to be
developed in an approach consistent with the SONATA architecture.

Network Slicing is an end-to-end concept covering the radio and non-radio networks inclusive
of access, core and edge / enterprise networks. It enables the concurrent deployment of multiple
logical, self-contained and independent shared or partitioned networks on a common infrastructure
platform.

From a business point of view, a slice includes combination of all relevant network resources
/ functions / assets required to fulfil a specific business case or service, including OSS, BSS and
DevOps processes.

From the network infrastructure point of view, slicing instances require the partitioning and
assignment of a set of resources that can be used in an isolated, disjunctive or non- disjunctive
manner.

Examples of physical or virtual resources to be shared or partitioned would include: bandwidth
on a network link, forwarding tables in a network element (switch, router), processing capacity of
servers, processing capacity of network or network clouds elements. As such slice instances would
contain:

1. A combination/group of the above resources which can act as a network,

2. Appropriate resource abstractions,

3. Exposure of abstract resources towards service and management clients that are needed for
the operation of slices.

The establishment of slices is both business-driven (i.e. slices are in support for different types
and service characteristics and business cases) and technology-driven as a slice is a grouping of
physical (or virtual) resources (network, compute, storage) which can act as a sub network and/or
a cloud. A slice can accommodate service components and network functions (physical or virtual)
in all network segments: access, core and edge / enterprise networks.

A complete slice is composed of not only various network functions which are based on virtual
machines at C-RAN and C-Core, but it also transports network resources which can be assigned to
the slice at the radio access/transport network level. Different future businesses require different
throughput, delay and mobility.

4.1 High Level Requirements for Slice Networking

� Slice creation: the management plane creates virtual or physical network functions and
connects them as appropriate and instantiates them in the slice.

SONATA Public 59

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� The instance of slice management then takes over the management and operates all the
(virtualised) network functions and network programmability functions assigned to the slice,
and (re-)configures them as appropriate to provide the end-to-end service.

� A complete slice is composed of not only various network functions which are based on
virtual machines at C-RAN and C-Core level, but also transport network resources which can
be assigned to the slice at the radio access/transport network level. Different future busi-
nesses require different throughput, delay and mobility, and some businesses need very high
throughput or/and low delay. Transport network shall provide QoS isolation, flexible network
operation and management, and improve network utilization among different business.

� QoS Isolation: Although traditional VPN technology can provide physical network resource
isolation across multiple network segments, it is deemed far less capable of supporting QoS
hard isolation, which means that QoS isolation on forwarding plane requires better coordina-
tion with management plane.

� Independent Management Plane: Like above, network isolation is not sufficient, a flexible
and, more importantly, a management plane per instance is required to operate on a slice
independently and autonomously within the constraints of resources allocated to the slice.

� Another flexibility requirement is that an operator can deploy their new business applica-
tion or a service in network slices with low cost and high speed, and ensure that it does not
affect existing business applications adversely.

� Programmability: Operator not only can slice a common physical infrastructure into dif-
ferent logical networks to meet all kinds of new business requirements, but also can use SDN
based technology to improve the overall network utilization. By providing a flexible pro-
grammable interface; a third party can develop and deploy new network business rapidly.
Further, if a network slicing can run with its own slice controller, this network slicing will get
more granular control capabilities [4] to retrieve slice status, and issuing slicing flow table,
statistics fetch, etc.

� Life cycle self-management: It includes creation, operations, re-configuration, composi-
tion, decomposition, deletion of slices. It would be performed automatically, without human
intervention and based on a governance configurable model of the operators. As such pro-
tocols for slice set-up / operations / (de)composition / deletion must also work completely
automatically. Self-management (i.e. self-configuration, self-composition, self-monitoring,
self-optimisation, self-elasticity) is carried as part of the slice protocol characterization.

� Extensibility: Since the Autonomic Slice Networking Infrastructure is a relatively new
concept, it is likely that changes in the way of operation will happen over time. As such
new networking functions will be introduced later, which allow changes to the way the slices
operate.

� Transport network shall provide QoS isolation, flexible network operation and manage-
ment, and improve network utilization among different business. The flexibility behind the
slice concept needs to address QoS guarantees on the transport network and enable network
openness.

60 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

4.2 Network Slices - Key Terms and Characteristics

A number of slice definitions were used in the last 10 years in distributed and federated testbed
research [1], future internet research [19] and more recently in the context of 5G research [22] [32]
[2] [3]. A unified Slice definition usable in the context of 5G Networking consist of 4 components
as proposed at IETF [4]:

� Service Instance component

� Network Slice Instance component

� Resources component

� Slice Capability exposure/Manager component

The Service Instance component represents the end-user services or business services which
are to be supported. It is an instance of an end-user service or a business service that is realized
within or by a Network Slice. Each service is represented by a Service Instance. Services and
service instances would be provided by the network operator or by third parties.

A Network Slice Instance component is represented by a set of network functions, and
resources to run these network functions, forming a complete instantiated logical network to meet
certain network characteristics required by the Service Instance(s). It provides the network char-
acteristics which are required by a Service Instance. A Network Slice Instance may also be shared
across multiple Service Instances provided by the network operator. The Network Slice Instance
may be composed by none, one or more Sub-network Instances, which may be shared by another
Network Slice Instance.

Slice Capability Exposure/Manager component is allowing 3rd parties to access / use,
via APIs, information regarding services provided by the slice (e.g. connectivity information, QoS,
mobility, autonomy, etc.) and to dynamically customize the network characteristics for different
diverse use cases (e.g. ultra-low latency, ultra-reliability, value-added services for enterprises, etc.)
within the limits set of functions by the operator. It includes a description of the structure (and
contained components) and configuration of the slice instance.

Logical resource is an independently manageable partition of a physical resource, which inherits
the same characteristics as the physical resource and whose capability is bound to the capability
of the physical resource. It is dedicated to a Network Function or shared between a set of Network
Functions.

Virtual resource is an abstraction of a physical or logical resource, which may have different
characteristics from that resource, and whose capability may not be bound to the capability of that
resource.

Network Function refers to processing functions in a network. This includes but is not limited
to telecom nodes functionality, as well as switching functions e.g. switching function, IP routing
functions.

Virtual Network Function is one or more virtual machines running different software and
processes on top of high-volume servers, switches and storage, or cloud computing infrastructure,
and capable of implementing network functions traditionally implemented via custom hardware
appliances and middleboxes (e.g. router, NAT, firewall, load balancer, etc.).

Figure 4.1 shows the high level models of a Slice Networking.

SONATA Public 61

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 4.1: Network Slicing Models

4.2.1 Managing a Network Slice

Slice network management is driven by the Slice Manager which is performing four categories of
management operations:

� Creating a network slice: Receive a network slice resource description request and, upon
successful negotiation with infrastructure, allocate the resources for it.

� Shrink/Expand slice network: Dynamically alter resource requirements for a running slice
network according to a service load.

� (Re-) configure slice network: The slice management user deploys a user level service into the
slice. The slice control takes over the management of all the virtualised network functions
and network programmability functions assigned to the slice, and (re-)configure them as
appropriate to provide the end-to-end service.

� Destroy slice network: Recycle all resources from the infrastructure.

As such the following control APIs are needed for slicing:

� Create a slice network on user request. The request includes resource descriptions. A unique
ID identifies a slice network, which groups all the resources, network functions and service
elements.

� Destroy a slice network identified by its id.

� Query a slice network slicing state by its id.

� Modify a slice network.

A number of key characteristics makes the Network Slicing concept, with added value
and serviceability thanks to the DevOps approach adopted by the SONATA project:

� Concurrent deployment of multiple logical, self-contained and independent, shared or parti-
tioned networks on a common infrastructure platform.

62 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� Supports dynamic multi-service support, multi-tenancy and the integration means for vertical
market players.

� Separation of functions simplifies (1) the provisioning of services, (2) manageability of net-
works and (3) integration and operational challenges especially for supporting communication
services.

� Network operators can exploit network slicing for (1) reducing significantly operations ex-
penditures, (2) allowing also programmability and innovation, necessary to enrich the offered
services, (3) creating tailored services and (4) supporting network programmability to OTT
providers and other market players without changing the physical infrastructure.

� Considerably transform the networking perspective by abstracting, isolating, orchestrating
and separating logical network behaviours from the underlying physical network resources.

4.3 Integration of Network Slicing in the SONATA platform

Figure 4.2 depicts the Network Slicing integration in the SONATA platform.

Figure 4.2: Integration of Network Slicing in the SONATA Platform

� VIM Adaptor is responsible for exposing an interface to interact with one or more VIMs,
managing computational, network or storage resource in one or more Points of Presence.

� WIM Adaptor allows the higher level capabilities to manage network resources connecting
different NFVI-PoPs in a vendor agnostic fashion, in order to provide connectivity to the
deployed services.

� NSIM Adaptor allows the higher level capabilities to manage network slices.

SONATA Public 63

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

New designs for Service chaining based on slicing, network slice life cycle management, Network
Slice Infrastructure (NSIM) Adaptor, active slice monitoring and management are planed for the
next period of work.

64 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

5 Relationship between SONATA and the ETSI
Architecture

5.1 Update on the ETSI architecture

ETSI released its first NFV documents several years ago. It now has an on-going activity to
revisit and update several aspects of its original work. SONATA partners are contributing with
their learning from their experience as NFVs operators and with their conclusions from fruitful
discussions during the project to date. Network operators face a number of practical aspects when
deploying NFVs. For example, network operators need complete solutions covering all aspects of
service, but not all of them have been fully detailed within ETSI NFV’s scope. Then most network
operators cannot deploy NFVs in isolation from their existing networks and services and these
operators need to interwork NFV systems with their existing systems. Moreover, some aspects
such as in-life functions (service assurance) have not yet been considered.

5.1.1 Requirements for MANO’s functionalities

In the following, we describe the requirements for the MANO’s functionalities.

MANO’s three groups of capabilities

First we consider what operational processes a NFV system needs to support, in order for the
network operator to offer services successfully. These collectively constitute the Management and
Orchestration (MANO). We identify three groups of capabilities, which are used at different times:

1. During the development of the service, the creation of a template which describes the service
and is uploaded to a catalogue. The SDK tools developed by SONATA are used for this
purpose.

2. During the activation and deployment of the service, the instantiation of a service instance
and the request of resources to the underlying layer(s). In the SONATA’s service platform,
the resource orchestration and repositories support this phase.

3. During the runtime of the service, its monitoring and its maintenance. The latter is often
called ’service assurance’. SONATA’s work on monitoring and reliability goes towards this
topic.

We now describe each of the phases at a higher level. We plan to contribute the next level of
details into ETSI, building on SONATA’s detailed work for enabling its various capabilities.

The development and definition phase is outlined in Figure 5.1. The phase creates templates,
each of which describes a service/function offered by the layer. It includes the processes by which
the templates are constructed and tested/validated. SONATA’S development environment has
a development toolkit, libraries of draft templates and resource types, and an isolated test and
validation ’sandbox’ execution environment. The templates are uploaded to a catalogue which can
then be accessed by the Instance Life-Cycle phase for the creation of service/function instances.

SONATA Public 65

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 5.1: High level view of the development and definition phase

The instance life-cycle phase is outlined in Figure 5.2. It results in instances of services/functions.
This phase is triggered by a request from a client, which is first validated and authorized. It then
selects an appropriate template from the template catalogue, calculates the resources required to
instantiate the service/function, and then triggers the actions required to achieve the instantiation.
The phase can also be triggered by a request from the in-life phase. For management purposes, each
instance is registered in an inventory database together with information about the resources it
uses. The phase maintains a full inventory of instances, together with the mapping to the resources
supporting each instance.

Figure 5.2: High level view of the instance life-cycle view

The in-life phase is outlined in Figure 5.3. Its objective is to maintain the health and perfor-
mance of instances. The phase monitors the instances, and when it detects that one is faulty or
underperforming, it calculates what action to take to solve the problem. This would typically be a
restoration or scaling activity, and triggers a request to the Instance Life-Cycle phase. The in-life
cycle phase can also report the status of services/functions to clients.

MANO’s operation in a wider context

An NFV system does not operate in isolation. In order to achieve end to end operations, the
MANO interacts with the wider context of existing network services, functionality and associated

66 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 5.3: High level view of the in-life phase

management and orchestration systems. Firstly, in the context of a single network operator, a NFV
system needs to:

1. Interwork with existing systems

2. Support future system evolution

3. Support heterogeneous operator systems

In essence, the network operator will have hybrid services – a mix of the old and new, and
systems with overlapping functionality (for instance from different vendors). Information models
are likely to help with the integration and the mapping between systems. Secondly, if several
network operators are involved, then operators will offer services to each other in order to build
end to end services. For example, a network operator needs to be able to:

1. Support VNF as a Service

2. Support NFVI as a Service

3. Support Connectivity as a Service

4. Support NFV network service as a Service

In essence, an operator uses components supplied by another operator (and in turn it supplies
components to others). Perhaps the prototypical example is where one operator uses connectivity
from another network operator to interconnect NFV nodes of their NFVI. Another example could
be the provisioning of a slice.

Layering of MANO functionality

The high level architecture consists of a number of layers. Layering, and its inherent modularity,
helps us to meet the requirements outlined above. The details of each layer are hidden from the
other layers, and so can be implemented in different ways or changed as long as the service presented
at the interfaces is maintained unchanged. In this manner, the requirement mentioned earlier for
the ability to include existing services (like WAN connectivity) can be achieved. On the other hand,
the same software code could be used to achieve a capability at more than one layer, for instance
through a separate call by each layer. The management of each layer is also self-contained, in that
it manages the complete control of the services it provides. Therefore every layer needs to include

SONATA Public 67

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

the three groups of capabilities (or phases) discussed above (development and definition, instance
life-cycle, in-life). At an abstract level, as illustrated in Figure 5.4, each layer should have the same
interfaces:

1. an integrated service API, which offers services, resources to the layer(s) above

2. a southbound API, which interacts with the service API of the layer(s) below, and as part of
this interaction defines what information it wants to hear about – this enables for example
the OSS to avoid being flooded with lower layer messages

3. a GUI or human interface for items that need manual intervention (note that such actions
are not done via the service API)

Figure 5.4: Basic entities of a layer MANO

The principle here is that a layer, in order to achieve its operation, will utilise services provided
by underlying layers, as they provide it with resources. In a complementary fashion, a layer,
in order to be useful, will offer services to overlying layers, as it provides them with resources.
This consistent interaction between layers facilitates operation in a wider context: interoperability,
operation in a heterogeneous environment, evolvability, XaaS and so on. SONATA provides an
example of how to instantiate this. The service platform and the associated MANO framework is a
layer. The infrastructure adaptor is the southbound interface and provides resources such as VIM
access, whereas the gatekeeper provides the northbound interface (the GUI is implicit). D2.1 [12]
describes how the architecture is recursive, so achieving multiple layers.

5.2 Mapping between SONATA and ETSI Interfaces

ETSI describes an architectural framework that acts as a reference for many service platforms and
MANO solutions. Thus, it is important to provide compatibility with this framework to support
interoperability with other systems and architectures that are also ETSI aligned. This section shows
how the SONATA architecture, and especially its reference points, maps to the ETSI architecture.
Further, we describe and map the actual interfaces that built these reference points in more detail
to clarify how third party components may interface with the SONATA service platform or single
platform components.

68 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

5.2.1 General mapping between ETSI and SONATA reference points

ETSI defines a set of reference points that define interaction points between different components
of the architectural framework. The bottom part of Figure 5.5 shows these reference points in the
scope of the ETSI NFV-MANO architecture and maps them to the SONATA architecture. This
mapping shows that some reference points of both architectures are more or less the same, e.g., the
reference points to the catalogues and repositories. This indicates that these SONATA components
can easily be replaced or combined with other ETSI compatible service platforms. For example,
if someone wants replace the SONATA catalogue by a third party catalogue component only the
reference point between gatekeeper and catalogue needs to be modified. However, technically
this means that intermediate wrapper layers might be needed that translate between the actual
implemented interfaces.

The figure also shows that the main ETSI reference points can be completely mapped to the
SONATA architecture. But it also shows that there are many more reference points in SONATA.
This is, at one hand, based on the fact that ETSI is an ongoing initiative which will provide more
and more details over time and, on the other hand, that the SONATA architecture already includes
advanced customizability features, like FSMs and SSMs as well as a monitoring solution which are
not explicitly covered by the rather abstract ETSI reference framework.

Reference point specifications, like shown in Figure 5.5, still define component interactions on a
very abstract level. A single reference point may appear with different characteristics in an actual
system, for example, the Os-Ma-Nfvo reference point appears between BSS and Gatekeeper as well
as between SDK and Gatekeeper in the SONATA service platform. To shed more light on this,
the next section provides a more detailed view on the actual interfaces SONATA uses and their
counterparts in the ETSI architecture.

5.2.2 Specific mapping between ETSI and SONATA interfaces

Figure 5.6 shows a more concrete view on an example SONATA service platform setup, its com-
ponents and the interfaces between them. It explicitly defines the interface names for all used
interfaces, for example, the two interfaces that are mapped to the Os-Ma-Nfvo reference point of
the ETSI architecture, namely the Bss-Gk and SDK-Gk interface. It is important to note that this
figure does only represent one example configuration of the platform and that it may change if other
MANO plugins are connected to the system, e.g., a placement plugin and a scaling plugin might
require an additional interface to talk to each other as well as an interface to talk to the service
lifecycle manager. However, these changes affect only the MANO framework internal interfaces
and the interfaces to external components, like gatekeeper or catalogues are stable.

The following table describes all interfaces shown in Figure 5.6 in more detail and provides a
concrete mapping to ETSI reference points:

Table 5.1: SONATA reference points and their mapping to ETSI

ETSI Refer-
ence Point(s)

SONATA Ref-
erence Point

SONATA
Interface

Interface Description

Os-Ma-Nfvo Son-Gk BSS-Gk BSS uses this interface to list, instantiate and update ser-
vices.

Os-Ma-Nfvo Son-Gk SDK-Gk SDK uses this interface to on-board, instantiate, update,
list services.

n.a. Gk-Mano Gk-F/Slm Gatekeeper to MANO framework (F/SLM) interface.
Manage service orchestration, e.g., request instantiation.

Nfvo-Nscat,
Nfvo-Vnfcat

Gk-Cat Gk-Cat Gatekeeper to catalogue interface. Used to store and re-
trieve artefacts from the service platform catalogue.

Nfvo-Nfvins,
Nfvo-Nfvires

Gk-Rep Gk-Rep Gatekeeper to repository interface. Access NSRs/VNFRs
from the Gatekeeper.

SONATA Public 69

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

ETSI Refer-
ence Point(s)

SONATA Ref-
erence Point

SONATA
Interface

Interface Description

Vnfm-Rcmi Mano-Rep F/Slm-Rep F/SLM to repository interface. Access NSRs/VNFRs
from the F/SLM.

n.a. Mano-Mon F/Slm-Mon F/SLM to monitoring manager interface. Configure mon-
itoring for a service.

n.a. Mano-Mano F/Slm-Ia F/SLM to infrastructure abstraction interface. Actual in-
teraction between orchestration and underlying infrastruc-
ture.

n.a. Mano-Mano Pm-P Plugin management interface. Used to register plugins,
deregister plugins, heartbeat, and broadcast active plugin
status.

n.a. Mano-Mano F/Slm-Smr F/SLM to Specific manager registry interface. F/SLM can
request to start, stop, update SSMs.

n.a. Mano-FSSM Smr-F/Ssm Interface to register and control F/SSMs.
n.a. FSM-Vnf Fsm-Vnf Connection to interact, e.g., configure VNFs from a FSM.

Actual interface specification depends on VNF and its as-
signed FSM.

n.a. Mano-Rep Ia-Rep Interface towards the infrastructure repository to hold the
state of the connected infrastructure.

Vi-Vnfm Mano-Vi Ia-Vi Interface towards the VIM(s).
Vi-Vnfm Mano-Wi Ia-Wi Supports communication of Infrastructure Adaptor with

the WIM(s), e.g., to setup inter-PoP connections.

70 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 5.5: Mapping of reference points between SONATA (top) and ETSI NFV-MANO (bottom)
reference architectures

SONATA Public 71

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 5.6: Logical view on the SONATA service platform architecture and its interfaces

72 Public SONATA

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

6 Conclusion

This deliverable presented a revised architecture for the SONATA system. To this end, we presented
the changes and updates of the main components, such as the Service Platform, the Software
Development Kit, the catalogues and repositories, and the main interfaces and reference points.
This architecture comprises contributions of all SONATA partners and, therefore, reflects consensus
among the consortium members on its initial vision. Moreover, it provides the main building blocks
for all the ongoing and related work packages (WP3 and WP4).

In short, the main contributions of this document are

� Updated and revised use cases and requirements derived from these use cases.

� Updated and revised SONATA functionality presented in an implementation free approach.

� An updated structure of the SONATA architecture incorporating a Software Development
Kit and a Service Platform.

� A new profiling system for Network Services integrated in the SDK and tightly coupled with
the Service Platform.

� A system to perform automated tests in order to validate and verify Network Services.

� A security analysis of the Service Platform and suggestions to harden the Service Platform
such that is avoid threats and failures.

� A detailed analysis of the similarities between the SONATA architecture and reference points
against the ETSI reference model.

Compared to the former deliverables D2.1 and D2.2, this document covers, updates, sharpens
all main aspects of the SONATA architecture. Future work, however, is needed in improving the
software design, implementing the new functionalities, and (automated) security and performance
evaluation. For the fine details, we refer to the (upcoming) deliverables D3.2, D4.2, and D5.3.

SONATA Public 73

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

A Bibliography

[1] GEni Key Concepts. Global Environment for Network Innovations (GENI). Online at http:

//groups.geni.net/geni/wiki/GENIConcepts.

[2] Report on Gap Analysis. ITU-T IMT2020 document, December 2015. Online at http://www.
itu.int/en/ITU-T/focusgroups/imt-2020/Pages/default.aspx.

[3] Study on Architecture for Next Generation System. September 2016. Latest version v1.0.2,
online at http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/Latest_SA2_Specs/Latest_draft_
S2_Specs.

[4] D. Yu A. Galis, K. Makhijani. Autonomic Slice Networking-Requirements and Reference
Model. IETF, November 2016. Work in progress, Online at https://tools.ietf.org/html/
draft-galis-anima-autonomic-slice-networking-01.

[5] Amazon. Amazon web services. Website, 2016. Online at https://aws.amazon.com/.

[6] CoreOS Community. Coreos. Website, November 2016. Online at https://coreos.com.

[7] Docker Community. Docker. Website, June 2016. Online at https://github.com/docker/

docker/pull/11860.

[8] Kubernetes Community. Kubernetes. Website, November 2016. Online at http://

kubernetes.io/.

[9] Kubernetes Community. Kubernetes network policies. Website, November 2016. Online at
http://kubernetes.io/docs/user-guide/networkpolicies/.

[10] Rocket Community. Rkt. kubelet. Website, November 2016. Online at https://rocket.

readthedocs.io/en/latest/Documentation/running-kvm-stage1/.

[11] Swarm Community. Swarm. Website, November 2016. Online at https://docs.docker.com/
swarm/.

[12] SONATA consortium. D2.1: Use cases and requirements. Website, October 2015. Online at
http://www.sonata-nfv.eu/content/d21-use-cases-and-requirements.

[13] SONATA consortium. D2.2 architecture design. Website, December 2015. Online at http:

//www.sonata-nfv.eu/content/d22-architecture-design-0.

[14] SONATA consortium. D3.1: Basic sdk prototype. Website, May 2016. Online at http:

//www.sonata-nfv.eu/content/d31-basic-sdk-prototype.

[15] SONATA consortium. D4.1: Orchestrator prototype. Website, May 2016. Online at http:

//www.sonata-nfv.eu/content/d41-orchestrator-prototype.

[16] SONATA consortium. D4.2: Service platform operational release and documentation. Website,
December 2016.

74 Public SONATA

http://groups.geni.net/geni/wiki/GENIConcepts
http://groups.geni.net/geni/wiki/GENIConcepts
http://www.itu.int/en/ITU-T/focusgroups/imt-2020/Pages/default.aspx
http://www.itu.int/en/ITU-T/focusgroups/imt-2020/Pages/default.aspx
http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/Latest_SA2_Specs/Latest_draft_S2_Specs
http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/Latest_SA2_Specs/Latest_draft_S2_Specs
https://tools.ietf.org/html/draft-galis-anima-autonomic-slice-networking-01
https://tools.ietf.org/html/draft-galis-anima-autonomic-slice-networking-01
https://aws.amazon.com/
https://coreos.com
https://github.com/docker/docker/pull/11860
https://github.com/docker/docker/pull/11860
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/docs/user-guide/networkpolicies/
https://rocket.readthedocs.io/en/latest/Documentation/running-kvm-stage1/
https://rocket.readthedocs.io/en/latest/Documentation/running-kvm-stage1/
https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
http://www.sonata-nfv.eu/content/d21-use-cases-and-requirements
http://www.sonata-nfv.eu/content/d22-architecture-design-0
http://www.sonata-nfv.eu/content/d22-architecture-design-0
http://www.sonata-nfv.eu/content/d31-basic-sdk-prototype
http://www.sonata-nfv.eu/content/d31-basic-sdk-prototype
http://www.sonata-nfv.eu/content/d41-orchestrator-prototype
http://www.sonata-nfv.eu/content/d41-orchestrator-prototype

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

[17] SONATA consortium. D6.1: Definition of the pilots, infrastructure setup and main-
tenance report. Website, June 2016. Online at http://www.sonata-nfv.eu/content/

d61-definition-pilots-infrastructure-setup-and-maintenance-report.

[18] CoreOS. Flannel. Website, November 2016. Online at https://github.com/coreos/flannel.

[19] A. Galis et all. Management and Service-aware Networking Architectures (ManA) for Future
Internet. Invited paper IEEE 2009 Fourth International Conference on Communications and
Networking in China, August 2009. Online at http://www.chinacom.org/2009/index.html.

[20] Roy Fielding. Architectural styles and the design of network-based software architectures.
Website, 2000. Online at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.

htm.

[21] Open Source MANO (OSM Group). Openvim. Website, 2016. Online at https://osm.etsi.
org/wikipub/index.php/OpenVIM_installation_%28Release_One%29.

[22] Mschner K. et all Hedmar, P. Description of Network Slicing Concept. NGMN Alliance doc-
ument, January 2016. Online at https://www.ngmn.org/uploads/media/160113_Network_

Slicing_v1_0.pdf.

[23] Internet Engineering Task Force (IETF). The oauth 2.0 authorization framework. Website,
October 2012. Online at https://tools.ietf.org/html/rfc6749#section-4.3.

[24] Internet Engineering Task Force (IETF). The oauth 2.0 authorization framework. Website,
October 2012. Online at https://tools.ietf.org/html/rfc6749#section-4.4.

[25] ETSI European Telecommunications Standards Institute. Network Functions Virtualisation
(Nfv);Pre-deployment Testing;Report on Validation of Nfv Environments and Services v1.1.1.
Website, April 2016. Online at http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/
001/01.01.01_60/gs_NFV-TST001v010101p.pdf.

[26] Jenkins. Jenkins documentation. Website, June 2016. Online at https://jenkins.io/doc/.

[27] George Kousiouris, Andreas Menychtas, Dimosthenis Kyriazis, Spyridon Gogouvitis, and
Theodora Varvarigou. Dynamic, behavioral-based estimation of resource provisioning based
on high-level application terms in Cloud platforms. Future Generation Computer Systems,
32:27–40, 2014.

[28] Sunil Kumar, Manish Kumar Pandey, Abhigyan Nath, Karthikeyan Subbiah, and Manoj Ku-
mar Singh. Comparative study on machine learning techniques in predicting the Qos-values
for web-services recommendations. In Computing, Communication & Automation (ICCCA),
2015 International Conference on, pages 161–167. IEEE, 2015.

[29] OpenSim Ltd. Omnet++ Network Simulator. Website, 2016. Online at https://omnetpp.org.

[30] Packet. Intro to Project Calico: a pure layer 3 approach to scale-out network-
ing. Website, November 2016. Online at http://www.slideshare.net/packethost/

intro-to-project-calico-a-pure-layer-3-approach-to-scaleout-networking.

[31] Packet. Packet Project Calico Keynote Presentation. Website, November 2016. Online at
http://www.slideshare.net/packethost/packet-calico-keynote-47122317.

SONATA Public 75

http://www.sonata-nfv.eu/content/d61-definition-pilots-infrastructure-setup-and-maintenance-report
http://www.sonata-nfv.eu/content/d61-definition-pilots-infrastructure-setup-and-maintenance-report
https://github.com/coreos/flannel
http://www.chinacom.org/2009/index.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://osm.etsi.org/wikipub/index.php/OpenVIM_installation_%28Release_One%29
https://osm.etsi.org/wikipub/index.php/OpenVIM_installation_%28Release_One%29
https://www.ngmn.org/uploads/media/160113_Network_Slicing_v1_0.pdf
https://www.ngmn.org/uploads/media/160113_Network_Slicing_v1_0.pdf
https://tools.ietf.org/html/rfc6749#section-4.3
https://tools.ietf.org/html/rfc6749#section-4.4
http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://jenkins.io/doc/
https://omnetpp.org
http://www.slideshare.net/packethost/intro-to-project-calico-a-pure-layer-3-approach-to-scaleout-networking
http://www.slideshare.net/packethost/intro-to-project-calico-a-pure-layer-3-approach-to-scaleout-networking
http://www.slideshare.net/packethost/packet-calico-keynote-47122317

Document: SONATA/D2.3
Date: December 8th, 2016 Security: Public
Status: To be approved by EC Version: 1.0

[32] Schallen S. Betts M. Hood D. Shirazipor M. Lopes D. Kaippallimalit J. Paul, M. Apply-
ing Sdn Architecture to 5G slicing. Open Network Fundation document, April 2016. On-
line at https://www.opennetworking.org/images/stories/downloads/sdn-resources/

technical-reports/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf.

[33] Manuel Peuster and Holger Karl. Understand Your Chains: Towards Performance Profile-
based Network Service Management. In 5th European Workshop on Software Defined Networks
(EWSDN'16). IEEE, 2016.

[34] Romana. Romana Performance. Website, November 2016. Online at http://romana.io/

how/performance/.

[35] Raphael Vicente Rosa, Christian Esteve Rothenberg, and Robert Szabo. VBaaS: Vnf
benchmark-as-a-service. In 2015 Fourth European Workshop on Software Defined Networks,
pages 79–84. IEEE, 2015.

[36] Eder J Scheid, Cristian C Machado, Ricardo L dos Santos, Alberto E Schaeffer-Filho, and
Lisandro Z Granville. Policy-based dynamic service chaining in Network Functions Virtualiza-
tion. In Computers and Communication (ISCC), 2016 IEEE Symposium on, pages 340–345.
IEEE, 2016.

[37] SONATA. son-cmud.yml. Website, 2016. Online at https://github.com/sonata-nfv/

son-install.

[38] Steven Van Rossem, Wouter Tavernier, Manuel Peuster, Didier Colle, Mario Pickavet, and Piet
Demeester. Monitoring and debugging using an Sdk for Nfv-powered telecom applications. In
IEEE NFV-SDN (NFVSDN2016). IEEE, 2016.

[39] VMWare. Vmware. Website, 2016. Online at https://www.vmware.com/products/

vcloud-suite.html.

[40] WeaveWorks. Weave. Website, November 2016. Online at https://github.com/weaveworks/
weave/.

76 Public SONATA

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
http://romana.io/how/performance/
http://romana.io/how/performance/
https://github.com/sonata-nfv/son-install
https://github.com/sonata-nfv/son-install
https://www.vmware.com/products/vcloud-suite.html
https://www.vmware.com/products/vcloud-suite.html
https://github.com/weaveworks/weave/
https://github.com/weaveworks/weave/

	List of Figures
	List of Tables
	Introduction
	Structure of this Document

	Use Cases and Requirements
	Virtual Content Delivery Network
	Description
	Sequence of Actions
	New Requirements

	Personal Security Application
	Description
	Sequence of Actions
	New Requirements

	Service Provider to Service Provider
	Description
	Sequence of Action
	New Requirements

	Requirements Analysis and Consolidation

	Architecture and Design
	Descriptors, Packages and Catalogues
	Function and Service Descriptors
	Updated Catalogues

	Software Development Kit (SDK)
	Developing for Continuous Integration and Continuous Deployment
	CI/CD support tool
	Profiling for NFV-based Network Services
	Service Validation
	Monitor Data Transfer from the SP to the SDK
	SSM-FSM Development Support

	Service Platform Architecture
	Component Interfaces
	Service Platform Monitoring Framework enhancements
	Additional Infrastructure Abstractions
	Service Platform (SP) Security

	Service Platform Management and Setup
	Service Platform Installation
	Service Platform Removal

	Integration of Network Slicing in SONATA Platform
	High Level Requirements for Slice Networking
	Network Slices - Key Terms and Characteristics
	Managing a Network Slice

	Integration of Network Slicing in the SONATA platform

	Relationship between SONATA and the ETSI Architecture
	Update on the ETSI architecture
	Requirements for MANO's functionalities

	Mapping between SONATA and ETSI Interfaces
	General mapping between ETSI and SONATA reference points
	Specific mapping between ETSI and SONATA interfaces

	Conclusion
	Bibliography

