Index Modulation Techniques for 5G Wireless Networks presenter: Asst. Prof. Ertugrul Basar Istanbul Technical University (ITU) 5G Research Group

- ITU 5G Research Group is composed of 10 professors from:
 - ➤ ITU Department of Electronics and Telecommunications Engineering (Wireless Communication Research Laboratory http://www.thal.itu.edu.tr/en/)
 - > ITU Faculty of Computer and Informatics Engineering (http://www.bb.itu.edu.tr/en)
 - > ITU Informatics Institute (http://www.be.itu.edu.tr/index.php/en)
- We focus on the following design issues towards 5G wireless networks:
 - ✓ Physical Layer (PHY) /MAC Layer Design
 - ✓ RF Electronics and Antenna Design
 - ✓ Network Layer Design
- In this presentation, we focus on spectral and energy-efficient PHY solutions towards 5G wireless networks.

Index Modulation Techniques for 5G Wireless Networks

- The wireless community is still working day and night to come up with new and more effective PHY solutions towards 5G networks.
- There has been a growing interest on *index modulation (IM)* techniques over the past few years.
- Spatial modulation (SM) and orthogonal frequency division multiplexing with IM (OFDM-IM) schemes appear as two interesting as well as promising applications of the IM concept.
- SM techniques have attracted significant attention over the past few years with numerous published papers.
- Although having strong and well-established competitors such as V-BLAST and STC systems, SM schemes
 have been regarded as possible candidates for spectral and energy-efficient next generation MIMO systems.
- It has been shown that the OFDM-IM scheme can provide attractive advantages over classical OFDM, which is an integral part of many current wireless standards.

Spatial Modulation for 5G

There are two information carrying units in SM:

- 1) indices of transmit antennas
- 2) M-ary constellation symbols.

Spectral Efficiency [bpcu] $\log_2 n_T + \log_2 M$

Massive MU-MIMO systems with SM

- (a) An uplink transmission scenario where User k has n_T^k transmit antennas available for SM and the BS has $n_R{\sim}10-100$ receive antennas
- (b) A downlink transmission scenario where User k has n_R^k receive antennas and the BS has $n_T \sim 10 100$ transmit antennas available for SM.

OFDM with Index Modulation for 5G

- In the OFDM-IM scheme, the incoming bit stream is split into index selection and M-ary constellation bits.
- According to the index selection bits, only a subset of available subcarriers are selected as active, while the remaining inactive subcarriers are not used and set to zero.
- On the other hand, the active subcarriers are modulated according to the M-ary constellation bits.

