
D4.2 Service Platform First Operational Release and
Documentation

Project Acronym SONATA
Project Title Service Programing and Orchestration for Virtualized Software Networks
Project Number 671517 (co-funded by the European Commission through Horizon 2020)
Instrument Collaborative Innovation Action
Start Date 01/07/2015
Duration 30 months
Thematic Priority ICT-14-2014 Advanced 5G Network Infrastructure for the Future Internet

Deliverable D4.2 Service Platform First Operational Release and Documentation
Workpackage WP4 Resource Orchestration and Operations repositories
Due Date November 30th, 2016
Submission Date December 23rd, 2016
Version 0.1
Status To be approved by EC
Editor José Bonnet (AlticeLabs)
Contributors José Bonnet, Alberto Rocha, Miguel Mesquita (AlticeLabs), Santiago

Rodŕıguez (Optare), Aurora Ramos, Felipe Vicens (ATOS), George Xilouris,
Stavros Kolometsos, Christos Sakkas (NCSRD), Dario Valocchi (UCL),
Theodore Zahariadis, Panos Trakadas, Panos Karkazis, Sotiris Karachontzitis
(SYN), Thomas Soenen (IMEC), Sharon Mendel-Brin (Nokia), Michael Bredel
(NEC), Muhammad Shuaib Siddiqui, Dani Guija (i2CAT), Manuel Peuster,
Sevil Dräxler, Hadi Razzaghi Kouchaksaraei (UPB)

Reviewer(s) Zichuan Xu (UCL), Michael Bredel (NEC), Bruno Vidalenc (THALES)

Keywords:

Service Platform, orchestrator, gatekeeper, VIM

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Deliverable Type

R Document X
DEM Demonstrator, pilot, prototype
DEC Websites, patent filings, videos, etc.
OTHER

Dissemination Level

PU Public X
CO Confidential, only for members of the consortium (including the Commission Ser-

vices)

Disclaimer:
This document has been produced in the context of the SONATA Project. The research leading to these results has
received funding from the European Community’s 5G-PPP under grant agreement n◦ 671517.
All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is
merely representing the authors’ view.

ii Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Executive Summary:

5G is posing significant technical and non-technical challenges to our society. The SONATA NFV
project has chosen, among others, the flexible programmability of 5G networks, by providing
Communication Service Providers a Service Platform that can accommodate their needs in this
new and much more challenging (5G) environment. This platform must be highly flexible, to be
able to be adapted to different markets and segments and support new and unforeseen services, but
secure, so that only authorised people can change the platform’s behaviour in a controlled way.
Higher flexibility comes from the capability to extend the platform, in a microservice-oriented
architecture, and security is achieved by using a gatekeeper supporting the authentication and
authorisation burden, out of the main service deployment loop. Short times to deploy new or
updated services, as well as providing adequate mechanisms and environments for testing these
new or updated services also support the platform’s needed flexibility.

These mechanisms described in this deliverable, covering the work done from the previous deliv-
erable (D4.1, Orchestrator Prototype) and the first year project review. As Agile Methodologies
supporters, we are not designing everything up front, but opted to do it iteratively, together with
some implementation, testing and deployment.

After having proved the whole concept in the first year, we are now making the Service Platform
more secure, with users having to register themselves and APIs accessing the platform by using
HTTPS. We are now able to control every service usage through a licensing mechanism, and collect
KPIs on each API usage and performance. Functions can now have their Specific Managers (Services
could already have these in the first year) changing the platform’s default behaviour in scaling and
placement. These Specific Managers can be securely uploaded, having their interactions with the
rest of the platform restricted to an adapter component name Executive Plugin.

We are considering kind of Virtual Infrastructure Manager (VIM), based entirely on containers.
This option will put to the test our Infrastructure Abstraction layer, which will have to support a
different VIM from the ones more similar to OpenStack.

After this second year, developers will be able to ask the Service Platform for near real-time
monitoring data about their services and functions. This mechanism is already designed, and is
being implemented at the time of writing.

The DevOps approach in the development of the Service Platform itself will be enhanced, giving
us an edge over the different kinds of problems Developers will face when deploying services and
functions using it.

Support for the expansion of the open-source community around the Service Platform imple-
mentation will also increase, by contributing to the social network channels the project has, and
contributing to other projects of that community.

SONATA Public iii

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Content organisation . 1

2 Security within the Service Platform 3
2.1 Authentication and authorisation between microservices APIs 3

2.2 HTTPS in external Web Components . 4

2.2.1 HTTPS versus Web Secure Sockets . 4

2.2.2 Distinct methods for external connections . 5

2.3 Authentication and authorisation within Message Broker 6

2.3.1 RabbitMQ Virtual hosts . 6

2.3.2 MANO Framework security workflow . 7

2.4 Authentication in Databases . 8

2.4.1 Generate unencrypted random password in CLI 8

2.4.2 Generate encrypted password for Databases users 9

3 Gatekeeper 12
3.1 Gatekeeper API . 12

3.1.1 Security related changes . 12

3.1.2 New modules . 12

3.1.3 Other improvements . 16

3.2 User management module . 16

3.2.1 Requirements . 16

3.2.2 User management module implementation . 17

3.2.3 Authentication and authorization external APIs 22

3.3 Licence management . 23

3.3.1 Requirements . 23

3.3.2 Module architecture . 24

3.3.3 Module interactions . 24

3.3.4 Module API . 27

3.4 KPIs management . 28

3.4.1 Requirements . 28

3.4.2 Module interactions . 29

3.4.3 Gatekeeper’s KPIs . 29

3.4.4 Module architecture . 30

3.4.5 Module API . 30

3.5 Graphical User Interface . 33

3.5.1 Extended GUI views . 33

iv Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

3.5.2 Integration with AuthN/AuthZ mechanism 39

3.5.3 Improve user friendliness . 39

3.6 Business Support Systems . 39

3.6.1 Https . 39

3.6.2 Pagination links . 40

3.6.3 User management . 40

3.6.4 License management . 40

4 Catalogues and repositories 43
4.1 Catalogues . 43

4.1.1 New features . 43

4.1.2 Planned features . 44

4.1.3 Authentication and authorisation . 44

4.2 Repositories . 44

4.2.1 Authentication and authorisation . 45

5 MANO Framework 46
5.1 FLM and SLM . 46

5.1.1 Updating the existing workflows to the new SP architecture and APIs 46

5.1.2 Introducing new workflows to the SP and MANO framework 47

5.1.3 Converting the SLM into a task manager . 49

5.1.4 Workflow Engine Based S/FLM . 50

5.2 Specific Managers Infrastructure . 50

5.3 Specific Managers Registry . 52

5.3.1 SMR features . 52

6 Infrastructure Abstraction 55
6.1 Infrastructure Abstraction interfaces . 55

6.2 New Infrastructure Abstraction functionalities . 56

6.2.1 OVS Networking Wrapper . 57

6.2.2 VTN WIM Wrapper . 57

6.2.3 OpenStack Heat Wrapper . 58

6.2.4 Multi PoP deployment example . 58

6.2.5 Service Lifecycle Status management . 60

6.3 Kubernetes Wrapper . 62

6.3.1 Kubernetes REST API Client . 62

6.3.2 Kubernetes API object creation and translation model 63

6.3.3 Impact of container based VIM on the IA northbound API 63

7 Monitoring Framework 65
7.1 Streaming monitoring data to the SDK . 65

7.2 Support of user management functionality . 66

7.3 Enhancements related to scalability and reliability of the monitoring framework . . . 67

7.4 API extensions . 67

8 Internal Interfaces 69
8.1 Graphical User Interface - Gatekeeper Interface . 69

8.2 Business Support System - Gatekeeper Interface . 71

8.3 Software Development Kit - Gatekeeper Interface . 73

SONATA Public v

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

8.4 Gatekeeper - User Management Interface . 74
8.5 Gatekeeper - Catalogue Interface . 75
8.6 Service Platform - Repositories Interface . 79
8.7 Service Lifecycle Manager - Monitoring Manager Interface 81
8.8 Ia-Vi Interface . 83
8.9 Ia-Wi Interface . 86
8.10 Gatekeeper - Service Lifecycle Manager Interface . 86
8.11 Service Lifecycle Manager - Function Lifecycle Manager 88
8.12 Service Lifecycle Manager - Infrastructure Adaptor Interface 89
8.13 Interfaces relevant for Function-/Service-Specific Managers 91
8.14 Plugin Manager - Plugin Interface . 94

9 Conclusions 96

A Abbreviations 98

B Glossary 100

C Bibliography 102

vi Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

List of Figures

2.1 Service Platform internal web APIs Authentication and Authorization 3
2.2 SSM/FSM security . 7

3.1 New modules to which the Gatekeeper’s API has to interact with 12
3.2 Context for Licence Manager . 14
3.3 Sequence diagram for licence validation when the owner requests a download of

his/her own packages . 15
3.4 User Management module architecture and communication flows 18
3.5 Adapter and Keycloak integration interfaces . 20
3.6 User Management module client registration and login workflow 21
3.7 The Licence Manager module in the Gatekeeper’s architecture 24
3.8 The Licence Manager module architecture . 24
3.9 Sequence diagram of End-user licence instance creation 25
3.10 Sequence diagram of licence validation . 26
3.11 Gatekeeper and KPI Manager interaction . 29
3.12 Processes related with the Events . 34
3.13 Processes related with the KPIs . 35
3.14 The KPI Manager module architecture . 36
3.15 Parse Dashboard Component . 36
3.16 SONATA SP high-level overview . 36
3.17 SONATA SP resources allocated . 37
3.18 SONATA SP VMs/Containers information . 37
3.19 SONATA SP VM/Container extended info . 38
3.20 Alerting view . 38
3.21 Functions view . 39
3.22 BSS User Management . 40
3.23 Sequence diagram of licence management for a service license request 41
3.24 Sequence diagram of licence management for a service instantiation 41

4.1 New catalogues dual level data structure . 44

5.1 Deploying a service . 47
5.2 Pausing a service . 48
5.3 Resume a service . 48
5.4 Terminate a service . 49
5.5 Specific managers infrastructure in SONATA MANO framework 50
5.6 An example including service placement plugin . 51
5.7 An example including function scaling and service placement plugins 52
5.8 Sequence diagram for SSM onboarding . 53
5.9 Sequence diagram for FSM onboarding . 53
5.10 SSM instantiation and registration sequence diagram 53
5.11 FSM instantiation and registration sequence diagram 54

SONATA Public vii

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

5.12 SSM updating and termination sequence diagram 54
5.13 FSM updating and termination sequence diagram 54

6.1 Initial state of two NFVI-PoP, the relevant VIMs and the IA entities 59
6.2 Different status of a NS deployemnt . 60
6.3 Service status after SFC configuration . 61
6.4 Service status after WIM configuration . 61
6.5 Service status after a pause procedure. Yellow elements are paused/deactivated. . . 62
6.6 Kubernetes Schema Model . 64

7.1 Retrieval of Monitoring Data . 66

8.1 SP Component Interfaces . 69

viii Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

List of Tables

2.1 Web APIs where Authentication and Authorization will be implemented 4

3.1 User Management User Stories . 13
3.2 Licence Management User Stories . 13
3.3 User Management User Stories . 16
3.4 Access Token verification endpoints. 22
3.5 Access Token verification endpoints. 22
3.6 Licence Management User Stories . 23
3.7 Proposed API for the Licence Management module 27
3.8 KPI Management User Stories . 28
3.9 Gatekeeper KPIs . 29
3.10 Proposed API for the KPI Management module . 30

6.1 SONATA to OpenStack translation model revised . 58
6.2 SONATA to Kubernetes experimental translation model 63

7.1 Monitoring Manager REST API . 67

8.1 Request Interface between the GUI and the GK. 69
8.2 Response Interface between the GUI and the GK. 70
8.3 Request Interface between the BSS and the GK. 71
8.4 Response Interface between the BSS and the GK. 72
8.5 Request Interface between the SDK and the GK. 74
8.6 Response Interface between the SDK and the GK. 74
8.7 Access Token verification endpoints. 75
8.8 Request Interface between the GK and the CAT. 76
8.9 Response Interface between the GK and the CAT. 78
8.10 NSR Repository REST API . 79
8.11 VNFR Repository REST management API . 80
8.12 Request Interface between the SLM and the MON. 82
8.13 Response Interface between the SLM and the MON. 83
8.14 IA-VI interface for OpenStack VIM . 84
8.15 IA-VI interface for OVS based SFC agent VIM . 86
8.16 IA-Wi interface for VTN-based WIM . 86
8.17 Request Interface between the GK and the SLM. 87
8.18 Request Interface between the SLM and the FLM. 88
8.19 Request Interface between the FLM and the IA. 89
8.20 Request Interface between the SLM and the IA. 89
8.21 Interface between SLM/FLM and executive plugins. 91
8.22 Interface between executive plugins and SSMs/FSMs. 92
8.23 Interface between SLM/FLM and SMR. 92
8.24 Interface between SSMs/FSMs and SMR. 93

SONATA Public ix

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

8.25 Request Interface between the SDK and the GK. 94

x Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

1 Introduction

This is the second deliverable related to the SONATA’s Service Platform development and it
documents the evolution that has happened since our first deliverable, D4.1 [7] and the first year
review.

Results of the first ten months of work documented in D4.1 were crucial for proving several
concepts we thought as key: the highly dynamic cycle of producing a new service using the
SDK, comprised of one or more functions, describing it in a standard way (following a schema),
submitting it to the Service Platform, having it instantiated in a real VIM and providing
monitoring data was a very important result. The next step, already demonstrated in the first
year review of the project, was to be able to submit a Specific Service Manager that changed the
platform’s behaviour for that service only: this is another innovation in terms of currently available
Service Platforms and Orchestrators. And in parallel with these two steps, was the DevOps
approach we have chosen to adopt from the beginning in developing the Service Platform itself:
we have chosen the best set of tools the open-source community uses, like GitHub, Jenkins,
Docker, Ansible, etc., and put them working together into an agile approach for developing
software. All this released into the open-source community, which is something also worth to
mention.

In this deliverable, released after seventeen months of work, we describe the features we felt
were next in terms of value added to the platform. The list of new features is extensive and is
explained throughout the Deliverable. New modules, supporting these new features, will also be
implemented as micro-services, thus keeping the flexibility in terms of scalability we have designed
from the start. Each module will provide the most adequate kind of interface, either REST-based
or message-based.

Some of those features are really innovative (e.g., a container-based VIM, working in a MANO
context), therefore deserving some more time of consolidation of the proposed solution. For these
features, we present the state-of-the-art of what we have designed so far, and leave the definitive
solution to be presented later.

Overall, these features push the SONATA Service Platform even further into a 5G world, where
high operational efficiency, global scale and extreme flexibility are at stake. Higher operational
efficiency is achieved by NFV and SDN, taking advantage of computational, storage and connec-
tion resources virtualisation. High scalability is supported by our architectural choices (already
documented in D2.3 [5]), namely the option for a micro-service based architecture, in which each
component can scale separately. Higher flexibility comes as a side effect of a micro-service based
architecture, where different components responding to the same interface (which can be a set of
messages) can easily be interchanged, thus improving or changing a Service Platform functionality
without extensive impacts.

1.1 Content organisation

The content of this deliverable is organised as follows.

The current section is the Introduction, where the whole document is summarised. Then,
in Section 2, Service Platform Security, we describe the overall security policy that is being

SONATA Public 1

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

implemented across the platform. Section 3, Gatekeeper, explains the changes we have designed
and implemented since D4.1 [7] in this key component of the Service Platform, including new
modules (users, licences and KPIs) and changes in the existing ones (mostly the API, the GUI
and the BSS). Section 4, Catalogues and Repositories, describe the changes designed and
implemented on those components this year and Section 5, The MANO Framework, details the
evolution that took place on that crucial Service Platform sub-system, namely with the introduction
of the Function and Service Lifecycle Managers and the introduction of Specific Managers
Infrastructure. Section 6, Infrastructure Abstraction, discusses the design changes needed
to accommodate an infrastructure as distinct from the common VIM’s used as a container-based
VIM. Monitoring, in Section 7, also evolved a lot since D4.1 [7], namely in providing monitoring
data efficiently to the Developer’s SDK. To make the Service Platform’s modularity more bold, we
present all its Internal Interfaces in Section 8 and finally we draw some Conclusions from these
months of work in Section 9.

Annexes hold the list of the Acronyms used in Appendix A and the Glossary in Appendix B.

2 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

2 Security within the Service Platform

The security within the Service Platform includes the authentication and authorisation between
microservices’ ([12]) APIs, HTTPS for external APIs and the enforcement of security in the Message
Broker and databases.

2.1 Authentication and authorisation between microservices APIs

The communication between microservices is secured through access tokens that are generated by
the security component described in SONATA Architecture D2.3 [5] as AuthC/AuthZ. This module
deals with identifying microservices and controlling their access to other microservices within the
Service Platform by associating user rights and restrictions with the established identity.

JSON Web Token (JWT, [1]) is an open standard [19] that defines a compact and self-contained
way for securely transmitting information between different parties as a JSON object. This infor-
mation can be verified and trusted because it is digitally signed. JWTs can be signed using a secret
(with HMAC algorithm [16]) or a public/private key pair using RSA [40].

Figure 2.1: Service Platform internal web APIs Authentication and Authorization

In the SONATA Service Platform (SP), the JWT is used in order to authenticate and authorise
the SP components. In the installation process, a keypair will be generated and injected to each
container (AuthC/AuthZ, MS1, MS2 in Figure 2.1) in the start process. The microservice will
use this keypair in the registration and one token will be assigned to it. Once microservices are
registered and have their own token, they will be able to communicate with other microservices
APIs.

Table 2.1 lists the set of microservices in which we will implement authentication and authoriza-
tion.

SONATA Public 3

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 2.1: Web APIs where Authentication and Authorization will be implemented

Microservice A Microservice B

1 GTK-API BSS
GTK-VIM
GTK-REC
GTK-USR
GTK-LIC
GTK-KPI
GTK-SRV
GTK-PKG
GTK-FNCT

2 GTK-FNCT Catalogues
3 GTK-PKG Catalogues
4 GTK-SRV Catalogues
5 GTK-REC Repositories
6 SLM Repositories

Monitoring
7 FLM Repositories

This impacts both the installation scripts and microservices APIs.

2.2 HTTPS in external Web Components

Another level of security is in the external connections: the SDK [6], the GUI (see Section 3.5)
and the BSS (see Section 3.6).

In this case, security will be achieved at the connectivity level, using HTTPS and Web Secure
Sockets (WSS) [17].

2.2.1 HTTPS versus Web Secure Sockets

Web Sockets ([18]) is a distinct and independent protocol from HTTP, only using the HTTP
protocol in its handshake, as an upgrade request on the Web Server. Due to its possible interactive
nature it facilitates the exchange of real-time information greatly between peers. Its functionality is
achieved by the definition of a standard way to send information from the server to the client without
it being requested. Web Sockets thus makes it possible to open an interactive communication session
between the user’s browser and a server. With this API, you can send messages to a server and
receive event-driven responses without having to poll the server for a reply. It’s clearly innovative
because it provides a full duplex communication over a single TCP connection. Although its
specially designed to be used between a web server and a web browser, the protocol can be used
between any client and server.

Please note that this section is not an endorsement of one technology over the other. In fact,
both are perfectly viable individually, serving to attain different objectives. If we wish to have
absolute control on the part of the client, issuing transactional requests, evidently HTTP is an
obvious choice. If a more interactive communication, with possible actions from the part of the
server, is expected, Web Sockets ([18]) are the only choice.

The common use of the port 80 also provides an easy way of avoiding firewall blocking of infor-
mation. Web Sockets also provides a secure way of communication with the aim to produce secure
stream communications. So insecure communications have the URI ws and secure ones would be
identified by the URI wss.

The protocol handshake aims to establish a Web Socket connection for which we have the fol-
lowing bidirectional messages:

4 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Client request (just like in HTTP, each line ends with \r\n and there must be an extra blank line
at the end):

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

Origin: http://example.com

Server response:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=

Sec-WebSocket-Protocol: chat

After accepting success the exchange of the specific protocol begins. A obvious advantage in
using the same port for both protocols (HTTP and WS) and (HTTPS and WSS) to provide the
Web Sockets is to use the same mechanism to secure the network: a base64 code is sent, to avoiding
replication of the packet by a caching proxy, without providing any type of authentication, privacy
or integrity.

During the specific protocol phase, the messages are minimally framed with a small header
followed by payload. The messages could be split across several frames in which the end would be
signalled by the FIN bit on the protocol. Further extensions will provide multiplexing of frames to
avoid starvation from a source with big data transmissions.

2.2.2 Distinct methods for external connections

First we will need to create the files associated with the website of the model we have chosen to
provide the microservices. See the sections ’Reverse Proxy for distinct URLS’ and ’direct access to
distinct ports’.

The advantage of using letsencrypt ([11]) for producing a global security certificate in Ubuntu is
its cost: it’s free and recognized and trusted as a certificates provider entity. To install letsencrypt
and generate the first SSL certificate for a specific URL we need to execute the following commands
(it’s preferable to achieve root status than to issue sudo before each command -- when addressing
security issues most of the commands will need root permissions anyway):

$ sudo su

$ cd ~root

$ // clone the letsencrypt git repository.

$ git clone https://github.com/letsencrypt/letsencrypt.git letsencrypt

$ cd letsencrypt

$ // and request the SSL certificate:

$./letsencrypt-auto certonly --webroot \
> -w /home/web/sp.sonata-nfv.eu/public_html \
> -d ’sp.sonata-nfv.eu’

SONATA Public 5

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

If you request a certificate for the master domain (1st level domain aka ’sonata-nfv.eu’) use -d

parameter twice. With and without WWW prefix like this:

$./letsencrypt-auto certonly --webroot \
> -w /home/web/sonata-nfv.eu/public_html \
> -d sonata-nfv.eu -d sp.sonata-nfv.eu

Without this, the certificate won’t be valid for visitors opening the site with the www prefix. You
can add as many subdomains as needed.

2.3 Authentication and authorisation within Message Broker

This section describes the authentication and authorisation mechanisms implemented for access
control in the SONATA Message Broker.

As described already in [4] and [7] we are using RabbitMQ as SONATA’s SP Message Broker.
RabbitMQ instances can be used to carry sensitive application data or affect the stability of an
entire system, we need to make sure that our RabbitMQ deployments are secured properly.

When a RabbitMQ client establishes a connection to a server, it specifies a virtual host within
which it intends to operate. A first level of access control is enforced at this point, with the
server checking whether the user has any permissions to access the virtual hosts, and rejecting the
connection attempt otherwise.

2.3.1 RabbitMQ Virtual hosts

Virtual hosts are used to logically separate a broker instance into multiple domains, each one with
its own set of exchanges, queues, and bindings. It is really similar to the Virtual Hosts of any Web
Server in the enterprise. Clients have to choose one of the Virtual Hosts, since a Client cannot be
allowed to connect to another Virtual Host while connected to one Virtual Host.

Resources, i.e. exchanges and queues, are named entities inside a particular virtual host; the
same name denotes a different resource in each virtual host. A second level of access control is
enforced when certain operations are performed on resources.

RabbitMQ distinguishes between configure, write and read operations on a resource. The con-
figure operations create or destroy resources, or alter their behaviour. The write operations inject
messages into a resource. And the read operations retrieve messages from a resource.

2.3.1.1 Access control configuration parameters

Access control configuration parameters are the following:

� Creates a virtual host: add vhost {vhost}

� Deletes a virtual host: delete vhost {vhost}

� Lists virtual hosts: list vhosts [vhostinfoitem ...]

� Sets user permissions: set permissions [-p vhost] {user} {conf} {write} {read}

� Sets user permissions: clear permissions [-p vhost] {username}

� Lists permissions in a virtual host: list permissions [-p vhost]

� Lists user permissions: list user permissions {username}

6 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

2.3.1.2 User Manager configuration parameters

User Manager configuration parameters are the following:

� Adding a User: add user {username} {password}

� Deleting a User: delete user {username}

� Changing a User password: change password {username} {newpassword}

� Delete a Username password: clear password {username}

� Lists users: list users

2.3.1.3 Authentication

This parameter allows you to identify who connects to the message broker.

2.3.1.4 Authorisation

This parameter allows you to determine the set of privileges and permissions for the authenticated
user. After a client is successfully authenticated by the message broker, it needs to perform some
activities in some virtual hosts. The following types of permissions are configured in the message
broker:

� configure: This allows a resource to be created, modified, or deleted

� write: This allows a resource to be written to

� read: This allows a resource to be read from

2.3.2 MANO Framework security workflow

The workflow of creating a virtualhost for each plugin, adding a user for each FSM/SSM, and
setting permissions are shown in Figure 2.2

Figure 2.2: SSM/FSM security

Following two steps are taken for creating a new virtualhost:

SONATA Public 7

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

� Step 1: Plugin manager sends a message to SMR whenever it successfully registers a new
plugin. The message contains the new plugin name and UUID.

� Step 2: SMR creates a new virtualhost for the new plugin. Note that SMR creates a
virtualhost for itself as well. This virtual host will be used for FSM/SSM registration.

FSM/SSM instantiation phase is used for adding a new user and setting permissions which are
performed as follows:

� Step 3: SMR receives the FSM/SSM instantiation message from FLM/SLM.

� Step 4: SMR generates a pair of user/pass for the FSM/SSM.

� Step 5: SMR adds a new user to RabbitMQ using the generated user/pass in the previous
step.

� Step 6: SMR sets permissions for FSM/SSM so that it can use the SMR virtualhost in order
to register itself.

� Step 7: SMR starts the FSM/SSM container and sends the user/pass to the FSM/SSM
through an ENV(environment variable).

� Step 8: Using the user/pass received from SMR, FSM/SSM sends a registration request
message to SMR through SMR virtualhost.

� Step 9: In this step, SMR sets permissions on the FSM/SSM’s virtual host, so that commu-
nication between the two is possible.

� Step 10: Eventually, SMR sends a response message to FSM/SSM.

2.4 Authentication in Databases

Authentication in Databases is a key issue whenever security is addressed. To avoid the definition
of trivial and easy to guess or brute force attack passwords, the current trend is to generate them
randomly. The next step is to pass them securely to the relevant containers.

Good practices in securing database users’ passwords prescribes that they:

� must never be stored in a database as clear text

� must never be stored in disk at all

� should not be recoverable from the database, i.e., should be generated with a high degree of
complexity to be extremely difficult to infer or crack.

2.4.1 Generate unencrypted random password in CLI

To generate unencrypted but random passwords in Linux CLI the following tools are commonly
available: makepasswd, mkpasswd, pwgen. Example for mkpasswd:

Install mkpasswd on CentOS 7:

$ sudo yum whatprovides "*/mkpasswd"

$ sudo yum install expect

$ mkpasswd

8 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Install mkpasswd on Ubuntu 14.04 or 16.04:

$ sudo apt-get install whois

$ mkpasswd

You can also store a password in a shell variable:

$ PGPWD=$(mkpasswd --method=SHA-512)

$ echo "$PGPWD"

More info on mkpasswd in [30]. There are other tools to generate random passwords, like:
Using /dev/urandom

$ echo ‘</dev/urandom tr -dc A-Za-z0-9 | head -c8‘

Using openssl ([33])

$ openssl rand -base64 16

Generate an MD5 encrypted password for user ’sonata’

$ sudo usermod -p ‘makepasswd char=20 crypt-md5‘ sonata

2.4.2 Generate encrypted password for Databases users

Passwords are sensitive data. As such, encrypting the user’s password is crucial. Actually, there
are several cipher algorithms like DES (1970), 3-DES, RSA (1978), IDEA (1990), PGP (1991),
AES, and many more (see [42]). And there are also public tools to execute the ciphering, e.g.,
cryptographytools.com ([8]).

Straight DES encryption using 56-bit keys is considered not to be enough for modern computing
capacity, since a password can be revealed within a day. There is also another drawback for DES:
the same password produces the same key (see, e.g., online md5 hash calculator in [14]).

The password encryption method does not solve the problem of storing the password itself: a
good security practice is not to store the password at all (not even encrypted), but to store the
salted hash of the encrypted password instead.

2.4.2.1 Non-reversible encryption

Cryptographic methods apply an algorithm to the variable length input password and generates a
’hash’ that acts like a digital fingerprint of the original password. This is also called an ’asymmetric’
method: quick to generate but difficult to retrieve. Password-hashing function should protect
against dictionary attacks and rainbow tables. Hashing algorithms commonly used are MD5,
SHA-family. MD5 and SHA-1 does not introduce complexity enough since you can easily get two
passwords with the same hash output. SHA256 uses 256-bit words, 32 bytes. These algorithms
are also known as message digests: the submitted password at user’ login is kept in memory and
its hash is computed. If the computed hash matches the stored hash, then his authentication is
accepted.

SONATA Public 9

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Hash and Salt

However applying only an hash algorithm doesn’t solve the problem of getting the same hash for
identical password. By adding a piece of data called ’salt’ (aka nonce, from number used once)
along with the password in the hash calculation you can produce an output of unique hashes.
Considering that salt is included to assure unique hash and it’s not an encryption key, it can be
stored in the users database as “username:salt:hash”. To avoid hash collision choose a random salt:
/dev/urandom in Linux systems.

Salt and Hash Stretching

The previous methods addresses the ’non-reversibility’, ’no repeated hashes’, and ’no hint of pass-
word length’ requirements. However doesn’t solve the scenario of an offline attack when an hacker
with heavy computational power gets access to the users database for a long period of time. To
slow down an offline attack, a number of iterations can be introduced in the hash calculation with-
out slowing down the real user login. A number of repeated hash algorithms are available (eg,
PBKDF2, bcrypt, scrypt or argon2) along with the HMAC-SHA-256 hashing algorithm.

2.4.2.2 How to protect SONATA database passwords

Finally lets see how to use non-reversible encryption to protect Sonata database passwords. The
purposed method rolls on 2 steps:
1. generate a hash of the password

$ mkpasswd --method=SHA-512

Password:

6r/MVD5Lbu$...wOrICZV4xa1

2. store the hash as Ansible variables (eg. roles/pgsql/vars/main.yml)

vars file for postgresql

db_name: son-sp

db_user: sonata

db_password: "6x03p5CK1GE . . . sAoetvgGeT90"

#db_password: "{ { lookup(’env’, ’PGSQLPWD’) } }"

A security enforcement can be added by protecting the variables file with Ansible Vault:

$ ansible-vault create roles/pgsql/vars/main.yml

$ ansible-vault edit roles/pgsql/vars/main.yml

Now, just test and run it:

$ ansible-playbook --syntax-check --ask-vault-pass deploy-pgsql.yml

$ ansible-playbook --ask-vault-pass \
> --private-key=~/.ssh/id_ansible deploy-pgsql.yml

10 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

2.4.2.3 Internal database cryptographic tools

Currently, database engines used in Sonata Service Platform (PostgreSQL, MySQL and MongoDB)
have built-in cryptographic tools. So, the developer has an important role on security when creating
the data model. PostgreSQL provides cryptographic functions in the pgcrypto ([35]) module.
In MySQL, the PASSWORD() function can be used, after the client connects, to generate
a password hash or by using a password-generating statement (CREATE USER, GRANT, or
SET PASSWORD)[10]. MongoDB uses a password hashing algorithm based on SCRAM-SHA-1
(PBKDF2 with 10,000 iterations).

2.4.2.4 Secrets backend

When a platform has many database accounts to manage, it could be a solution to store it on a
dedicated repository like Hashicorp Vault [15] - ’a tool for managing secrets’.

Vault secures, stores, and tightly controls access to tokens, passwords, certificates, API keys,
and other secrets in modern computing. Vault handles leasing, key revocation, key rolling, and
auditing through a unified API’. Hashicorp provides Vault pre-compiled binaries for LINUX [26],
for PostgreSQL [37], MySQL [28] and MongoDB [27] to be used as Secret Backends.

SONATA Public 11

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

3 Gatekeeper

This section covers the improvements and new features implemented since D4.1 [7] and the first
year review on the Gatekeeper.

First we document changes made to the Gatekeeper’s API, in order to accommodate the security
changes described in Section 2. Then, the new modules (User Management in Section 3.2,
Licence Management in Section 3.3 and KPIs Management in Section 3.4) are detailed.
Finally we list changes made to two of the Gatekeeper’s API consumers, the GUI (in Section 3.5)
and the BSS (in Section 3.6).

3.1 Gatekeeper API

The current section describes the new features of the Gatekeeper’s API since [7].

3.1.1 Security related changes

Changes mentioned in Section 2 naturally impacted the Service Platform’s API.

Since the Service Platform is now distinguishing its users (see Section 3.2), APIs will have to
include some form (also discussed in Section 2) of authenticating and authorising what people and
microservices want to do.

Every microservice will also have to proceed with an authentication procedure and other security
verifications. For example, when a Developer submits a new package, the Gatekeeper will have
to check if that developer has an authorisation for on-boarding packages.

3.1.2 New modules

In the next version of the Gatekeeper’s API we will extend the current API to support the new
modules of the Gatekeeper: the User Manager, the Licence Manager and the KPIs Manager.

Figure 3.1 shows these new modules, in yellow.

Figure 3.1: New modules to which the Gatekeeper’s API has to interact with

12 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

These new modules will be detailed in their own section in this deliverable (please see Section 3.2,
Section 3.3 and Section 3.4). The new internal interfaces that were made available are described
in Section 8.

3.1.2.1 Requirements

This sub-section summarises requirements for three new modules.

User manager module

This component’s requirements are detailed in Section 3.4.1, together with its API (in Section 3.4.5).
We will mature the design and implementation of the module and only then make the API available
to the rest of the modules. Table 3.1 summarizes component’s requirements:

Table 3.1: User Management User Stories

ID Summary As a (user) I want (action) So that (benefit) Applicable user role

UMAPI01 Registration User to be able to sign up to
SONATA Service Plat-
form

I can later publish and
update services and check
other public services of-
fered

Developer, Customer,
Provider, Admin

UMAPI02 Login Registered
User

to be able to sign in to
SONATA Service Plat-
form

I can view the status,
validation and other info
about my services

Developer, Customer,
Provider, Admin

UMAPI03 Profile Up-
date

Registered
User

to be able to update
my profile settings

I can provide the most up-
to-date information to the
Service Platform

Developer, Customer,
Provider, Admin

UMAPI04 Authentication Registered
User

to be able to authenti-
cate my requests to the
Service Platform

The Service Platform ac-
knowledges my identity

Developer, Customer,
Provider, Admin

UMAPI05 Authorization
manage-
ment

Registered
User

to be able to authorize
other users of the Ser-
vice Platform

The Service Platform
grants access to my
services and functions

Developer, Customer,
Provider, Admin

Licence manager module

This component’s requirements are detailed in Section 3.4.1.
Table 3.2 summarises the job stories [24] for the API to use the Licence Manager module.

Table 3.2: Licence Management User Stories

ID Summary When (event) I want (action) So I can (benefit) Comments

LMAPI01 Define
different
types of
licences

the platform
starts

to define ’public’ and
’private’ types of li-
cences

have different behaviour
for these two different
types of licences

LMAPI02 Create
licence

the BSS re-
quests (*)

to create a licence for
an end-user and a ser-
vice (and its functions)

have services and func-
tions validated when in-
stantiated

Besides its type (’pub-
lic’ or ’private’), li-
cences must reference
its owner (user), end-
user, service and a
URL to be called. (*)
See Section 3.6.4

SONATA Public 13

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

ID Summary When (event) I want (action) So I can (benefit) Comments

LMAPI03 Validate
licence on
package
download-
ing

a package
download is
requested

its services’ and func-
tions’ licences to be
validated

only authorised services
and functions are down-
loaded

Downloading is as-
sumed to have the
intention of reuse.
The owner of the
package can download
it whether its services
and functions have a
’public’ or a ’private’
licence

LMAPI04 Validate
licence on
service in-
stantiation

a service in-
stantiation is
requested

the service’s and it’s
functions’ licences to
be validated

only authorised services
and functions are instanti-
ated

Service instantiation is
only authorised if ALL
licences associated
with it are valid

LMAPI05 Cancel
licence

the BSS/GUI
requests

the service’s and it’s
functions’ licences to
be cancelled

the service instance cannot
be used

Trivial requirements, such as retrieving a list of licences a given end-user or owner has, are not
listed in this table, but will be implemented.

Figure 3.2 shows the context for these requirements.

Figure 3.2: Context for Licence Manager

A Service Owner develops a service and functions, and on-boards them in the Service Platform,
trough the SDK.

When that service and/or functions are ’private’, any other user that wants to re-use the ser-
vice or functions (Service/Function Re-user) has to buy a licence. This can be done by the
Service/Function Re-user accessing the GUI and ’buying’ a re-use licence from the Service
Owner. The download of the licensed package through the SDK then will work smoothly.

On the other hand, when an End-User wants to instantiate a ’private’ service, he/she must

14 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

access the BSS and ’buy’ a licence for that service. When the service instantiation is requested in
the same BSS, the process runs smoothly.

This previous ’buy’ step is not needed when the service is marked as ’public’.

Please note that, when the Service Owner tries to download his/her own packages, the Li-
cence Manager is not even contacted (see the sequence diagram shown in Figure 3.3, with error
conditions not shown for the sake of brevity).

Figure 3.3: Sequence diagram for licence validation when the owner requests a download of his/her
own packages

KPIs manager module

This component’s requirements and the API are detailed in Section 3.4.1 and in Section 3.4.5,
respectively. We need the module’s design and implementation to mature a little bit more for that
API to be made available to the KPI provider modules -- the Gatekeeper’s API and all the others,
both existing and new (see Figure 3.1).

SONATA Public 15

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

3.1.3 Other improvements

Besides the changes mentioned above, we have also improved a number of features:

� Name-spacing and versioning the API: the Gatekeeper’s API will start to be name-
spaced and versioned with /api/v2;

� Package storage/downloading: packages are now stored side by side with their descrip-
tors, which allows the download of the integral package for re-use, instead of rebuilding the
package (and loosing all comments in the process);

� Linking headers: responses to requests that might have multiple records will include a Link

header, which, together with the already supported limit (the maximum number of records
returning in a response, defaulting to 10) and offset (the number of the page within the
result set, defaulting to 0), allows easier navigation by the Gatekeeper’s API through results.

3.2 User management module

This component is responsible of managing and controlling the permissions and authorizations of
the platform users, allowing or denying the requested actions.

3.2.1 Requirements

Table 3.3 collects the set of user stories related to the User Management considering the Roles of
the SONATA Platform.

Table 3.3: User Management User Stories

ID Summary As a (user) I want (action) So that (benefit)

1.1 Developer Registration Developer to be able to sign up to
SONATA Service Platform

I can later publish and update ser-
vices and check other public ser-
vices offered.

1.2 Developer Login Registered De-
veloper

to be able to sign in to
SONATA Service Platform

I can view the status of my ser-
vices (running, suspended, etc),
progress of pending service de-
scription validation, service pack-
age versions, etc.

1.3 Developer Profile Up-
date

Registered De-
veloper

to be able to update my profile
settings

I can provide the most up-to-date
information to the Service Plat-
form.

1.4 Developer Authentica-
tion (while providing a
package)

Registered De-
veloper

to be able to authenticate my
requests to the Service Plat-
form

the Service Platform knows re-
quests (deploy, monitoring) are
mine.

1.5 Developer Autho-
rization management
(while providing a
package)

Registered De-
veloper

to be able to authorize other
developers and users of the Ser-
vice Platform

they can use my service and func-
tions.

2.1 Customer Registration Customer to be able to sign up to
SONATA Service Platform

I can later check the public services
offered.

2.2 Customer Login Registered
Customer

to be able to sign in to
SONATA Service Platform

I can view the status of my ser-
vices’ status (running, suspended,
etc).

2.3 Customer Profile Up-
date

Registered
Customer

to be able to update my profile
settings

I can provide the most up-to-date
information to the Service Plat-
form.

2.4 Customer Customer
authentication

Registered
Customer

to be able to authenticate my
requests to the Service Plat-
form

the Service Platform knows re-
quests (instantiate, pause, resume,
retire) are mine.

2.5 Customer Customer
authorization

Registered
Customer

to be able to use my authorized
services

services can ’legally’ use platform
resources.

16 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

ID Summary As a (user) I want (action) So that (benefit)

3.1 Service Provider Regis-
tration

Service
Provider

to be able to sign up to
SONATA Service Platform

I can later monitoring and operate
the services offered.

3.2 Service Provider Login Registered Ser-
vice Provider

to be able to sign in to
SONATA Service Platform

I can view the status of my com-
pany/group services (running, sus-
pended, etc).

3.3 Service Provider Pro-
file Update

Registered Ser-
vice Provider

to be able to update my profile
settings

I can provide the most up-to-date
information to the Service Plat-
form.

3.4 Service Provider au-
thentication

Registered Ser-
vice Provider

to be able to authenticate my
requests to the Service Plat-
form

the Service Platform knows re-
quests (instantiate, pause, resume,
retire) are mine.

3.5 Service Provider
authorization manage-
ment (developers)

Registered Ser-
vice Provider

to be able to authorize other
developers of the Service Plat-
form

they can modify/update the ser-
vices and functions owned by my
company/group.

3.6 Service Provider
authorization manage-
ment (users)

Registered Ser-
vice Provider

to be able to authorize other
users of the Service Platform

they can instantiate and use the
services and functions owned by
my company/group.

4.1 Platform Admin Login Registered
Sonata Plat-
form Admin

to be able to sign in to
SONATA Service Platform

I can later check the deployment
process, monitoring, operate and
retire the services.

4.2 Platform Admin Au-
thentication

Registered
Sonata Plat-
form Admin

to be able to authenticate my
requests to the Service Plat-
form

the Service Platform knows re-
quests (instantiate, pause, resume,
retire) are mine.

4.3 Platform Admin
Authorization manage-
ment

Registered
Sonata Plat-
form Admin

to be able to unauthorized
users/developers to the Service
Platform

I can revoke permissions due to a
continuous malfunction of the ser-
vices deployed by a developer, or
bad use of the services and re-
sources by a developer/user, to
preserve the integrity of the plat-
form

3.2.2 User management module implementation

This section defines the User Management module implementation which is responsible of users
and services authentication and authorization within the Service Platform. The User Management
Module implementation is separated into the following components:

� Adapter (son-gtkusr), which is part of the Service Platform Gatekeeper.

� Keycloak, the Identity and Access Management open-source tool that acts as authentication
and authorization server.

� Database, which is currently an optional component and might support additional features
later. Core features use Keycloak’s internal database.

These components communicate through secured RESTful interfaces as they follow the microser-
vice architecture pattern inside the module. More information about its design and architecture
can be found in section 3.3.4 of Deliverable D2.3 [5].

Implementation architecture follows the design in Deliverable D2.3. Figure 3.4 shows the first
version for the User Management module architecture where the Adapter component enables an
Access REST API and interacts with the Access Management and Identity Provider tool.

3.2.2.1 Authentication and authorisation adapter

The Adapter component provides a tight integration to the underlying Service Platform and the
the authentication and authorization server (Keycloak).

Based on the centralized approach and the architecture chosen to implement a security layer
on the Service Platform Gatekeeper, managing users/micro-services access requires an adapter or

SONATA Public 17

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 3.4: User Management module architecture and communication flows

client library to connect the authentication and authorization server and secure the platform. Given
that the authentication and authorization server uses OpenID Connect [32] as a protocol for the
resource Resource Provider, the Adapter is a required component that will be responsible of securely
connect the User Management API on the Gatekeeper with the authorization and authentication
server, forward registration, authentication and authorization messages.

In order to secure applications and services, Keycloak (authentication and authorization server)
API is made in a way that requires an adapter (client) in each component to secure. To avoid such
complexity and overhead of having a client in each SONATA component, the Adapter is the only
component that will directly connect to the Keycloak from the SP. It is the main component that
adds the authority entity to the platform through the Gatekeeper component using Keycloak API.

New features

The Adapter is a new component that comes into scene in SONATA Year 2 plan. It is under
development, and while it is found in an early state, it support new features:

HTTPS The Adapter introduces a security layer adding HTTPS to the exposed APIs

User account registration The Adapter currently support a limited function to register end-users
on the authentication and authorization server. This process automatically assigns a default
User account with the provided user information. This feature will be improved adding roles
and permissions associated to the user.

Centralized user authentication and authorization The exposed RESTful API is currently en-
abling registration and login features from a single point in the Gatekeeper. End-users of
the platform can use the Adapter API to register to the Platform, provided of User accounts
and be able to log-in and receive an Access Token that grants the use of services within the
platform.

Planned features

There are plans to introduce new features during SONATA Year 2 development. Some of these
features are already defined:

Centralized micro-service authentication and authorization The same way that the Adapter en-
ables security features to users, a security layer will be introduced for micro-services within
the SP. This feature will allow micro-services to register to the platform when installed, and
retrieve an Access Token that will grant a identity and authorization to communicate other
micro-services within the platform.

18 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Social login (Git accounts) This feature enables logging-in to the platform using social networks
accounts such GitHub, with the ease of not having to register users twice to the platform if an
account is linked to a SONATA entity. No code or changes to SP micro-services is required.
However it requires connecting Keycloak to the GitHub authorization server.

Adapter technical details

The Adapter is being implemented from scratch using Ruby Programming language and Sinatra
Framework (as an internal component of the Gatekeeper). It will communicate with the Keycloak
Identity and Access manager for most of authentication and authorization processes.
This component is a special micro-service that is granted of administrator rights over the Keycloak
as it will be responsible of orchestrate requests from users and other icro-services.
It can be supported with an optional database to implement functionalities that are not bound to
the Keycloak, e.g. Ownership database for access authorization to certain resources.

3.2.2.2 Authentication and authorisation server

From a candidates list of authentication and authorization tools to consider, Keycloak was chosen
as open source tool to provide and support authentication and authorization functionalities to the
Service Platform. Keycloak is an open source Identity and Access Management solution based
on standard protocols and provides support for OpenID Connect (OIDC), OAuth 2.0 [21], and
SAML [41] (more details can be found in Keycloak webpage at www.keycloak.org). OIDC has been
chosen to secure platform’s access and communication. It is responsible of granting secured access
to end-users and micro-services. It includes a set of administrative UIs and exposes a RESTful API,
which provides the necessary means to create permissions for protected resources and scopes, then
associate those permissions with authorization policies or roles, enforcing authorization decisions
when managing access to other micro-services or resources.

A resource provider in the SP (as can be the SP Catalogue), requires to rely on a security
component that manages some kind of information to decide if an access should be granted to the
protected resources. For RESTful-based resource providers, that information is usually obtained
from a security token, usually sent as a bearer token on every request to the resource provider.
Keycloak is the security component that produces security tokens called Access Token (JWT) based
on the information of an user or service account, its roles, permissions, etc.

New features

Keycloak is a new component introduced to the SP that is part of the User Management module.
While it offers a long list of features, User Management module is currently enabling required core
functionalities of authentication and authorization:

Single-Sign On (SSO) Users authenticate with Keycloak rather than individual applications. This
means that your applications don’t have to deal with login forms, authenticating users, and
storing users. Once logged-in to Keycloak, users don’t have to login again to access a different
application. This also applied to logout. Keycloak provides single-sign out, which means users
only have to logout once to be logged-out of all applications that use Keycloak.

Security standard protocols Standard protocols such OpenID Connect and OAuth 2.0 are already
enabled within Keycloak.

Administration console This feature allows SONATA administrators to easily manage Keycloak
framework. It currently supports a workspace (’realm’ for Keycloak) that connects with the
Adapter and provides configuration settings to define Access Tokens parameters.

SONATA Public 19

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Planned features

During SONATA Year 2, it is planned to introduce new features to work on the authentication and
authorization server:

� Dynamic creation and management of permissions

� Dynamic assignment and management of roles

� Role-based access control (RBAC)

� User-based access control (UBAC)

� Integration with SONATA BSS and/or GUI

Adapter and Keycloak integration

The Adapter (son-gtkusr) uses Keycloak RESTful API to securely manage authentication and
authorization processes from the Service Platform.

The Adapter is responsible of performing 3 main functionalities in the User Management module.
Figure 3.5 shows communication flows for these functionalities:

Figure 3.5: Adapter and Keycloak integration interfaces

Deployment and configuration When the Adapter (son-gtkusr as shown in Figure 3.5) is de-
ployed (within the Gatekeeper) it must retrieve a configuration to obtain the endpoints available
from the Keycloak and get administrator credentials as a Keycloak client. This is performed in two
different processes, the client registration where the Adapter announces itself to the Keycloak, and
client authentication, where it requests a special Access Token to establish secure communication
to the Keycloak.
In order for an application or service to utilize Keycloak, it has to register a client in Keycloak.
This process can be achieved manually by an administrator through the admin console, or can be
dynamically done through administration REST endpoints. Clients can also register themselves
through the Keycloak client registration service.

The Adapter (considered the client on the Gatekeeper) need a token in order to invoke the Key-
cloak authentication and authorization services. When the User Management module is deployed,

20 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

it is assigned a keypair to be used when announcing to the Keycloak. This process is detailed in the
section Section 2. To retrieve the Adapter configuration for a Keycloak client, it uses the assigned
keypair credentials using HTTP basic authentication. This includes the following header in the
request: Authorization: basic BASE64(client-id + ':' + client-secret)

The Keycloak returns a special Access Token that is only granted to the Adapter. This token uses
JWT standard, and contains necessary information to grant administration rights to the Adapter on
the Gatekeeper. Once the Access Token is provided, the Adapter proceeds to retrieve the client con-
figuration accessing to /realms/<realm>/clients-registrations/install/<client id> and
the OpenID configuration endpoint /realms/{realm-name}/.well-known/openid-configuration.
It is most important endpoint to know is the well-known configuration endpoint and it lists end-
points and other configuration options relevant to the OpenID Connect implementation in Keycloak.

Keycloak also exposes a number of endpoints to manage user identity and authorization from
the Adapter. These endpoints are just accessible by the Adapter, as they exposed only for internal
communication between the Adapter and Keycloak.

Access provider The Adapter uses OpenID Connect with an “admin” Client Credentials as the
authorisation grant obtained by its own Client ID/Secret keypair. Microservices inside and outside
the SP will also be using Client Credentials grants (assigned to Services accounts), while end-users
will be using Resource Owner Password Credentials grants (assigned User accounts). The Adapter
is responsible of forwarding to the Keycloak all end-users or microservices requests made though a
client.

Client registration and login workflow: Figure 3.6 shows the interaction between components in
order to register a client and then log-in into the Service Platform to retrieve an Access Token.

Figure 3.6: User Management module client registration and login workflow

When a end-user or microservice is registered and requests a login to the platform, Keycloak
evaluates the log-in credentials forwarded by the Adapter and received from the end-user client or
microservice in a two step process each request:

� It first authenticates the identity of the requester.

� It then checks whether authenticated identity is authorized to access.

If the login process is successful, the Adapter is responsible of returning a generated Access Token
to the requester client.

Table 3.4 shows the Adapter exposed API endpoints through the Gatekeeper:

SONATA Public 21

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 3.4: Access Token verification endpoints.

Action Description HTTP
method

Adapter
Path

Keycloak path

RegistrationPublic endpoint that allows the
registration of the end-user to
the platform

POST /register /auth/admin/realms /master/users

Login Public endpoint that allows
end-users to obtain tokens by
supplying credentials directly

POST /login /realms/{realm-name}
/protocol/openid-connect/token

Userinfo Secured endpoint that returns
standard claims about the au-
thenticated user

POST /userinfo /realms/{realm-name}
/protocol/openid-connect/userinfo

Log-out Secured endpoint that Logs
out the authenticated user

POST /logout /realms/{realm-name}
/protocol/openid-connect/logout

Process requests and responses The Adapter enables a REST API to accept operations from
end-users/micro-services. However, this API will expose a public interface to allow registering to
the SONATA Platform, and a secure interface for the authenticated/authorized processes as seen
in ’Access provider’ section.
However, the secured interfaces of the API will work with Access Tokens (considered bearer token
type) included in each message header from end-users and micro-services clients. These messages
need to be sent through the Gatekeeper API, which will use Adapter interfaces to authenticate
and authorize incoming messages and access requests. This means that the Adapter will only be
responsible of directly receiving those messages about registering and logging-in to the platform.
Communication between micro-services, SP-external requests and SP-internal requests will use
Gatekeeper dedicated API. Gatekeeper is then responsible of calling Adapter interfaces to authen-
ticate and authorize these communications and requests. See more detailed information in section
3.3.4 from Deliverable D2.3 [5].

Table 3.5 present endpoints that are exposed by the Adapter to be accessed by the Gatekeeper
in order to authenticate and authorize received tokens from any request:

Table 3.5: Access Token verification endpoints.

Action Description HTTP
method

Adapter
Path

Keycloak path

Token
Authen-
tication

Secured endpoint that per-
forms authentication of the
end-user

POST /auth /realms/{realm} /protocols/openid-connect/token/introspect

Token
Autho-
rization

Secured endpoint used to check
roles and permissions for the
provided identity

POST /authorize /realms/{realm-name}
/protocol/openid-connect/auth

An Access Token is validated when the Gatekeeper receives 200 OK responses from authentication
and authorization endpoints. Then, the request can proceed. If the requester Access Token is not
valid, the Gatekeeper returns the corresponding code and message.

3.2.3 Authentication and authorization external APIs

The Service Platform Gatekeeper exposes a RESTful API that enables external access to the
Platform. However, this external access is designed to primarily be used by the SONATA SDK
(see [6]).

22 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

On the SDK side, son-access is a new component introduced in the SONATA Year 2 plan
that is responsible for establishing a secure communication between the SDK and the Service Plat-
form. This component has been designed and implemented to provide a new single multipurpose
catalogue entity for the whole SONATA ecosystem. The Service Platform Catalogue needs to be
accessible from outside the SP through the external API that the SP Gatekeeper offers. Further-
more, son-access component on SDK is responsible of providing end-user credentials to the SP User
Management module. This provides a secured connection between SDK end-users and the Service
Platform, using their credentials to access the Platform and being able to submit and request stored
package files and descriptors from the SP Catalogue. For more information about how external
APIs are secured see ’Process requests and responses’ section.

3.3 Licence management

The current section describes what SONATA has designed and implemented in order for the Ser-
vice Platform to be able to fine-grain control which services and functions can be reused and/or
instantiated. This is accomplished through a module named Licence Manager.

3.3.1 Requirements

Table 3.6 summarises the job stories [24] for the Licence Manager module.

Table 3.6: Licence Management User Stories

ID Summary When (event) I want (action) So I can (benefit) Comments

1 Licence
types

a licence is de-
fined

to define its type implement different be-
haviours for different
types

Includes a notification of ’Create
Licence Type’ to the KPIs mod-
ule

2 Licences a (public or pri-
vate) licence is
created

to store its owner (a
user), the service in-
stance it relates to and
its type

later validate it Includes a notification of ’Create
Licence’ to the KPIs module

3 Private li-
cences

a private li-
cence is created

to store its owner URL later validate the li-
cence in that URL

The URL should have a REST
interface and respond to POST
(with the owner and the service
instance). If the URL doesn’t
exist or respond, an error should
be returned. Queries to the URL
should have a timeout (like 5sec)

4 Validate
’public’
licence

a request for
the validation
of a ’Public’
licence is re-
ceived

’valid’ should be re-
turned

re-use or instantiate
the service without re-
strictions

Includes a notification of ’Vali-
dation of (public) Licence’ to the
KPIs module

5 Validate
’private’
licence

a request for
the validation
of a ’Private’
licence is re-
ceived

the validation of the
licence should be
checked against the
provided (external)
URL

re-use or instantiation
of the service depends
on the results of calling
that URL

The URL should have a REST
interface and respond to GET
(with the user and the service in-
stance). If the validation fails,
’not valid’ should be returned.
Includes a notification of ’Val-
idation of (private) Licence’ to
the KPIs module.

6 Cancel
licence

a request for
the cancella-
tion of a licence
is received

the licence should be
marked as cancelled

return ’not valid’ on a
validation request

For ’Private’ licences, a
DELETE request should be
made to the external URL.
Includes a notification of ’Can-
celation of Licence’ to the KPIs
module.

SONATA Public 23

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

All jobs mentioned in Table 3.6 must include a call to the KPIs Management module, to
register the event occurred.

3.3.2 Module architecture

This module is responsible for handling licensing of the various SONATA services. It has different
types of licenses that can be associated to specific services and users. It also allows for multiple
license status and thus checking their validity. This module will be part of the Gatekeeper, as
shown in Figure 3.7 (Note: for the sake of simplicity, only the Licence Manager connection to
consumed services is represented).

Figure 3.7: The Licence Manager module in the Gatekeeper’s architecture

The external access to the features provided by the module is made through the Gatekeeper’s
API.

The module internally follows the generic architecture already mentioned in [7] (see Figure 3.8),
with two components, a front-end to receive, validate and process requests (in this case coming
from the Gatekeeper’s API) and a back-end, to contact the other components.

Figure 3.8: The Licence Manager module architecture

This module is implemented using flask, which is a micro-framework for the python program-
ming language based on Werkzeug, Jinja 2.

3.3.3 Module interactions

This section briefly describes the interactions the Gatekeeper API has with the Licence Man-
ager.

First, the designed method of creating the two licence types we are going to consider is explained.
Then, the end-to-end interaction of creating a licence for a given service or function instance is
described. Next, we describe the three different kinds of licence validation and finally we describe
how a licence can be cancelled.

3.3.3.1 Licence type creation

For simplification, we are considering just two types of license: public, under which the service or
function can be (re-)used ate will, and private, for which the developer has to provide a call-back

24 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

URL to validate each (re-)use.
We can simplify this by hard-coding the two types of licences.

3.3.3.2 Licence creation

A licence instance is created when an End-User (through the BSS -- see Section 3.6.4) buys an
instance of a service that has a private licence.

This scenario executes according to the sequence diagram shown in Figure 3.9 (error conditions
are not represented for brevity).

Figure 3.9: Sequence diagram of End-user licence instance creation

The steps in this sequence diagram are the following:

� Step 1: the Gatekeeper API asks the Licence Manager for the creation of a licence;

� Steps 2 and 3: the Licence Manager front-end validates the request and passes it to the
back-end;

� Step 4: the Licence Manager back-end makes a POST to the Developer-provided URL
with the end user (mandatory) and the service (only for instantiation licences);

SONATA Public 25

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

� Steps 5 to 7: are the response from the POST;

3.3.3.3 Licence validation

Public licences do not need to be validated, but private licences do. Private licences are validated
when another Developer than the owner wants to re-use the service or functions and when an
End-User wants to instantiate a service.

The validation done when a service or function is downloaded by other Developer than the owner
of that service or function follows the sequence diagram shown in Figure 3.10 (error conditions are
not shown for the sake of brevity).

Figure 3.10: Sequence diagram of licence validation

26 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

The steps of this sequence diagram mean the following:

� Step 1: the Gatekeeper API asks the Licence Manager if a given user can re-use or
instantiate a given service;

� Steps 2 and 3: the Licence Manager’s front-end validates the request and passes it to
the back-end;

� Steps 4 and 5: for ’Public’ services, the answer is immediate, and is returned to the Gate-
keeper API;

� Step 6: for ’Private’ licences, the Service Owner’s URL is called;

� Steps 7 to 9: if the user has a licence, a positive answer is returned;

� Steps 10 to 12: otherwise, no re-use or instantiation should be allowed.

3.3.3.4 Licence cancellation

Cancelling a licence is a trivial operation, so we are not showing its sequence diagram.

3.3.4 Module API

Table 3.7 shows the proposed API for this module.

Table 3.7: Proposed API for the Licence Management module

Action Entity Http
method

Path Parameters Parameter lo-
cation

Required

query type GET /types

� status: active, inactive

� type UUID: public, pri-
vate

query No

create type POST /types

� description: Descrip-
tion of the license.

� duration: Duration in
days that license is
valid for.

� status: active, inactive

body Yes

query licence GET /licences

� licence UUID

� user UUID

� service UUID

� type UUID

� status: active, inactive

query No

SONATA Public 27

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Parameters Parameter lo-
cation

Required

query licence GET /licences/<id>

� licence UUID

� user UUID

� service UUID

� type UUID

� status: active, inactive

URL Yes

create licence POST /licences

� description: Descrip-
tion of the license

� user UUID

� service instance UUID

� type UUID

� status: active (default),
cancelled

body Yes

update licence PUT /licences/<id>

� status=inactive

body Yes

3.4 KPIs management

This section describes the module designed to manage key metrics and key performance indicators
(KPIs) of the gatekeeper, which can provide recommendations for action to the system.

3.4.1 Requirements

Table 3.8 summarises the job stories [24] for the KPI Manager module. There are two types
of entities: the events or information units, the records related with the activities performed in
the Gatekeeper (API invocation, service instantiation, user log in, etc), and the key performance
indicators (KPIs), the metrics generated from the events.

Table 3.8: KPI Management User Stories

ID Summary When (event) I want (action) So I can (benefit)

1 Event types an event is defined to define its type manage the information related with
gatekeeper entities like API invoca-
tions, services and function instantia-
tions, users, etc

2 Event cre-
ation

a gatekeeper action is
performed

to register the infor-
mation under a specific
event type

group the events by categories (API
invocations, services, functions, users,
vims, etc)

3 Event update a not immediate gate-
keeper action is com-
pleted

to update the infor-
mation of the specific
event

reflect the final status and the last up-
date date (completion date)

28 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

ID Summary When (event) I want (action) So I can (benefit)

4 Create KPI a new key performance
indicator is needed

to define the involved
events, the measure-
ment parameter, the
count/average/filtering
operation

collect the specific performance informa-
tion about an entity or group of entities

5 Get KPI it’s needed to know an
specific KPI value

retrieve the informa-
tion from the KPI
Manager

get the specific information about an en-
tity or group of entities which will pro-
vide recommendations about future ac-
tions

6 Cancel KPI a KPI is not represen-
tative or obsolete

to disable it centralize the managing efforts in active
and valid KPIs

3.4.2 Module interactions

The KPI Manager will collect all relevant events produced in the Gatekeeper, so every time that
an action is requested to the gatekeeper, it will create a new event through the KPI Manager API;
when the action is completed (successfully or error) the event status will be updated containing
creation and last update dates.

The Figure 3.11 shows the interaction between the Gatekeeper API and the new KPI Manager
module.

Figure 3.11: Gatekeeper and KPI Manager interaction

3.4.2.1 Events related processes

Figure 3.12 shows the create, update and query event processes that will be performed by the KPI
Manager module.

3.4.2.2 Processes related with the KPIs

Figure 3.13 shows the create, query and delete KPI processes that will be performed by the KPI
Manager module.

3.4.3 Gatekeeper’s KPIs

Table 3.9 shows the set of KPIs that will be exposed by the Gatekeeper module

Table 3.9: Gatekeeper KPIs

Group KPI Description

API Total calls Total API calls received in the Gatekeeper
API Top calls Top 10/20/. . . of API calls
API Total wrong calls Total error responses
API Top error Top 10/20/. . . error types in responses
USER Total users Total users registered in the platform
USER Active users Total users logged in the platform

SONATA Public 29

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Group KPI Description

USER Total developers Total developers registered in the platform
USER Total customers Total customers registered in the platform
USER Active customers Number of customers with at least one instance run-

ning
USER Top customer Top 10/20/. . . of customers with the highest amount

of service instances running
USER Top developers Most active developers
USER Total service providers Total service providers registered in the platform
USER Top service providers Service providers with the highest amount of services

deployed
SERVICE Total Available services Total service on-boarded in the platform available for

instantiation
SERVICE Total services Total active service instantiations
SERVICE Top Services Top 10/20/. . . of services instantiated
SERVICE Instantiation time Average time for instantiation
SERVICE Total error instances Total instances with ERROR status
FUNCTION Total available functions Total functions on-boarded in the platform available

for instantiation
FUNCTION Total functions Total active function instantiations
FUNCTION Top functions Top 10/20/. . . of functions instantiated
VIM Total VIMs Total VIMs included in the platform
VIM Top VIM Top 10/20/. . . of vims used

3.4.4 Module architecture

As shown in Figure 3.14 this Gatekeeper module is composed by three components, a storage
module to receive and collect the information about the events published by the gatekeeper, a
query module that generates the KPIs performing queries over the stored information, and a
representation module, a dashboard that shows the KPIs.

To obtain the KPIs is needed to store different information events produced by the Gatekeeper.
It is proposed the use of an open source solution who allow the storage, query and visualization
of the generated metrics. There are several options that are being considered: Parse Server [34],
Piwik [36], Kong [25], Datadog [9], Influxdb [22] + Graphite [13], Kibana + Elasticsearch [23],
Prometheus [38], etc.

For example, Parse Server is an open source tool that permits the storage of the data in a
backend as a service (BaaS) model. Figure 3.15 shows the Parse dashboard, a component who
permits the representation of the collected information, allowing filtering and querying data.

3.4.5 Module API

Table 3.10 shows the proposed API for this module.

Table 3.10: Proposed API for the KPI Management module

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

create event POST /events/api

id

error

body

Yes

No

query event GET /events/api

id

URL

No

30 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

update event PUT /events/api

id

parameter to change

new value

body

Yes

Yes

Yes

create event POST /events/users

id

type

status

last action

body

Yes

query event GET /events/users

id

URL

No

update event PUT /events/users

id

parameter to change

new value

body

Yes

Yes

Yes

create event POST /events/services

id

owner

status

error

body

Yes

Yes

Yes

No

query event GET /events/services

id

URL

No

update event PUT /events/services

id

parameter to change

new value

body

Yes

Yes

Yes

create event POST /events/functions

id

owner

status

error

body

Yes

Yes

Yes

No

query event GET /events/functions

id

URL

No

update event PUT /events/functions

id

parameter to change

new value

body

Yes

Yes

Yes

create event POST /events/vims

id

owner

status

body

Yes

SONATA Public 31

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

query event GET /events/vims

id

URL

No

update event PUT /events/vims

id

parameter to change

new value

body

Yes

Yes

Yes

create KPI POST /kpis/api

id

condition: name,

total account,

period,

error code, etc

body

Yes

Yes

query KPI GET /kpis/apis

id

URL

No

delete KPI DELETE /kpis/apis

id

URL

Yes

create KPI POST /kpis/users

id

condition: name,

total account,

period,

error code, etc

body

Yes

Yes

query KPI GET /kpis/users

id

URL

No

delete KPI DELETE /kpis/users

id

URL

Yes

create KPI POST /kpis/services

id

condition:

total account,

period,

error code, etc

body

Yes

Yes

query KPI GET /kpis/services

id

URL

No

delete KPI DELETE /kpis/services

id

URL

Yes

create KPI POST /kpis/functions

id

condition: name,

total account,

period,

error code, etc

body

Yes

Yes

32 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

query KPI GET /kpis/functions

id

URL

No

delete KPI DELETE /kpis/functions

id

URL

Yes

create KPI POST /kpis/vims

id

condition: name,

total account,

period,

error code, etc

body

Yes

Yes

query KPI GET /kpis/vims

id

URL

No

delete KPI DELETE /kpis/vims

id

URL

Yes

3.5 Graphical User Interface

This section describes and specifies the additional functionalities of the SONATA Graphical User
Interface to be developed during the second year of the project, including those that have already
been implemented, but have not been included in Deliverable 4.1 [7].

3.5.1 Extended GUI views

The extended SONATA GUI now has views related to API calls provided by SONATA components,
such as Repository, Monitoring Framework, etc. In particular, the following views have already
been implemented and integrated to the SONATA GUI.

3.5.1.1 Dashboard view

As shown in Figure 3.16, the Dashboard view presents the high-level information of the nodes
comprising the SONATA Service Platform.

However, more information is available in this page (Figure 3.17), such as the resources allocated
and their state of performance.

Moreover, at the same page, the information on the number of active VMs (or VNFs) is available
(see Figure 3.18), while information with respect to each VM can also be displayed (Figure 3.19).

3.5.1.2 Alerting view

Another extension of GUI view from those described in D4.1 is related to the integration of the
Alerting mechanism provided by the Monitoring Manager API. In this view, the user is able to
change the refresh rate and also be informed about the rule that has been triggered, the unique id
and name of the function (VM) and its state, as shown in Figure 3.20.

SONATA Public 33

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 3.12: Processes related with the Events

34 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 3.13: Processes related with the KPIs

SONATA Public 35

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 3.14: The KPI Manager module architecture

Figure 3.15: Parse Dashboard Component

Figure 3.16: SONATA SP high-level overview

36 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 3.17: SONATA SP resources allocated

Figure 3.18: SONATA SP VMs/Containers information

SONATA Public 37

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 3.19: SONATA SP VM/Container extended info

Figure 3.20: Alerting view

38 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

3.5.1.3 Functions view

Finally, once the API call of the SONATA Repository component became available, it has been
integrated to the SONATA SP GUI, providing information on the VNFs comprising a network
service, such as the example shown in Figure 3.21.

Figure 3.21: Functions view

3.5.2 Integration with AuthN/AuthZ mechanism

Until now, the authentication mechanism supported by the SONATA GK was based on the GitHub
API. However, a stronger security perspective has been decided to be followed during the second
year and thus GUI component will comply with the requirements set by the SONATA Service
Platform as a whole.

3.5.3 Improve user friendliness

During the second year, the SONATA GUI will support dynamic modifications on the views. For
example, the user will be able to change the time duration of the displayed data, and add/remove
charts or displayed metrics.

Moreover, the GUI views will be extended whenever new API calls become available from the
SONATA components.

3.6 Business Support Systems

This section shows the improvements and upgrades to be included in the BSS module related with
the new functionalities to develop in the Gatekeeper. These new improvements are described in
the following sub-sections.

3.6.1 Https

The Service Platform will start having a secured API, so the BSS will modify all the Gatekeeper’s
API invocations to use their HTTPS equivalents.

SONATA Public 39

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

3.6.2 Pagination links

With the inclusion of link headers [39] by the gatekeeper, the API invoked by the BSS can return
a set of ready-made links so the BSS won’t have to construct the pagination links. Here is an
example of a Link header, grabbed from GitHub’s documentation:

Link:

<https://api.github.com/user/repos?page=3&per_page=100>; rel="next",

<https://api.github.com/user/repos?page=50&per_page=100>; rel="last"

In addition to next and last, another interesting field is the total number of available results.
The Gatekeeper API can use a custom HTTP header like X-Total-Count to send this field.

BSS will adapt its pagination method to include the link header.

3.6.3 User management

Figure 3.22 describes the user management that will be developed in the BSS module.

Figure 3.22: BSS User Management

3.6.4 License management

The BSS module will update the service instantiation logic to include the license management
performed in the gatekeeper. This logic is affected in two different points:

� The New service license request: the BSS user requests a private service license, which allows
him/her to instantiate that service;

� The Private Service Instantiation request: depending on the needed license by private services,
the instantiation process can fails with “no license” case.

40 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 3.23: Sequence diagram of licence management for a service license request

Figure 3.24: Sequence diagram of licence management for a service instantiation

SONATA Public 41

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 3.23 shows the steps that will be followed to request a new service license.
Figure 3.24 shows the steps that will be followed to request a new service instantiation.

42 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

4 Catalogues and repositories

Catalogues and Repositories share their implementation in a single component (son-catalogue-repos)
in the Service Platform architecture, which includes RESTful APIs and the databases. For more
detailed information about the Catalogues and Repositories, see section 5.1 from Deliverable D4.1
[7].

4.1 Catalogues

For SONATA Year 2 plan on the Service Platform, there are some features under development for
the Service Platform (SP) Catalogues and other features that will arrive later. This component is
now responsible for the storage for NSDs, VNFDs, PDs and SONATA packages (files called son-
packages). Access to the SP Catalogues is only available through the SP Gatekeeper component.

4.1.1 New features

This section shows new features recently added or that are under development right now.

4.1.1.1 Meta-data and data levels

The catalogues are now introducing a new meta-data level for each stored descriptor. Before this
feature, when a descriptor was stored in the catalogue, meta-data was added to the descriptor in
the same level as the descriptor data. This mixed fields such created at and id with the rest of
descriptor data. This feature now separates meta-data from data into two different levels. The new
structure now includes next fields:

{
id: '...meta-data...',

md5: '...meta-data...',

status: '...meta-data...',

created at: '...meta-data...',

updated at: '...meta-data...',

signature: '...meta-data...',

descriptor data: {...data...}
}

The descriptor data field, replaced by descriptor type name ’NSD’, ’VNFD’ or ’PD’, exclusively
contains descriptor data. Figure 4.1 summarizes this new dual-level structure for each catalogue
document entry.

4.1.1.2 SONATA Packages storage

A new SP Catalogues feature supports storing small size binary files in the MongoDB database.
SONATA packages a.k.a son-packages contain all bundled files received by the Gatekeeper, such
descriptors and the meta information. The API for son-packages currently supports GET, POST
and DELETE methods using son-packages UUIDs as arguments.

SONATA Public 43

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 4.1: New catalogues dual level data structure

4.1.2 Planned features

There are some new features that are planned to be introduced in the catalogues during the
SONATA Year 2 phase.

� HTTPS: Add a security layer to the APIs;

� Descriptor dependencies mapping: Create a mapping for descriptors that bind them
when dependencies are found between NSDs, VNFDs and PDs. This mapping can be helpful
to add consistency on the SP Catalogues;

� DELETE method updates: Currently the DELETE does not process any dependency
check and directly removes a descriptor from the catalogues. This method is planned to be
improved in order to check dependencies before doing any change on a descriptor stored in
the catalogues. When all checks are passed, then a descriptor can be safely removed from the
catalogues.

4.1.3 Authentication and authorisation

The communication between SONATA Service Platform microservices and SP Catalogues will be
authenticated in order to increase the security within Service Platform.

As the other platform components, a JWT, which grants secure access, will be generated in the
User Management module, and validated by the SP Catalogues API. This process is detailed in
Section 2. Microservices affected with this implementation are the Gatekeeper and the Cata-
logues.

4.2 Repositories

This section describes and specifies the additional functionalities of the SONATA Repositories to
be developed during the second year of the project.

44 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

4.2.1 Authentication and authorisation

The communication between SONATA Service Platform microservices and Repositories will be
authenticated in order to increase the security within Service Platform

A JWT will be generated in the Identity Management and validated by the repository API. The
process is detailed in the section Section 2. The microservices affected with this implementation are
the Service Lifecycle Management (SLM), the Function Lifecycle Management (FLM),
the Gatekeeper (its Records API) and the Repositories.

SONATA Public 45

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

5 MANO Framework

This section covers the improvements implemented on the MANO Framework and the further
planned work. The enchantments include the addition of the Function Lifecycle Manager (see
Section 5.1) and the Service and Function Specific Managers (see Section 5.2) managed by the
Specific Managers Registry (see Section 5.3).

5.1 FLM and SLM

In this section, we describe the new features for the Service Lifecycle Manager (SLM) and Function
Lifecycle Manager (FLM) that will be introduced during the second year of the SONATA project.
They can be divided in to three categories

1. Updating the existing workflows to the new SP architecture.

2. Adding new workflows that will allow the SP to pause, resume and terminate a service.

3. Converting the SLM into a task manager.

4. Workflow Engine Based S/FLM.

Each of the above categories is further discussed in this section, as well as the multiple interfaces
between different components. The exact APIs for all these interfaces can be found in Section 8.

5.1.1 Updating the existing workflows to the new SP architecture and APIs

The MANO framework will be extended with a new plugin the Function Lifecycle Manager (FLM).
The FLM will be responsible for managing the lifecycle of Virtual Network Functions (VNF).
Managing the lifecycle of a VNF includes starting/pausing/migrating/terminating it, configuring
it according to the information made available in its descriptor or according to instructions from a
Function Specific Manager (FSM), and addressing monitoring information that should trigger an
update of the VNF. The functional split between the Service Lifecycle Manager (SLM) and the
FLM is the level on which they operate. The SLM works on the level of the service where the FLM
works on the level of the VNF, unaware of any information that concerns the service.

First, this new plugin should be included in the existing MANO framework workflows. Figure 5.1
contains a Message Sequence Chart (MSC) that describes how the MANO Framework will deploy
a network service in which the FLM is included. The service deploy request ends with the SLM
instructing the Monitoring Manager to start monitoring and the Repositories to store the records
of the running instances. These interactions have not changed and can be found in deliverable D4.1
(see [7]). Nevertheless, some of the steps in Figure 5.1 deserve some explanation

� Steps 2 and 3: The SLM requests a view of the available resources. This information should
include the available PoPs, usage rate and availability in these PoPs, how these PoPs are
connected, and any other information that is required for placing the service;

46 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

� Step 4: The SLM calculates how the service will be mapped on the infrastructure, based on
the resource information it received. This task can be delegated to a Service Specific Manager
(SSM);

� Steps 5 and 6: The SLM informs the Infrastructure Adaptor (IA) which PoPs will be used
by the service;

� Step 7: The SLM informs instructs the FLM to deploy a new FLM;

� Step 8: The FLM interacts with a Function Specific Manager (FSM) to customize the
configuration of the VNF that will be deployed;

� Steps 9 and 10: The FLM instructs the IA to deploy the VNF, on a specific PoP;

� Steps 12 and 13: When all the VNFs are deployed, the SLM informs the IA how the chain
them together;

� Steps 14 and 15: The SLM instruct the IA to configure the WAN, after which traffics starts
flowing trough the service and it can be considered as running;

In Step 4 and Step 8, the SLM/FLM can interact with a SSM/FSM to perform the task. A
detailed explanation on how this works can be found in Section 5.2.

Figure 5.1: Deploying a service

5.1.2 Introducing new workflows to the SP and MANO framework

Next to updating the already existing workflows, we plan to add new workflows to the MANO
framework. This allows us to support a wider variety of requests we might receive from the customer
(through the Gatekeeper) or from the infrastructure (through the Monitoring Manager). In this
section, we address the four workflows that will be added during the second year of SONATA:
pausing, resuming, terminating and updating a service.

SONATA Public 47

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

5.1.2.1 Pausing a service

A customer might request to pause a running service. Figure 5.2 describes how the SP components
will satisfy such a request. The SLM first requests the IA to “deconfigure” the WAN, after which
no more traffic is flowing through the service. In a next step, the SLM requests the IA to pause
different VNFs in the service. As no more traffic is flowing through these VNFs, the pausing can
be performed safely.

Figure 5.2: Pausing a service

5.1.2.2 Resuming a service

A customer might request to resume a previously paused service. Figure 5.3 describes how the SP
components will satisfy such a request. The SLM first requests the IA to restart the different VNFs
in the service. This can be done safely, as no traffic will be flowing through them until the WAN
is configured. In a next step, the SLM requests the IA to reconfigure the WAN, after which traffic
starts flowing through the VNFs and the service can be considered as running.

Figure 5.3: Resume a service

48 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

5.1.2.3 Terminating a service

A customer might request to terminate a running service. Figure 5.4 describes how the SP compo-
nents will satisfy such a request. The SLM first gives all the instructions as if it were pausing the
service. Once the service is paused, and no more traffic is flowing through it, it instructs the IA to
terminate all the VNFs in the service.

Figure 5.4: Terminate a service

5.1.2.4 Updating a service

It should be possible to update a service. During the first year review of SONATA, we demonstrated
how an SSM of a running service can be updated. During the second year of SONATA, we will
identify other customer update processes (e.g. replacing one VNF in the service by a newer version)
that are required to support the different needs of telecom operator customers, and design and
implement a workflow for them.

Updating a service can also be the result of a monitoring alarm, if the SLM decides that this is
the appropriate response to the monitoring alarm. For example, a monitoring trigger that indicates
a shortage of resources for a VNF should be answered with a workflow that either provides more
resources to the VNF, or migrates it to a different PoP. Therefore, during the second year of
SONATA, we will also design and implement those SLM workflows that respond to the possible
monitoring alarms.

5.1.3 Converting the SLM into a task manager

The SLM will function as a task manager and will be developed completely by the SONATA
consortium. All the individual tasks that the SLM needs to support will be implemented, and
the different workflows as detailed earlier in this section will be obtained by chaining such tasks
together. To add flexibility to the MANO framework, these tasks will be overwritable by SSMs.
For example, when a monitoring trigger indicates a shortage of resources for a VNF, a SSM might
overwrite the default reaction of the SLM. Instead of instructing the FLM to request more resources
for this VNF, it might force the SLM to first contact a placement SSM to check if a relocation of

SONATA Public 49

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

this VNF might be possible at a low cost. Depending on the cost of relocating the VNF, it can
instruct the SLM to consider a relocation or to instruct the addition of resources.

5.1.4 Workflow Engine Based S/FLM

To showcase the plugable aspect of the MANO framework, a different version of either the SLM or
the FLM will be developed during the second year of SONATA. This version will be based on an
open sourced workflow engine - Mistral (see [3]). This engine will be wrapped as a SONATA plugin.
This will enable defining specific lifecycle operations using mistral workflows, enabling services to
have unique management without developing a complete S/FSM.

5.2 Specific Managers Infrastructure

As mentioned in previous deliverables and also earlier in this deliverable, Function- and Service-
Specific Managers (FSMs and SSMs) are management programs included in the service package
that are used exclusively for managing their corresponding functions or services, e.g., for calculating
service owner’s desired placement or scaling. While the internal structure and design of the specific
managers are not limited or defined, we define clear interfaces for the communication between
FSMs/SSMs and the rest of the service platform.

Figure 5.5: Specific managers infrastructure in SONATA MANO framework

As shown in Figure 5.5, FSMs and SSMs are connected to executive plugins, which are cus-
tomizable MANO plugins responsible for specific tasks within the MANO framework, e.g., lifecycle
management, placement, scaling, etc. Executive plugins are managed by the Plugin Management
component similar to other MANO plugins.

The communication between FSMs/SSMs and their corresponding executive plugin(s) takes place
through dedicated message brokers, isolated from the main message broker in the MANO frame-
work. Depending on the functionality, each executive plugin exposes certain interfaces and devel-
opers can design FSMs/SSMs that can exchange information with the executive plugin using this

50 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

pre-defined interface. The FSM/SSM requests the information it needs from the executive plu-
gin. The executive plugin obtains the required information from the rest of the service platform,
transforms it to the right level of abstraction for the target FSM/SSM (e.g., by removing sensitive
information not related to the service) and provides it to the FSM/SSM. Similarly, the results
produced by the FSM/SSM are checked and validated by the corresponding executive plugin. The
decisions and requirements provided by the specific managers are considered for operation if they
are not conflicting with service platform’s global policies or requirements of other services and
functions.

Figure 5.6: An example including service placement plugin

Figure 5.6 illustrates where the service placement functionality within the MANO framework
can be customized. I.e., an executive plugin with pre-defined interfaces can accept SSMs that
calculate the desired placement for services. This figure shows the workflow performed by the
Service Lifecycle Manager (SLM), the placement executive plugin, placement SSM of a service, and
the infrastructure adaptor for deploying a service with a specific placement preference.

Figure 5.7 extends this setup, by including a function-specific scaling manager. In this figure,
the SLM receives a monitoring alert regarding a pre-defined threshold that has been reached and
informs the scaling executive plugin. The alert is propagated over the dedicated message broker,
together with the information required for taking a scaling decision. Such a function-specific scaling
decision can result in including additional instances of the function in the service structure. For
this reason, the placement for the service needs to be recalculated in order to maintain the optimal
state for the network and service.

SONATA Public 51

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 5.7: An example including function scaling and service placement plugins

5.3 Specific Managers Registry

Specific Manager Registry (SMR) is a MANO framework plugin that is responsible for FSM/SSMs
lifecycle management including onboarding, instantiation, registration, updating, and termination.
As shown in Figure 5.5, it interacts with other MANO framework plugins through the message
broker, e.g., to obtain SSM onboarding request from SLM. It also employs the SSM/FSM repository
to store a record of FSM/SSM (FSMR/SSMR).

Note that the initial SMR was presented as part of SONATA’s first year review but was not part
of deliverable D4.1 ([7]), so this section documents its functionalities.

5.3.1 SMR features

This section describes functionalities that SMR provides in order to manage SSM/FSM lifecycle.

5.3.1.1 SSM/FSM on-boarding

SSM/FSM Onboarding function downloads SSM/FSM images from the docker registry that stores
the SSM/FSM images. It retrieves SSM and FSM image URIs from Network Service Descrip-
tor (NSD) and Virtual Network Function Descriptor (VNFD), respectively. SMR obtains NSDs
from SLM and VNFDs from Function Lifecycle Management (FLM) through onboarding mes-
sage requests. The SSM and FSM onboarding workflows are shown in Figure 5.8 and Figure 5.9,
respectively.

52 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 5.8: Sequence diagram for SSM onboarding

Figure 5.9: Sequence diagram for FSM onboarding

5.3.1.2 SSM/FSM instantiation and registration

SMR instantiation function is responsible for starting SSM/FSM containers. SLM triggers this
function for SSMs by sending an instantiation request message to SMR which contains the UUID
of the service that the SSM belongs to. For FSMs, the triggering message comes from FLM which
contains the UUID of the corresponding network function. This function is also responsible for
SSM/FSM registration. Once SSM/FSM has been instantiated, it sends a registration request to
SMR. Then, SMR generates a UUID for the SSM/FSM and stores a record of it in the SSM/FSM
repository. Figure 5.10 and Figure 5.11 show the sequence diagram of SSM and FSM instantia-
tion/registration, respectively.

Figure 5.10: SSM instantiation and registration sequence diagram

SONATA Public 53

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 5.11: FSM instantiation and registration sequence diagram

5.3.1.3 SSM/FSM updating and termination

This function updates the running FSM/SSMs. SLM/FLM can trigger this function by sending a
request message to SMR containing the NSD/VNFD that includes the URI of the new SSM/FSM
image and the UUID of the SSM/FSM that is targeted for updating). This function, first, deploys
the new SSM/FSM and then terminates the old one. The sequence diagram of updating SSM and
FSM are shown in Figure 5.12 Figure 5.13, respectively.

Figure 5.12: SSM updating and termination sequence diagram

Figure 5.13: FSM updating and termination sequence diagram

54 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

6 Infrastructure Abstraction

In this section we describe the advances in the design and implementation of the Infrastructure
Abstraction layer. The first subsection describes the wrapper mechanism, that has been used
to provide abstract access by the MANO framework to VIM resources. The second subsection
documents the update to the list of APIs offered by the Infrastructure Abstraction (IA) and
the changes in the OpenStack wrapper, which are needed to meet the requirements of the new
SP architecture. Finally the last subsection gives some details and plans for the extension of the
Infrastructure Abstraction layer to support container-based VIM, such as Kubernetes.

6.1 Infrastructure Abstraction interfaces

The IA layer offers a technology independent view of the resource to the MANO framework. In
order to achieve this objective, the IA is internally organised in so-called wrappers. These wrappers
hide states, configurations, functions and implementations which are specific for each technology
(OpenStack, OpenVIM, vCloud, OpenDaylight, VTN, etc...). Wrappers are divided into four
categories:

� Compute Wrapper: Wraps a VIM to deploy virtual machines, create virtual networks,
virtual routers and virtual ports.

� Network Wrapper: Wraps a VIM to deploy rules and rule sets to enforce Service Function
Chaining or other network policies.

� Storage Wrapper: Wraps a VIM to store and retrieve VDU images.

� WIM Wrapper: Wraps a WIM to configure a WAN or a portion of a WAN to enforce
intra-PoP connectivity for services.

Each of this wrapper is designed to be an interface, offering specific functions which are combined
to implement the IA API. Compute, Network and Storage wrappers are considered as the three
parts of a NFVI-PoP, so to able to store Virtual Machines (VMs) images, deploy these VMs and
configure their internal networking. For this reason, for each Compute wrapper registered to the
IA, there must be a relevant Storage wrapper to store the images needed for the service deployment,
and a relevant Network wrapper to enforce network configuration on the instances of these images.

As an example, let us take into consideration the “infrastructure.service.deploy” call described
in [7]. This needs several internal steps to be completed. In the first place, the VIM-Adaptor sub-
module receives the call and must prepare the environment in the selected PoP(s) in order to host
the service deployment. This step includes retrieving the appropriate storage wrappers from its
internal repository, and pre-load (if needed) the VM images used by the service in the relevant VIM
image repository. After this step, the relevant compute wrapper is retrieved from the IA repository,
and the NSD that comes with the “infrastructure.service.deploy” request can be passed to it for the
translation and deployment process. The actual deployment phase happens asynchronously under
the hood of the compute wrapper, which notifies the VIM-adaptor when the process is completed.
Once the service has been successfully deployed by the compute wrapper, the relevant network

SONATA Public 55

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

wrapper is called to enforce network configuration based on the Service Forwarding Graph (SFG)
contained in the NSD.

After these steps, the service instance is ready to be used, so the WAN can be configured to
route the relevant traffic to/through them. Therefore, the WIM-Adaptor sub-module is called to
deal with the configuration of the underlying WIM(s). Also in this case the configuration is kept
hidden by a relevant WIM wrapper, that receives the configuration parameters for the WAN, and
enforces it with the specific technology it is wrapping.

All these components are implemented in Java, as documented in [7]. The communication
between the different wrappers and the IA core is implemented through an observer design patterns,
and not through method return values. In this design pattern, the wrapper always represents the
observed resource while the IA core is the observer. Notifications carry YAML formatted strings
which represent the outcome of the function call. These YAML updates are processed by the IA
core to be translated to the format required by the IA-SLM and IA-FLM interfaces Section 8.

This mechanism allows the northbound IA API to remain unchanged when the IA is extended
to support new VIMs. In fact, in order to implement such an extension, one needs to focus on
the design and implementation of a model to translate from the SONATA NSD and VNFD into a
FSM or a protocol specific for the wrapper VIM, or translate to a descriptor format supported by
the VIM, if any. An example for this design is document in[7] for the OpenStack compute VIM. In
Section 6.3 we draft the initial steps of the same process for the container based VIM Kubernetes.

6.2 New Infrastructure Abstraction functionalities

In the first implementation of the IA, we assumed that, once a NFVI-PoP has been selected by
the MANO framework, it is used to deploy the complete network service, that is all its constituent
VNFs are deployed on the same Compute VIM through the same Compute Wrapper. To fulfil this
task, the Y1 Compute Wrapper interface exposed the deployService function. This function requires
the complete NSD and the list of all VNFDs to be executed, and it returns a set of information
that will be used by the MANO framework to generate the NSR and VNFRs. In order to allow a
service to be deployed over multiple NFVI-PoP, and also to increase the number of lifecycle control
functions that the MANO framework can carry out through the IA, the deployment process has
been refactored splitting it in several smaller task. The IA offers new API calls through the Message
Bus that can be used to:

� prepare a list of VIMs to host VNFs for a specific service instance

� deploy a VNF for a specific service instance on a specific VIM

� pause all the functions instances belonging to a specific service instance

� remove a specific function instance

� configure SFC and network policies within all NFVI-PoP involved in a service deployment

� deconfigure SFC and network policies within all NFVI-PoP involved in a service deployment

� configure the WAN between the NFVI-PoP involved in a service deployment

� deconfigure the WAN between the NFVI-PoP involved in a service deployment

These APIs are documented in detail in Section 8.11.0.1 and Section 8.12. Here we give an
example of how this API calls are mapped by the IA core to specific calls to the relevant Wrapper

56 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

interfaces and are used by the MANO framework to manage functions and services lifecycle. Before
going into these details, we give an overview on the wrappers implemented in the first IA prototype
and on their evolution.

6.2.1 OVS Networking Wrapper

Service Function Chaining is a fundamental operation at the very bottom of the NFV concept.
Nonetheless and maybe for this reason, there is no standard solution to SFC in the most common
VIM or cloud manager. Project Service Insertion And Chaining of OpenStack Neutron [29] and
IETF NSH protocol draft [20] are among the various examples of how SFC could be implemented.
Since none of this solution is at a mature stage or provides a mature implementation yet, for our
first prototype we implemented our own custom SFC agents. It is based on OpenVSwitch, in
particular on the ovs-ofctl, which allows to set and manage open flow rules. This agent, running
on the Neutron controller of an OpenStack instance, can re-write flow rules so to re-direct specific
flows, identified by a pair of IP addresses, through an ordered list of ports, identified by their MAC
address, i.e. input and output ports of the VNFCs running inside that OpenStack instance. The
IA provides a relevant network wrapper that is able to interact with this SFC agent, providing
the ordered list of MAC addresses ports which compose the chain and the flow identifier. The
ordered set of MAC addresses is created by the wrapper, which parses the forwarding paths in the
forwarding graph, mapping each edge of the graph to the pair of MAC addresses associated with
the connection point that the edge unite, using the information contained in the provided NSR and
VNFR.

6.2.2 VTN WIM Wrapper

OpenDaylight [31] is an open source SDN Platform that delivers inter-operable, programmable net-
works. One of it’s components is VTN Manager, that manages the virtual network at VTN (Virtual
Tenant Network) level. VTN is able to set traffic flow rules, that allow or prohibit communication,
as well as redirect packets that meet a particular condition. It exposes its functionality through a
northbound interface, implemented through a REST API, that allows controlling rules table and
managing virtual network resources. In the scope of SONATA, we implemented a prototype of a
WIM, used for managing the WAN between NFVI-PoPs, which is based on OpenDaylight VTN
manager. Through VTN in fact, virtual bridges can be created upon physical SDN switches, allow-
ing the forwarding scheme of each flow to be defined programmatically. By this means, the IA can
control and configure the WAN to redirect traffic belonging to specific service instance through the
needed NFVI-PoP, using the relevant WIM wrapper. The wrapper communicates with the VTN
WIM via REST API. The routing complexity is delegated by the IA to the WIM itself, since all
the WAN topology and routing information are outside the IA scope. Therefore, the VTN WIM
wrapper must only forge a request for the VTN WIM containing the details of the traffic flow to
be diverted, and the ordered list of the NFVI-PoP to be traversed. Anyway, managing complex
topology in such an abstract way brings interesting challenges. For example one must provide
identifier for each PoP which are both part of the IA data model (i.e. IA generated UUID) and un-
derstandable by the WIM, which could be managed by a third actor with respect to the SONATA
SP operator. Moreover, optimising routing on complex topology in a dynamic and programmatic
way is well-known theoretical problem. For these reasons, our first implementation of the VTN
WIM assumes a very simple WAN composed by a single switch. The implementation of a WIM
managing a more complex, multi-PoP topology is part of the future development plans.

SONATA Public 57

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

6.2.3 OpenStack Heat Wrapper

The new functionalities exposed by the IA to the MANO framework, namely the Multi-PoP de-
ployment and the advanced function lifecycle management, impose a re-design of the translation
model used by the OpenStack wrapper to translate from the SONATA descriptors to the Open-
Stack data model, which has been presented in [7]. In fact, in the new service deployment, the
FLM take care of the deployment of each VNF separately, and so each VNFD is sent separately
to the IA. Therefore the VIM adaptor must be able to carry out the deployment of each function
independently from the others. To do this, we changed the way our Network Service (NS) and
VNFs models are translated to Heat template, and also slightly modified the protocol of service
and function deployment. As documented in Section 5.1.1, the IA must leave control for the de-
ployment and lifecycle management of VNFs to the MANO framework, also allowing the VNFs of
a NS to be deployed in different NFVI-PoP. In order to do this, the translation process of a VNFD
must be independent from other VNFDs and from the NSD. In the model proposed in [7], this
was not possible since networks, sub-networks, routers and ports are created and identified using a
complete view of the Network Service, that is the NSD and all the constituent VNFDs. Therefore,
our new model radically changes the way internal connectivity is provided to virtual machines
and the control the way Heat stacks are used to represent VNFs and NS. More in details, in our
previous model an Heat stack was used to represent a complete NS, with all its constituent VNFs.
Now a stack running on an OpenStack VIM only represents the subset of VNFs of a NS which
have been placed on that specific VIM. Moreover, since a NS virtual link can span more than one
PoP, it cannot be directly mapped 1-to-1 to a Neutron Virtual Router, so intra-VNF connectivity
is completely delegated to Networking Wrapper, leaving to the Compute Wrapper in general, and
OpenStack Heat in particular, the task to create basic layer 2 and layer 3 connectivity where SFC
or other network policies could be enforced later on by a Networking VIM. Table Table 6.1 resumes
the translation model used in our first prototype and the mapping foreseen for the second year
prototype of the IA.

Table 6.1: SONATA to OpenStack translation model revised

SONATA element Abstraction model ele-
ment

New Heat model ele-
ment

VNFC Virtual Machine Virtual Machine
VNFC Connection
point

Virtual Machine Port Virtual Machine Port

VNF Virtual Link Layer 3 network L2 forwarding rule/L3
routing rule

VNF Connection Point Router Port No mapping
NS Virtual Link Router L2 forwarding rule/L3

routing rule
NS Connection Point Router Port No mapping

6.2.4 Multi PoP deployment example

To better understand how the combination of these wrapper and models can be used to ensure the
foreseen functionalities we will navigate through an example. Figure 6.1 shows the initial state of
a NFVI composed by two PoP, both using their instance of OpenStack heat as a compute VIM
(VIM1 and VIM2 in the figure), a Glance instance as a Storage VIM and an instance of our OVS
SFC agent as Network VIM. (for simplicity, we omit Glance and the compute VIM operation from
the picture). The SLM receives a request to instantiate a service composed by three VNFs:

� VNF1 is composed by two VNFC

58 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

� VNF2 and VNF3 are composed both by a single VNFC.

� Traffic is flowing from a server to users, but after the NS deployment the traffic coming from
the server needs to be processed in order by VNF1 VNF2 and VNF3 before reaching users.

� The SONATA placement executive decided that VNF1 and VNF2 should be deployed on
VIM1 and VNF3 should be deployed on VIM2.

Figure 6.1: Initial state of two NFVI-PoP, the relevant VIMs and the IA entities

As depicted in Figure 5.1, the SLM sends a first request to the IA to prepare the selected VIMs
to host the deployment. The VIM adaptor will receive this request and call the compute wrappers
of the two OpenStack VIMs in order to create the virtual networks and sub-networks to connect the
VNFs that will be deployed in the future. Each VIM creates a Data network, which will be used
to exchange user data between VNFs and VNFCs, and a management network, that will be used
for management and monitoring traffic. To do this, the OpenStack Wrapper will create a stack
with just this two networks, and will connect the management network to the external gateway
of the OpenStack tenant, in order to ensure external connectivity to the virtual machines through
the management network. This is depicted in Figure 6.2, in the top-left sub-figure, where bold
dotted lines between the IA and the VIMs represent the interface through which a given operation
is carried out.

After this process is completed the SLM triggers the FLM to handle the deployment of each
VNF separately. In turn, The FLM sends a request for VNF1 to be deployed in VIM 1 to the IA.
the VIM adaptor receives this request and calls VIM1 compute wrapper to deploy the function.
VIM1 compute wrapper translates the VNFD, connecting each VNFC connection point to the data
network or to the management network depending on the connection point type specified in the
descriptor (internal->data; external/public->management). Then, it retrieves the stack template
from the Heat controller and updates it with the new resources. After this process is completed,
the deployment will look as in Figure 6.2 top-right. The same procedure is repeated for VNF2 and
VNF3, as depicted in Figure 6.2 bottom-left and bottom-right. Before the actual instantiation, the
VIM Adaptor could also call the storage wrapper of each PoP in order to load the needed VDU

SONATA Public 59

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 6.2: Different status of a NS deployemnt

images into the image repository of the VIM for the future deployment. We omitted this step from
the pictures for simplicity.

After all the VNFs have been deployed, the control goes back to the SLM (see Figure 5.1, step
11), which issues another request to the IA to configure the VNF chain(s). Also in this case,
the VIM adaptor receives the request and calls the network VIM wrappers of PoP1 and PoP2
to serve it. Both wrappers will receive the NS forwarding graphs, together with the NSR and
the VNFRs of the deployed service instance, so to be able to compute the subset of the service
graph each Network VIM is responsible for, and configure it through the OVS SFC agent they
wrap. Figure 6.3 shows the status of the system after this procedure is completed. The red arrows
represent forwarding/routing rules configured in the Neutron controlled through the SFC agent.

Finally, the SLM calls for the WAN to be configure, so that user traffic could be processed by
the new NS instance. This time, the WIM adaptor receives the request and calls the relevant WIM
wrapper, passing it the ordered list of the involved PoP and the identifier of the traffic flow to
be redirected. Figure 6.4. The VTN WIM will set up the WAN so to redirect traffic that was
previously flowing from the server to the users, through the involved NFVI-PoP (Green numbered
arrows in Figure 6.4).

6.2.5 Service Lifecycle Status management

With the proposed model explained in the previous sub-section, we also provide to the MANO
framework the level of control needed to change the status of a service/function lifecycle. When
the MANO framework wants to put a service instance in a paused state, see Section 5.1.2.1, it can
leverage the new IA functions, by sending two separate calls to deconfigure the WAN, so that there’s
no connectivity disruption between the server and the user (steps 2 and 3 in figure Figure 5.2), and
to pause the service instance (steps 4 and 5 in figure Figure 5.2). The first call will be fetched by

60 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 6.3: Service status after SFC configuration

Figure 6.4: Service status after WIM configuration

SONATA Public 61

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

the WIM adaptor to the relevant WIM wrapper and mapped into a request to the WIM to disable
the WAN forwarding rules set for the given service instance. The second call will be dispatched by
the VIM adaptor to the compute Wrapper for VIM1 and VIM2 requesting to pause the portion of
service running on them. Consequently, each OpenStack Wrapper will use the Heat controller to
pause the Heat stack where the VNFs are running. It is worth mentioning that there is no need
to de-configure the SFC rules in the Neutron controller. The status after this calls is depicted in
Figure 6.5.

Figure 6.5: Service status after a pause procedure. Yellow elements are paused/deactivated.

Resuming a service (See Section 5.1.2.2 and Figure 5.3) follows the inverse procedure. First, each
OpenStack wrapper is called in turn by the VIM adaptor to resume the execution of the relevant
VNFs. Then, the WIM adaptor requests the WIM to reactivate the WAN forwarding rules set for
the given service instance.

6.3 Kubernetes Wrapper

This section compiles the details of the exploratory ideas which will support Kubernetes VIM [2]
and its REST API client to manage the Kubernetes orchestrator.

6.3.1 Kubernetes REST API Client

In order to interact with the Kubernetes endpoint, the Adaptor will wraps the Java client library.
This library offers the API to authenticate to Kubernetes and perform several operations. The
wrapped client library currently supports the following operations:

� Create a service provided by YAML file definition

� Retrieve the status of the service

� Delete the service

62 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

6.3.2 Kubernetes API object creation and translation model

Since a Kubernetes API object is needed to deploy a service, the Kubernetes Wrapper will im-
plement a translation from the SONATA Service Descriptor and VNF Descriptor, detailed in [7],
to Kubernetes API object. To achieve this translation, the VIM Abstraction layer resorts to an
intermediate mapping, which aims at representing the abstract service definition in the SONATA
descriptors in a more deployment-oriented way.

Table 6.2 describes the translation model to be implemented for SONATA in order to use Ku-
bernetes as a VIM.

Table 6.2: SONATA to Kubernetes experimental translation model

SONATA element Abstraction model element

VNFC Container
VNFC Connection point Container (IP, Port)
VNF Kubernetes POD
VNF Virtual Link L2 forwarding rule/L3 routing rule
NS Virtual Link L2 forwarding rule/L3 routing rule

6.3.2.1 Kubernetes schema model

The model shown in Figure 6.6 is the first approach to Kubernetes uses as VIM in an NFV
environment. In general, each container is a microservice, but in our model they represent VNFCs.
A combination of one or more container represents a VNF. This combination of containers is called
POD in the Kubernetes model. A Kubernetes POD is co-located in a physical infrastructure and
share the same resources, such as network, memory and storage as the node. Each POD gets a
dedicated IP address that is shared by all the containers which compose it. Each container which
runs within the same pod gets the same host name. In this way they can be addressed as a unit.
Going one step further, in order to build a NS, we need to combine VNFs. According to our general
wrapper module, we can achieve this objective by combining a group of PODs and connecting them
through a set of networking rules inside a virtual network, internal to the NFVI-PoP. Networking
between PODs is a feature which is normally not considered in the Kubernetes environment, since
PODs are considered to be self-contained application, one independent from each other. But since
SFC is a crucial component of 5G Networks, inter-POD networking is a fundamental aspect we are
going to investigate in the future.

6.3.3 Impact of container based VIM on the IA northbound API

The purpose of the Infrastructure Abstraction layer is exactly to offer a stable API to the MANO
framework, leaving the complexity of the evolving plethora of resource managers under the hood.
But the introduction of support for container-based managers in an NFV service platform is an
advance that has a big impact on the whole service lifecycle, from development to operation. For
this reason, the IA layer data model needs to be extended to cope with NFVI-PoPs in which it
could deploy VNFs which are composed by VDU based on virtual machines, and with NFVI-PoP in
which only container-based VNFs could be deployed. Complexity could be increased if we assume
that a Network Service could be composed both of container-based VNFs and hypervisor-based
VNFs.

In this sense, the improvement we described above in terms VNF lifecycle management and multi-
PoP deployment, are a key aspect to allow the MANO framework to take care of the deployment
of each VNF in an independent way, and with the needed degree of freedom with respect to the

SONATA Public 63

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Figure 6.6: Kubernetes Schema Model

NFVI-PoP selection. Both the MANO framework and the IA need to be refined to include in their
interface information regarding the specific technology needed by a VNF (MANO->IA) and the
specific technology offered by a PoP (IA->MANO). With these interface refinements, the MANO
placement executive, or an SSM deputed to placement, could decompose the placement problem
in sub-problems, dealing separately with the problem of placing container-based VNFs on the the
container-based NFVI, and hypervisor-based VNFs on the hypervisor-based NFVI. The outcome
of this process could be delivered by the SLM/FLM to the IA with very minimal changes to the
present API, since the deployment of each VNF will be independent from the others, and the
technology specific procedures to deploy a container VNF or a virtual machine VNF will be hidden
by the relevant VIM wrappers.

64 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

7 Monitoring Framework

This section presents the enhancements that are the outcome of several ongoing activities on other
SONATA components and use cases. In particular, monitoring framework enhancements have been
decided in order to support use cases requirements, integration with other SONATA components,
resolve scalability and reliability issues of the Service Platform monitoring manager, support multi-
PoP monitoring and alerting functionality, etc.

The enhancements discussed in this section follows the DevOps approach that has been adopted
by the project and are part of the SONATA development roadmap of the second year of the project.

7.1 Streaming monitoring data to the SDK

One of the major enhancements included in the development cycle of the second year of the project
is the development of a mechanism that allows the service developer to collect (to the SONATA
SDK) streaming data from VNFs that have been deployed in the Service Platform. This will be
highly beneficial to the developers, as they would be able to monitor the performance of a new
service in real environment (in contradiction to the emulator in the SDK), be it the integration
or the operational environment as well as in real-time, closing the cycle between Development and
Operations (DevOps).

From the requirements elicitation viewpoint, this streaming monitoring mechanism must provide
an interface to the developers that would allow to specify the metrics to be streamed back to the
SDK and the duration per VNF.

From a technical perspective, it has been decided that the most convenient solution would include
the adoption of websockets to accommodate the streaming of monitoring data to the developer.

In order to support this mechanism, there is a need for the definition of two new API calls
through the Monitoring Manager:

� /prometheus/metrics/stream/function/{funcID}/{duration}: this call will define the
beginning of streaming data of all the metrics collected by a particular function ID for a
defined period of time;

� /prometheus/metrics/stream/function/{funcID}/metric/{metricID}/{duration}: this
call will define the beginning of streaming data of a specific metrics collected by a particular
function ID for a defined period of time.

Prior to these calls, the developer must be aware of the VNF ID, the metrics collected per
VNF, the VNFs comprising his deployed Network Services and other related information and this
information is already provided by the existing Monitoring Manager API framework.

There are two already developed and implemented API calls related to this activity, as described
below:

� /functions/service/{srvID}: this GET call returns details regarding the list of functions
composing a network service;

� /metrics/function/{funcID}: this GET call returns the metrics collected per VNF.

SONATA Public 65

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

The sequence of the actions in establishing a streaming connection between the SDK (developer)
and Service Platform (Monitoring Framework) is illustrated below in the Figure 7.1. Upon a request
from the SDK, a web socket is opened on the SP (via the GK) where metric values can be pushed
into. The SP is in control of the data transfer and it can choose to expose monitored data as
soon as it is available. The SDK connects to this web socket to automatically receive the (filtered)
monitored data.

Figure 7.1: Retrieval of Monitoring Data

7.2 Support of user management functionality

During the first year and the testing and evaluation of the implemented features, it became clear
that Monitoring Manager must comply with the user management principles of the SONATA
project and offer more preferences to the users.

This requirement has led to the definition of a set of API calls related to user management and
information. In particular:

/users This call provides the ability to the privileged users (such as the Service Platform admin-
istrators) to retrieve the list of authorized users of the SONATA Service Platform.

/user/:pk This call provides detailed information with respect to a specific user (primary key).
There are many fields defined per user, including first and last name, SONATA Service
Platform user ID, date of user creation, etc.

66 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

7.3 Enhancements related to scalability and reliability of the
monitoring framework

This category includes extensions to the API to be implemented in the Monitoring Manager to
support new functionality related to requirements imposed by the use cases and the extensibility
of SONATA to multiple VIMs and PoPs.

One of the enhancements is related to the ability provided to the developer to configure the
monitoring settings of his deployed services. The settings include the frequency that the monitoring
data are collected, the rule/alert thresholds modifications, etc.

/prometheus/configure This API call will retrieve and or insert configuration parameters related
to the monitoring frequency, rules/alerts, notification settings, etc to the Prometheus server.

Another issue is related to the large flow of monitoring data from multiple PoPs to the Monitoring
Server and its respective database that might affect the Service Platform performance. In this
respect, it has been decided that one monitoring server (Prometheus server) will be deployed per
PoP and one (high-level) monitoring server instance will reside in the Service Platform whose
database will store a subset of the data (data related to alerts) collected by the monitoring servers
per PoP. By adopting this distributed architecture, monitoring framework will gain in terms of
scalability and reliability.

Apart from the architectural decision concerning the distributed approach of monitoring frame-
work components to address scalability and reliability issues, a number of API calls must also be
defined, as explained below:

/services This API will return the list of services deployed in the Service Platform and among
other information, it must include fields to support the multi-PoP environment of SONATA
(PoP ID where each VNF is deployed, uuid of each VNF, etc).

/pops This API will return the list of PoPs connected to the SONATA Service Platform.

/pop/:pk This API will return detailed information for a specific PoP connected to the SONATA
Service Platform.

7.4 API extensions

The following table Table 7.1 describes the RESTful API extensions of Monitoring Manager, in
addition to those presented in Deliverable 4.1.

Table 7.1: Monitoring Manager REST API

Endpoint Method Description Returned
code(s)

/users GET, POST Retrieve/insert details
about SONATA Ser-
vice Platform users.

OK (200), Cre-
ated (201), Not
found (404)

/user/:pk GET, PUT,
PATCH,
DELETE

Retrieve, insert, up-
date, delete details re-
lated to a registered
user.

OK (200), Cre-
ated (201), Not
found (404)

/functions/service/{srvID} GET Retrieve details regard-
ing the list of functions
composing a network
service.

OK (200), Not
found (404)

SONATA Public 67

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Endpoint Method Description Returned
code(s)

/metrics/function/{funcID} GET Retrieve details on
metrics monitored in a
function.

OK (200), Not
found (404)

/services GET, POST Retrieve/insert details
in the list of deployed
services.

OK (200), Cre-
ated (201), Not
found (404)

/pop GET, POST Retrieve/insert de-
tails on functions and
services deployed on
PoPs.

OK (200), Cre-
ated (201), Not
found (404)

/prometheus/configure GET, POST Retrieve/insert config-
uration parameters re-
lated to the monitoring
frequency, rules/alerts,
notification settings,
etc.

OK (200), Not
found (404)

/prometheus/metrics/stream/

function/{funcID}/{duration}
POST Send the list of param-

eters to initiate stream-
ing data (all monitored
metrics) through web-
socket.

OK (200), Not
found (404)

/prometheus/metrics/stream/

function/{funcID}/metric/
{metricID}/{duration}

POST Send the list of param-
eters to initiate stream-
ing data (one moni-
tored metric) through
websocket.

OK (200), Cre-
ated (201), Not
found (404)

68 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

8 Internal Interfaces

This section describes the internal interfaces of the Service Platform, making its modularity
evident.

As already presented in D2.3 [5], Figure 8.1 summarises these interfaces, which are detailed
along the remaining of this section.

Figure 8.1: SP Component Interfaces

8.1 Graphical User Interface - Gatekeeper Interface

Table 8.1 shows the request Interface between the Graphical User Interface (GUI) and the Gate-
keeper (GK). Table 8.2 shows the response Interface between the GUI and the GK.

Table 8.1: Request Interface between the GUI and the GK.

Action Entity Method Path Parameters Parameter lo-
cation

Required

query user-role GET /roles

� role ID

� name: Role’s
name

query No

SONATA Public 69

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Method Path Parameters Parameter lo-
cation

Required

create user-role POST /roles

� name: Role’s
name

body Yes

update user-role PUT /roles/<id>

� name: Role’s
name

body Yes

delete user-role DELETE /roles/<id> Yes
query user GET /users

� user UUID

� name

� email

� mobile

query No

query user GET /users

� user UUID

URL Yes

create user POST /users

� name

� email

� mobile

body Yes

update user PUT /users/<id>

� name

� email

� mobile

body Yes

Table 8.2: Response Interface between the GUI and the GK.

Action Entity Http
method

Path Responses

query service GET /services

� 200: List of services that meet search conditions
retrieved

� 404: No services with specified parameters were
found

query instance GET /records/services

� 200: List of service instances that meet search
conditions retrieved

� 400: No Records with specified parameters were
found

70 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Responses

query request GET /requests

� 200: List of requests that meet search conditions
retrieved

� 400: No Requests with specified parameters were
found

instantiate service POST /requests

� 201: Request was created

� 400: No service id was specified or no request
was created

update instance PUT /records/services

� 201: Update request created

� 400: No Request was created or no valid instance
UUID specified

� 404: No service found or not nsd id/latest nsd id
specified

8.2 Business Support System - Gatekeeper Interface

Table 8.3 shows the request Interface between the Business Support System (BSS) and the Gate-
keeper (GK). Table 8.4 shows the response Interface between the BSS and the GK.

Table 8.3: Request Interface between the BSS and the GK.

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

query service GET /services

� status: the status of the services to be
retrieved

� vendor: the vendor of the service re-
trieved

� name: the name of the service retrieved

� version: the version of the service re-
trieved

� offset: offset the list of retrieved results
by this amount. Default is Zero.

� limit: number of services to return.
Default is 5, max is 100.

query No

SONATA Public 71

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

query instance GET /records/services

� owner id: the UUID of owner of the
service

� offset: offset the list of retrieved results
by this amount. Default is Zero.

� limit: number of services to return.
Default is 5, max is 100.

query No

query request GET /requests

� service id: the UUID of the service of
which all requests are done

� vendor: the vendor of the request re-
trieved

� name: the name of the request re-
trieved

� version: the version of the request re-
trieved

� offset: offset the list of retrieved results
by this amount. Default is Zero.

� limit: number of services to return.
Default is 5, max is 100.

query No

instantiate service POST /requests

� service uuid: the UUID of the service
from which an instance is required

body Yes

update instance PUT /records/services

� nsr id: the UUID of the instance

query Yes

update instance PUT /records/services

� nsd id: the UUID of the original ser-
vice

� latest nsd id: the UUID of the most
updated service

body Yes

Table 8.4: Response Interface between the BSS and the GK.

Action Entity Http
method

Path Responses

query service GET /services

� 200: List of services that meet search conditions
retrieved

� 404: No services with specified parameters were
found

72 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Responses

query instance GET /records/services

� 200: List of service instances that meet search
conditions retrieved

� 400: No Records with specified parameters were
found

query request GET /requests

� 200: List of requests that meet search conditions
retrieved

� 400: No Requests with specified parameters were
found

instantiate service POST /requests

� 201: Request was created

� 400: No service id was specified or no request
was created

update instance PUT /records/services

� 201: Update request created

� 400: No Request was created or no valid instance
UUID specified

� 404: No service found or not nsd id/latest nsd id
specified

8.3 Software Development Kit - Gatekeeper Interface

Table 8.5 shows the request Interface between the SDK and the GK. Table 8.6 shows the response
Interface between the SDK and the GK. This interface will evolve to a more complete one, as
features like User Management, Licence Management and KPIs become available on the Service
Platform’s side.

SONATA Public 73

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 8.5: Request Interface between the SDK and the GK.

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

query package GET /packages

� status: the status of the package to be
retrieved

� vendor: the vendor of the package re-
trieved

� name: the name of the package re-
trieved

� version: the version of the package re-
trieved

� offset: offset the list of retrieved results
by this amount. Default is Zero.

� limit: number of services to return.
Default is 5, max is 100.

query No

create package POST /packages

� A .son file

form
param-
eter

yes

Table 8.6: Response Interface between the SDK and the GK.

Action Entity Http
method

Path Responses

query package GET /packages

� 200: List of services that meet search conditions
retrieved

� 404: No services with specified parameters were
found

create package POST /packages

� 201: Package was created

� 400: No package was created

8.4 Gatekeeper - User Management Interface

Table 8.7 shows the Interface between the Gatekeeper and the User management module.

74 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 8.7: Access Token verification endpoints.

Action HTTP
method

Path Response Requires token

Registration POST /sessions/register

� 200 OK

� 40X

Unauthorized/Forbidden

none

Log-in POST /sessions/login

� 200 OK

� 40X

Unauthorized/Forbidden

none

Log-out POST /sessions/logout

� 200 OK

� 40X

Unauthorized/Forbidden

bearer token

Token Authen-
tication

POST /sessions/auth

� 200 OK

� 40X

Unauthorized/Forbidden

bearer token

Token Autho-
rization

POST /sessions/authorize

� 200 OK

� 40X

Unauthorized/Forbidden

bearer token

Userinfo
(OAuth 2.0
Claims)

POST /users/<username>/userinfo

� 200 OK

� 40X

Unauthorized/Forbidden

bearer token

User profile up-
date

POST /users/<username>/profile

� 200 OK

� 40X

Unauthorized/Forbidden

bearer token

User au-
thorization
management

POST /users/<username>/authorizations

� 200 OK

� 40X

Unauthorized/Forbidden

bearer token

8.5 Gatekeeper - Catalogue Interface

Table 8.8 shows the request Interface between the GK and the Catalogue (CAT). Table 8.9 shows
the response Interface between the GK and the CAT. The DELETE is available on the Catalogue

SONATA Public 75

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

side of this API, although it has not yet been made available to external systems. This is due to the
implications of deleting a descriptor, which still has to be designed (namely, what should happen
when there are instances of a service which descriptor is requested to be deleted).

Table 8.8: Request Interface between the GK and the CAT.

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

query NSD GET /network-
services

� status: the status of the services to be
retrieved

� vendor: the vendor of the service re-
trieved

� name: the name of the service retrieved

� version: the version of the service re-
trieved

� offset: offset the list of retrieved results
by this amount. Default is Zero.

� limit: number of services to return.
Default is 5, max is 100.

query No

query VNFD GET /vnfs

� status: the status of the services to be
retrieved

� vendor: the vendor of the service re-
trieved

� name: the name of the service retrieved

� version: the version of the service re-
trieved

� offset: offset the list of retrieved results
by this amount. Default is Zero.

� limit: number of services to return.
Default is 5, max is 100.

query No

query PD GET /packages

� status: the status of the services to be
retrieved

� vendor: the vendor of the service re-
trieved

� name: the name of the service retrieved

� version: the version of the service re-
trieved

� offset: offset the list of retrieved results
by this amount. Default is Zero.

� limit: number of services to return.
Default is 5, max is 100.

query No

76 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

submit NSD POST /network-
services

� None

body Yes

submit VNFD POST /vnfs

� None

body Yes

submit PD POST /packages

� None

body Yes

update NSD PUT /network-
services

� UUID: the unique id of the original ser-
vice

query Yes

update NSD PUT /network-
services

� status: the new status for the updated
service

body No

update VNFD PUT /vnfs

� UUID: the unique id of the original
function

query Yes

update VNFD PUT /vnfs

� status: the new status for the updated
function

body No

update PD PUT /packages

� UUID: the unique id of the original
package

query Yes

update PD PUT /packages

� status: the new status for the updated
package

body No

remove NSD DELETE /network-
services

� UUID: the unique id of the original ser-
vice

query Yes

remove VNFD DELETE /vnfs

� UUID: the unique id of the original
function

query Yes

remove PD DELETE /package

� UUID: the unique id of the original
package

query Yes

SONATA Public 77

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 8.9: Response Interface between the GK and the CAT.

Action Entity Http
method

Path Responses

query NSD GET /network-
services

� 200: List of services that meet search conditions
retrieved

� 404: No services with specified parameters were
found

query VNFD GET /vnfs

� 200: List of functions that meet search condi-
tions retrieved

� 404: No functions with specified parameters were
found

query PD GET /packages

� 200: List of packages that meet search conditions
retrieved

� 404: No packages with specified parameters were
found

submit NSD POST /network-
services

� 201: Descriptor was created

� 400: No descriptor was created

submit VNFD POST /vnfs

� 201: Descriptor was created

� 400: No descriptor was created

submit PD POST /packages

� 201: Descriptor was created

� 400: No descriptor was created

submit NSD PUT /network-
services

� 200: Descriptor updated

� 400: No update was created or not valid descrip-
tor UUID specified

submit VNFD PUT /vnfs

� 200: Descriptor updated

� 400: No update was created or not valid descrip-
tor UUID specified

submit PD PUT /packages

� 200: Descriptor updated

� 400: No update was created or not valid descrip-
tor UUID specified

78 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Responses

submit NSD DELETE /network-
services

� 200: Descriptor disabled

� 400: No remove was committed or not valid de-
scriptor UUID specified

submit VNFD DELETE /vnfs

� 200: Descriptor disabled

� 400: No remove was committed or not valid de-
scriptor UUID specified

submit PD DELETE /packages

� 200: Descriptor disabled

� 400: No remove was committed or not valid de-
scriptor UUID specified

8.6 Service Platform - Repositories Interface

In this section, the interfaces between different micro services in the SP and the Repositories
(REP) are described. Table 8.10 describes how service records (NSR) can be stored and managed,
Table 8.11 describes the same for the VNF records (VNFR). Each record is identified by a unique
UUID (nsr id/vnfr id). The GK, the SLM and the FLM are the SP micro services that are using
this interface.

Table 8.10: NSR Repository REST API

Uri Method Description Returned code(s)

/records/nsr GET REST API Structure and Capability Dis-
covery for /records/nsr/

� OK (200)

/records/nsr/ns-instances GET List all NSR instances in JSON format.
It supports pagination with the offset (de-
fault value zero) and limit (default value
ten) parameters.

� OK (200)

� Not Found
(404)

/records/nsr/ns-
instances/:nsr id

GET List specific NSR instance information in
JSON format

� OK (200)

� Not Found
(404)

SONATA Public 79

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Uri Method Description Returned code(s)

/records/nsr/ns-instances POST Submit a new NSR instance. The content
type have to be a JSON. It returns the
NSR, also in JSON. � OK (200)

� Unprocessable
Entity (422)

� Conflict (409)

� Unsupported
Media Type
(415)

� Bad Request
(400)

/records/nsr/nsr-
instances/:nsr id

PUT Update a NSR instance. The content type
have to be a JSON. It returns the updated
NSR. � OK (200)

� Not Found
(404)

� Unsupported
Media Type
(415)

� Conflict (409)

� Unprocessable
Entity (422)

/records/nsr/ns-
instances/:nsr id

DELETE Delete a NSR instance. It returns the NSR

� OK (200)

� Not Found
(404)

Table 8.11: VNFR Repository REST management API

Uri Method Purpose Returned code(s)

/records/vnfr/ GET REST API Structure and Capability Dis-
covery for /records/vnfr/

� OK (200)

/records/vnfr/vnf-instances GET List all VNF instances in JSON format

� OK (200)

� Error Es-
tablishing
a Database
Connection
(500)

80 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Uri Method Purpose Returned code(s)

/records/vnfr/vnf-
instances?output=YAML

GET List all VNF instances in YAML format

� OK (200)

� Error Es-
tablishing
a Database
Connection
(500)

/records/vnfr/vnf-
instances/:vnfr id

GET List specific VNF instance information in
JSON format

� OK (200)

� Not Found
(404)

/records/vnfr/vnf-
instances/:vnfr id?output=YAML

GET List specific VNF instance information in
YAML format

� OK (200)

� Not Found
(404)

/records/vnfr/vnf-instances POST Create a new VNF instance

� OK (200)

� Parsing error
(400)

� Duplicated ID
(400)

� Unsupported
Media Type
(415)

/records/vnfr/vnf-
instances/:vnfr id

PUT Update a VNF instance

� OK (200)

� Parsing error
(400)

� Duplicated ID
(400)

� Unsupported
Media Type
(415)

/records/vnfr/vnf-
instances/:vnfr id

DELETE Delete a VNF instance

� OK (200)

� Not Found
(404)

8.7 Service Lifecycle Manager - Monitoring Manager Interface

Table 8.12 shows the request Interface between the SLM and the Monitoring Manager (MON).
Table 8.13 shows the response Interface between the SLM and the MON.

SONATA Public 81

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 8.12: Request Interface between the SLM and the MON.

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

query user GET /api/v1/users

� first name: user first name

� last name: user last name

� email: user email address

� sonata userid: user sonata id

� created: user entrance date

query No

query service GET /api/v1/services/user/{user id}

� sonata srv id: sonata service id

� name: sonata service name

� description: service description

� user: user description

� host id: host id (optional)

� pop id: pop id where host is deployed

� created: service creation date

query No

query functions GET /api/v1/functions/service/{service id}

� sonata func id: sonata function id

� name: function name

� description: function description

� service: service description

� host id: host (vm/docker) id where
function is deployed

� pop id: pop id in where host is de-
ployed

� created: function creation date

query No

query metrics GET /api/v1/metrics/function/{function id}

� name: metric name

� description: metric description

� threshold: metric threshold

� interval: metric time interval

� command: metric command

� function: function id

� created: creation date of the metric

query No

82 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity Http
method

Path Parameters Parameter
loca-
tion

Required

instantiate service POST /api/v1/service/new

� A .son file

from
param-
eter

No

instantiate users POST /api/v1/users

� first name: User’s first name

� last name: user last name

� email: user email address

� sonata userid: sonata user id

body No

Table 8.13: Response Interface between the SLM and the MON.

Action Entity Http
method

Path Response

query user GET /api/v1/users 200: List of users re-
ceived

query service GET /api/v1/services/user/{user id} 200: List of services re-
trieved

query functions GET /api/v1/functions/service/{service id} 200: List of functions re-
trieved

query metrics GET /api/v1/metrics/function/{function id}200: List of metrics re-
trieved

instantiate service POST /api/v1/service/new 201: New Service up-
dated

instantiate users POST /api/v1/users 201: New user created

8.8 Ia-Vi Interface

Table 8.16 shows the subset of the OpenStack API that are part used in the interface between the
Infrastructure Abstraction and the VIM. It includes both API of Nova and Heat, the OpenStack
sub-modules responsible for compute resources deployment and orchestration.

SONATA Public 83

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 8.14: IA-VI interface for OpenStack VIM

Action Entity URL Method Parameters Returned code(s)

Create Stack {heat url}/v1/{tenant id}/stacks POST

� heat url:
the address
and port of
the Heat
server

� tenant id:
the id of the
OpenStack
tenant re-
questing
this instan-
tiation

� heat tem-
plate: the
descrip-
tor of the
stack to
instantiate

� CREATED
(201)

� BAD RE-
QUEST (400)

� UN- AUTHO-
RIZED (401)

� CONFLICT
(409)

Update Stack {heat url}/v1/{tenant id}/stacks/
{stack name}/{stack id}

PUT

� heat url:
the address
and port of
the Heat
server

� tenant id:
the id of the
OpenStack
tenant re-
questing
this update

�

stack name:
the Open-
Stack name
of the stack

� stack id:
the Open-
Stack id of
the stack

� heat tem-
plate: the
updated
descriptor
for the
stack

� ACCEPTED
(202)

� BAD RE-
QUEST (400)

� UN- AUTHO-
RIZED (401)

� NOT FOUND
(404)

� SERVER IN-
TERNAL
ERROR (500)

84 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Action Entity URL Method Parameters Returned code(s)

Query Stack {heat url}/v1/{tenant id}/stacks/
{stack name}/{stack id}

GET

� heat url:
the address
and port of
the Heat
server

� tenant id:
the id of the
OpenStack
tenant is-
suing the
query

�

stack name:
the Open-
Stack name
of the stack

� stack id:
the Open-
Stack id of
the stack

� OK (200)

� BAD RE-
QUEST (400)

� UN- AUTHO-
RIZED (401)

� NOT FOUND
(404)

� INTERNAL
SERVER ER-
ROR (500)

Delete Stack {heat url}/v1/{tenant id}/stacks/
{stack name}/{stack id}

DELETE

� heat url:
the address
and port of
the Heat
server

� tenant id:
the id of the
OpenStack
tenant
request-
ing this
deletion

�

stack name:
the Open-
Stack name
of the stack

� stack id:
the Open-
Stack id of
the stack

� NO CON-
TENT (204)

� BAD RE-
QUEST (400)

� UN- AUTHO-
RIZED (401)

� NOT FOUND
(404)

� INTERNAL
SERVER ER-
ROR (500)

Query Flavors {nova url}/flavors GET

� nova url:
the address
and port of
the Nova
server

� tenant id:
the id of the
OpenStack
tenant

� NO CON-
TENT (200)

� UN- AUTHO-
RIZED (401)

� FORBIDDEN
(403)

SONATA Public 85

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 8.15 shows the details on the interface between the Infrastructure Abstraction layer and
Ovs-Sfc, a custom agent for SFC enforcement based on Open vSwitch, that has been used alongside
OpenStack as a proof of concept for inter-PoP network resource orchestration.

Table 8.15: IA-VI interface for OVS based SFC agent VIM

Action Parameters Description Returned code(s)

add {“instance id”:String,
“in segment”:String,
“out segment”:String,
“port list”:
[{“port”:String, “or-
der”:int}]}

add a chain rule identified by “instance id” for the
traffic described by “in segment”/“out segment”
connecting the ordered list of port provided in
“port list”

� SUCCESS

� ERROR,
{error message}

delete {“instance id”: String} delete the chain rule identified by “instance id”

� SUCCESS

� ERROR,
{error message}

8.9 Ia-Wi Interface

Table 8.16 shows the details of the interface between the Ia-Wi interface, in the specific case of a
WIM based on the Virtual Tenant Network [WikiBibliography#VTN] project of OpenDaylight.

Table 8.16: IA-Wi interface for VTN-based WIM

Action Parameters Description Returned code(s)

configureWim instance id,
in segment,
out segment, [PoP]

configure the WAN to route traffic
identified by in segment/out segment
through the provided ordered list of
PoP, for the service identified by in-
stance id

� SUCCESS

� ERROR,
{error message}

deconfigureWim instanceId deconfigure the WAN for the service
identified by instance id

� SUCCESS

� ERROR,
{error message}

updateWimConfiguration instance id,
in segment,
out segment, [PoP]

update the WAN configuration
to route traffic identified by
in segment/out segment through
the provided ordered list of PoP, for
the service identified by instance id

� SUCCESS

� ERROR,
{error message}

8.10 Gatekeeper - Service Lifecycle Manager Interface

Table 8.17 shows the interface between the GK and the SLM. For all message based publish/subscribe
interfaces, the message properties are set as follows. All request messages need the following prop-
erties: 1) correlation id that contains a UUID, 2) reply to that contains the topic on which the
response should be published, 3) app id that contains the sender and 4) content type that describes

86 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

the format of the payload. All response messages need the following properties: 1) correlation id
that contains a UUID, 2) app id that contains the sender and 3) content type that describes the
format of the payload. All notification messages need the following properties: 1) app id that
contains the sender and 2) content type that describes the format of the payload.

The response to a service create request is split into two parts. First, a direct response is given
to indicate whether the instantiation of the service has began or not. A notification is sent when
the service is operational. The SLM offers 4 options to the GK: 1) create a service, 2) pause a
running service, 3) restart a paused service and 4) terminate a service.

Table 8.17: Request Interface between the GK and the SLM.

Type Topic Sender Receiver Body

Request service.instances.create GK SLM

� NSD

� VNFD

Response service.instances.create SLM GK

� status

� error

� timestamp

Notification service.instances.create SLM GK

� the instance id of the
service

� status

� error

� timestamp

Request service.instances.update GK SLM

� updated NSD

� updated VNFD

Response service.instances.update SLM GK

� status

� error

� timestamp

request service.instance.pause GK SLM

� service id

response service.instance.pause SLM GK

� status

� error

� timestamp

SONATA Public 87

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Type Topic Sender Receiver Body

request service.instance.restart GK SLM

� service id

response service.instance.restart SLM GK

� status

� error

� timestamp

request service.instance.terminate GK SLM

� service id

response service.instance.terminate SLM GK

� status

� error

� timestamp

8.11 Service Lifecycle Manager - Function Lifecycle Manager

Table 8.18 describes the interface between the SLM and the FLM. This interface is a MANO
framework internal interface that is used for the deployment of a new service. The SLM breaks
down the service request into individual VNF deployment requests, which are handled by the FLM.

Table 8.18: Request Interface between the SLM and the FLM.

Type Topic Sender Receiver Body

request mano.function.deploy SLM FLM

� the instance id of the
VNF

� VNFD

� the calculated place-
ment of the VNF

response mano.function.deploy FLM SLM

� status

� error

� VNFR id

8.11.0.1 Function Lifecycle Manager - Infrastructure Adaptor

Table 8.19 shows the interface between the FLM and the IA. The FLM requests specific VNF
deployment from the IA.

88 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 8.19: Request Interface between the FLM and the IA.

Type Topic Sender Receiver Body

request infrastructure.function.deploy FLM IA

� the instance id of the
VNF

� VNFD

� the pop on which the
VNF must be placed

response infrastructure.function.deploy IA FLM

� status

� error

� info intended for the
VNFR, that is build by
the FLM

8.12 Service Lifecycle Manager - Infrastructure Adaptor Interface

Table 8.20 shows the interface between the SLM and the IA. The SLM manages service related
request from the IA, such as creating the service graph, instructing to pause/restart/terminate a
service, configuring the WIM and collecting topology information for placement purposes.

Table 8.20: Request Interface between the SLM and the IA.

Type Topic Sender Receiver Body

request infrastructure.management.compute.list SLM IA

� None

response infrastructure.management.compute.list IA SLM

� the PoP topology, with
free/total available re-
source information

request infrastructure.service.prepare SLM IA

� list of PoPs that will be
used by the service

response infrastructure.service.prepare IA SLM

� status

� error

request infrastructure.service.chain SLM IA

� The service graph
that indicates how the
VNFs must be chained

� VNF instance ids

SONATA Public 89

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Type Topic Sender Receiver Body

response infarstructure.service.chain IA SLM

� status

� error

� info for the NSR, that
is built by the SLM

request infrastructure.wan.configure SLM IA

� the instance id of the
service

response infrastructure.wan.configure IA SLM

� status

� error

request infrastructure.wan.deconfigure SLM IA

� the instance id of the
service

response infrastructure.wan.deconfigure IA SLM

� status

� error

request infrastructure.service.restart SLM IA

� the instance id of the
service

response infrastructure.service.restart IA SLM

� status

� error

request infrastructure.service.pause SLM IA

� the instance id of the
service

response infrastructure.service.pause IA SLM

� status

� error

request infrastructure.service.terminate SLM IA

� the instance id of the
service

response infrastructure.service.terminate IA SLM

� status

� error

90 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

8.13 Interfaces relevant for Function-/Service-Specific Managers

Table 8.21 shows the interfaces between SLM and executive plugins responsible for SSMs, as well as
FLMs and executive plugins responsible for FSMs and Table 8.22 describes the interfaces between
SSMs/FSMs and their corresponding executive plugins.

Table 8.21: Interface between SLM/FLM and executive plugins.

Type Topic Sender Receiver Body

request placement.executive.request SLM Placement Ex-
ecutive Plugin

� UUID of the service in-
stance

� NSD

� VNFD

� Network topology

� Network resources

response placement.executive.request Placement Ex-
ecutive Plugin

SLM

� Placement decision, in-
cluding mapping VNFs
to PoPs and mapping
virtual links to inter-
PoP paths

request scaling.executive.request FLM Scaling Execu-
tive Plugin

� UUID of the VNF in-
stance

� NSD

� VNFD

� Scaling trigger

response scaling.executive.request Scaling Execu-
tive Plugin

FLM

� Scaling decision, in-
cluding modified re-
source demands of the
VNF and new instances
of the VNF to be in-
serted to the service
graph

SONATA Public 91

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Table 8.22: Interface between executive plugins and SSMs/FSMs.

Type Topic Sender Receiver Body

request placement.ssm.{service uuid} Placement Ex-
ecutive Plugin

Placement
SSM

� NSD

� VNFD

� Filtered network topol-
ogy

� Filtered network re-
sources

response placement.ssm.{service uuid} Placement
SSM

Placement Ex-
ecutive Plugin

� Placement decision, in-
cluding mapping VNFs
to PoPs and mapping
virtual links to inter-
PoP paths

request scaling.fsm.{vnf uuid} Scaling Execu-
tive Plugin

Scaling FSM

� NSD

� VNFD

� Filtered scaling trigger

response scaling.fsm.{vnf uuid} Scaling FSM Scaling Execu-
tive Plugin

� Scaling decision, in-
cluding modified re-
source demands of the
VNF and new instances
of the VNF to be in-
serted to the service
graph

Table 8.23 shows the interfaces between FLM/SLM and the SMR and Table 8.24 describes the
interfaces between FSMs/SSMs and the SMR.

Table 8.23: Interface between SLM/FLM and SMR.

Type Topic Sender Receiver Body

request specific.manager.registry.ssm.on-board SLM SMR

� NSD

response specific.manager.registry.ssm.on-board SMR SLM

� status

� error

request specific.manager.registry.fsm.on-board FLM SMR

� VNFD

92 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Type Topic Sender Receiver Body

response specific.manager.registry.fsm.on-board SMR FLM

� status

� error

request specific.manager.registry.ssm.instantiate SLM SMR

� NSD

� NSR

response specific.manager.registry.ssm.instantiate SMR SLM

� status

� error

request specific.manager.registry.fsm.instantiate FLM SMR

� VNFD

� VNFR

response specific.manager.registry.fsm.instantiate SMR FLM

� status

� error

request specific.manager.registry.ssm.update SLM SMR

� NSD

� NSR

� VNFR

response specific.manager.registry.ssm.update SMR SLM

� status

� error

request specific.manager.registry.fsm.update FLM SMR

� VNFR

response specific.manager.registry.fsm.update SMR FLM

� status

� error

Table 8.24: Interface between SSMs/FSMs and SMR.

Type Topic Sender Receiver Body

request specific.manager.registry.ssm.registration SSM SMR

� name

� version

� description

SONATA Public 93

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Type Topic Sender Receiver Body

response specific.manager.registry.ssm.registration SMR SSM

� status

� name

� version

� description

� UUID

� error

request specific.manager.registry.fsm.registration FSM SMR

� name

� version

� description

response specific.manager.registry.fsm.registration SMR FSM

� status

� name

� version

� description

� UUID

� error

8.14 Plugin Manager - Plugin Interface

Table 8.25 shows the interface between the Plugin Manager (PM) and the Plugin (P).

Table 8.25: Request Interface between the SDK and the GK.

Type Topic Sender Receiver Body
request platform.management.plugin.register plugin PM

� name

� version

� description

response platform.management.plugin.register PM plugin

� status

� uuid

� error

request platform.management.plugin.deregister plugin PM

� uuid

94 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

response platform.management.plugin.deregister PM plugin

� status

notification platform.management.plugin.status PM plugin(s)

� timestamp

� plugin dict

notification platform.management.plugin
.{plugin uuid}.heartbeat

plugin PM

� uuid

� state

notification platform.management.plugin
.{plugin uuid}.lifecycle.start

PM plugin

� null

notification platform.management.plugin
.{plugin uuid}.lifecycle.pause

PM plugin

� null

notification platform.management.plugin
.{plugin uuid}.lifecycle.resume

PM plugin

� null

notification platform.management.plugin
.{plugin uuid}.lifecycle.stop

PM plugin

� null

SONATA Public 95

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

9 Conclusions

This section lists the conclusions on this deliverable, which documents the work done in SONATA’s
Work Package 4, Resource Orchestration and Operations repositories since the previous
deliverable (D4.1: Orchestrator Prototype [7]) and the first year review of the project.

According to what we had planned for the second year, we are addressing the Service Plat-
form’s security across several levels in this second year. These levels are the access to the external
APIs of the platform, the authorisation for every microservice that implements some platform fea-
tures, the storage of passwords internally, etc.

The main changes on the Gatekeeper, the entry point of the Service Platform, was the increase
in the security level adopted, by the usage of HTTPS in all the external APIs and the need to
authenticate every platform user and authorise every microservice provided as part of the plat-
form. Along this path, the platform has also gained a Licence Management service and a KPIs
Management service, which will allow the monetisation of the APIs made available and the usage
measurement of the provided services.

In the platform’s Catalogues and Repositories we have started storing both the package
files and its descriptors, with meta-data such as its creation date, signature, etc., and data, i.e.,
its descriptors, separately. Merging both in the first year’s implementation was the most simple
solution at the time, but the concept had to evolve from there naturally, to better accommodate
new features, such as package signing.

The MANO Framework, the core of SONATA’s Service Platform, started to be able to support
Function Specific Managers, together with the already implemented Service Specific Managers, with
their secure usage guaranteed by the Executive Plugins connecting them to the other components
to/from which they provide/require services. The existing Service Lifecycle Manager and the
newly introduced Function Lifecycle Manager (FLM), will be (re-)implemented as workflow (i.e.,
task execution) engines, increasing their flexibility. We will have an alternative implementation of
the FLM, based on the OpenStack Mistral project.

The platform’s Infrastructure Abstraction layer is being put to test since the project decided
to adopt a container-based VIM such as Kubernetes, in parallel with OpenStack, the more tradi-
tional VM-based we have opted for in the first year. This is another innovation we are pursuing,
and thus only the first results are documented in this deliverable. Further results will appear in
the next deliverable of this work package.

Monitoring the kind of Service Platform we are designing and implementing poses a different set
of challenges that traditional and barely existing products and services in this area already answer,
namely at the flexibility needed to define new and distinct monitoring parameters for each on-
boarded function and service. This greater flexibility is introduced in this second year version of the
platform, together with an innovative way of securely providing the service or function developer,
for a short time, monitoring data about one of the instances of his/her service or function. This
feature allows the automation of such kind of requests, thus increasing the operational efficiency of
the platform.

To make evident the highly modular design of the Service Platform, each one of its Internal
Interfaces is described and documented. Most of these interfaces are implemented over HTTP(S),
with one exception: passing monitoring data from the Service Platform to the SDK, which uses the
more adequate Web Sockets. Some of the interfaces using HTTP(S) are synchronous and others

96 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

asynchronous, reflecting the nature of the problem they solve. All these options are according to
the most recent trends and technologies in the open-source sector, thus lowering the barrier to
adopt from our community.

SONATA Public 97

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

A Abbreviations

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CM Configuration Management

CRUD Create, Read, Update, Delete

DSL Domain-Specific Language

ETSI European Telecommunications Standards Institute

FLM Function Lifecycle Manager

FSM Function-Specific Manager

FSMD Function-Specific Manager Descriptor

GitHub Git repository hosting service

GUI Graphical User Interface

IA Infrastructure Adaptor

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IoT Internet of Things

JMS Java Messaging System

JWT JSON Web Token

KPI Key Performance Indicator

MANO Management and Orchestration

NF Network Function

NFV Network Function Virtualization

NFVI-PoP Network Function Virtualisation Points of Presence

NFVO Network Function Virtualization Orchestrator

NFVRG Network Function Virtualization Research Group

NS Network Service

98 Public SONATA

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

NSD Network Service Descriptor

NSO Network Service Orchestrator

OASIS Organization for the Advancement of Structured Information Standards

OIDC OpenID Connect

OSS Operations Support System

PD Package Descriptor

PSA Personal Security Applications

REST Representational State Transfer

RPC Remote Procedure Call

SDK Software Development Kit

SDN Software-Defined Networking or Software-Defined Network

SLA Service Level Agreement

SLM Service Lifecycle Manager

SNMP Simple Network Management Protocol

SP Service Platform

SSM Service-Specific Manager

SSMD Service-Specific Manager Descriptor

VDU Virtual Deployment Unit

VIM Virtual Infrastructure Manager

VLD Virtual Link Descriptor

VM Virtual Machine

VN Virtual Network

VNF Virtual Network Function

VNFD Virtual Network Function Descriptor

VNFFGD VNF Forwarding Graph Descriptor

VNFM Virtual Network Function Manager

WAN Wide Area Network

WIM Wide area network Infrastructure Manager

SONATA Public 99

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

B Glossary

DevOps A term popularized since a series of conferences emphasizing a higher degree of commu-
nication between Developers and Operations, those who deploy the developed applications.

Function-Specific Manager A function-specific manager is a small management program imple-
mented by a service developer with the help of SONATA’s SDK. It is executed by the SONATA
service platform to manage individual network functions based on inputs, say monitoring data,
specific to the network function it belongs to.

Gatekeeper In general, gatekeeping is the process through which information is filtered for dissem-
ination, whether for publication, broadcasting, the Internet, or some other mode of communi-
cation. In SONATA, the gatekeeper is the central point of authentication and authorization
of users and (external) Services.

Management and Orchestration (MANO) In the ETSI NFV framework ETSI-NFV-MANO, MANO
is the global entity responsible for management and orchestration of NFV lifecycle.

Message Broker A message broker, or message bus, is an intermediary program module that trans-
lates a message from the formal messaging protocol of the sender to the formal messaging
protocol of the receiver. Message brokers are elements in telecommunication networks where
software applications communicate by exchanging formally-defined messages. Message bro-
kers are a building block of Message oriented middleware.

Network Function The atomic entity of execution anything in the context of a service. Cannot be
further subdivided. Runs as a single executing entity, such as a single process and a single
virtual machine. Treated as atomic from the point of view of the orchestration framework.

Network Function Virtualization (NFV) The principle of separating network functions from the
hardware they run on by using virtual hardware abstraction.

Network Function Virtualization Infrastructure Point of Presence (NFVI PoP) Any combination
of virtualized compute, storage and network resources.

Network Function Virtualization Infrastructure (NFVI) Collection of NFVI PoPs under one or-
chestrator.

Network Service A network service is a composition of network functions.

Network Service Descriptor A manifest file that describes a network service. Usually, it consists
of the description of the network functions in the server, the links between the functions, a
service graph, and service specifications, like SLAs.

Resource Orchestrator (RO) Entity responsible for domain wide global orchestration of network
services and software resource reservations in terms of network functions over the physical or
virtual resources the RO owns. The domain an RO oversees may consist of slices of other
domains.

100 Public SONATA

http://www.devopsdays.org/events/2009-ghent/

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

Service-Specific Manager (SSM) A service-specific manager is a small management program im-
plemented by a service developer with the help of SONATA’s SDK. It is executed by the
SONATA service platform to manage individual services based on inputs, say monitoring
data, specific to the service it belongs to.

Service Level Agreement (SLA) A service-level agreement is a part of a standardized service con-
tract where a service is formally defined.

Service Platform One of the key contributions of SONATA. Realizes management functionality
to deploy, provision, manage, scale, and place service on the infrastructure. a service devel-
oper/operator can use SONATA’s SDK to deploy a service on a selected service platform.

Slice A provider-created subset of virtual networking and compute resources, created from physical
or virtual resources available to the (slice) provider.

Software Development Kit (SDK) A set of tools and utilities which help developers to create,
monitor, manage, optimize network services. A key component of the SONATA system.

Virtualised Infrastructure Manager (VIM) provides computing and networking capabilities and
deploys virtual machines.

Virtual Network Function (VNF) One or more virtual machines running different software and
processes on top of industry-standard high-volume servers, switches and storage, or cloud
computing infrastructure, and capable of implementing network functions traditionally im-
plemented via custom hardware appliances and middleboxes (e.g. router, NAT, firewall, load
balancer, etc.).

Virtualized Network Function Forwarding Graph (VNF FG) An ordered list of VNFs creating a
service chain.

SONATA Public 101

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

C Bibliography

[1] Auth0. Get started with json web tokens. Website, December 2016. Online at https://

auth0.com/learn/json-web-tokens/.

[2] Kubernetes Community. Kubernetes. Website, November 2016. Online at http://

kubernetes.io/.

[3] The OpenStack Community. Openstack mistral project. Website, Dec 2016. Online at https:
//wiki.openstack.org/wiki/Mistral.

[4] SONATA consortium. D2.2 architecture design. Website, December 2015. Online at http:

//www.sonata-nfv.eu/content/d22-architecture-design-0.

[5] SONATA consortium. D2.3 updated requirements and architecture design. Website, December
2016. Online at http://www.sonata-nfv.eu/.

[6] SONATA consortium. D3.2 sdk operational release and documentation. Website, December
2016. Online at http://www.sonata-nfv.eu/.

[7] SONATA consortium. D4.1: Orchestrator prototype. Website, May 2016. Online at http:

//www.sonata-nfv.eu/content/d41-orchestrator-prototype.

[8] Website, December 2016. Online at http://www.cryptographytools.com/index.jsf.

[9] Online at https://www.datadoghq.com/.

[10] Online at https://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html.

[11] Linux Foundation. Documentation let’s encrypt. Website, July 2016. Online at https:

//letsencrypt.org/docs/.

[12] Martin Fowler. Microservices. Website, 2014. Online at http://martinfowler.com/

articles/microservices.html.

[13] Online at https://graphiteapp.org/.

[14] Online at http://md5-hash-online.waraxe.us/.

[15] Online at https://www.vaultproject.io/.

[16] IETF. Hmac: Keyed-hashing for message authentication. IETF, 1997. Online at https:

//tools.ietf.org/html/rfc2104.

[17] IETF. Web secure sockets. IETF, 2011. Online at https://tools.ietf.org/html/rfc6455.

[18] IETF. Web sockets. IETF, 2011. Online at https://tools.ietf.org/html/rfc6455.

[19] IETF. Json web token (jwt). IETF, 2015. Online at https://tools.ietf.org/html/rfc7519.

102 Public SONATA

https://auth0.com/learn/json-web-tokens/
https://auth0.com/learn/json-web-tokens/
http://kubernetes.io/
http://kubernetes.io/
https://wiki.openstack.org/wiki/Mistral
https://wiki.openstack.org/wiki/Mistral
http://www.sonata-nfv.eu/content/d22-architecture-design-0
http://www.sonata-nfv.eu/content/d22-architecture-design-0
http://www.sonata-nfv.eu/
http://www.sonata-nfv.eu/
http://www.sonata-nfv.eu/content/d41-orchestrator-prototype
http://www.sonata-nfv.eu/content/d41-orchestrator-prototype
http://www.cryptographytools.com/index.jsf
https://www.datadoghq.com/
https://dev.mysql.com/doc/refman/5.5/en/encryption-functions.html
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://graphiteapp.org/
http://md5-hash-online.waraxe.us/
https://www.vaultproject.io/
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc7519

Document: SONATA/D4.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 0.1

[20] IETF. Network service header. IETF, 2016. Online at https://datatracker.ietf.org/

doc/draft-ietf-sfc-nsh/.

[21] Internet Engineering Task Force (IETF). The oauth 2.0 authorization framework. Website,
October 2012. Online at https://tools.ietf.org/html/rfc6749#section-4.4.

[22] Online at https://www.influxdata.com/.

[23] Online at https://www.elastic.co/.

[24] Alan Klement. Replacing the user story with the job story, 2016. Online at http://jtbd.

info/replacing-the-user-story-with-the-job-story-af7cdee10c27#.goyz3rc6a.

[25] Online at https://getkong.org/.

[26] Online at https://releases.hashicorp.com/vault/0.6.3/vault_0.6.3_linux_amd64.

zip.

[27] Online at https://www.vaultproject.io/docs/secrets/mongodb/index.html.

[28] Online at https://www.vaultproject.io/docs/secrets/mysql/.

[29] OpenStack Neutron. Neutron serviceinsertionandchaining. website, 2016. Online at https:

//wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining.

[30] nixCraft. generating random passwords. Website, 2013. Online at https://www.cyberciti.
biz/faq/generating-random-password/.

[31] Online at https://wiki.opendaylight.org.

[32] Online at http://openid.net/connect/.

[33] Openssl. Website, 1999-2016. Online at https://www.openssl.org/.

[34] Online at https://parse.com/.

[35] Online at https://www.postgresql.org/docs/8.3/static/pgcrypto.html.

[36] Online at https://piwik.org/.

[37] Online at https://www.vaultproject.io/docs/secrets/postgresql/.

[38] Online at https://prometheus.io/.

[39] Online at https://tools.ietf.org/html/rfc5988#page-6.

[40] A. Shamir R.L. Rivest and L. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. MIT, 1977. Online at http://people.csail.mit.edu/rivest/Rsapaper.
pdf.

[41] Online at http://saml.xml.org.

[42] SANS. ”history of encryption”. Website, December 2016. Online at https://www.sans.org/
reading-room/whitepapers/vpns/history-encryption-730.

SONATA Public 103

https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/
https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/
https://tools.ietf.org/html/rfc6749#section-4.4
https://www.influxdata.com/
https://www.elastic.co/
http://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27#.goyz3rc6a
http://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27#.goyz3rc6a
https://getkong.org/
https://releases.hashicorp.com/vault/0.6.3/vault_0.6.3_linux_amd64.zip
https://releases.hashicorp.com/vault/0.6.3/vault_0.6.3_linux_amd64.zip
https://www.vaultproject.io/docs/secrets/mongodb/index.html
https://www.vaultproject.io/docs/secrets/mysql/
https://wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining
https://wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining
https://www.cyberciti.biz/faq/generating-random-password/
https://www.cyberciti.biz/faq/generating-random-password/
https://wiki.opendaylight.org
http://openid.net/connect/
https://www.openssl.org/
https://parse.com/
https://www.postgresql.org/docs/8.3/static/pgcrypto.html
https://piwik.org/
https://www.vaultproject.io/docs/secrets/postgresql/
https://prometheus.io/
https://tools.ietf.org/html/rfc5988#page-6
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://saml.xml.org
https://www.sans.org/reading-room/whitepapers/vpns/history-encryption-730
https://www.sans.org/reading-room/whitepapers/vpns/history-encryption-730

	List of Figures
	List of Tables
	Introduction
	Content organisation

	Security within the Service Platform
	Authentication and authorisation between microservices APIs
	HTTPS in external Web Components
	HTTPS versus Web Secure Sockets
	Distinct methods for external connections

	Authentication and authorisation within Message Broker
	RabbitMQ Virtual hosts
	MANO Framework security workflow

	Authentication in Databases
	Generate unencrypted random password in CLI
	Generate encrypted password for Databases users

	Gatekeeper
	Gatekeeper API
	Security related changes
	New modules
	Other improvements

	User management module
	Requirements
	User management module implementation
	Authentication and authorization external APIs

	Licence management
	Requirements
	Module architecture
	Module interactions
	Module API

	KPIs management
	Requirements
	Module interactions
	Gatekeeper's KPIs
	Module architecture
	Module API

	Graphical User Interface
	Extended GUI views
	Integration with AuthN/AuthZ mechanism
	Improve user friendliness

	Business Support Systems
	Https
	Pagination links
	User management
	License management

	Catalogues and repositories
	Catalogues
	New features
	Planned features
	Authentication and authorisation

	Repositories
	Authentication and authorisation

	MANO Framework
	FLM and SLM
	Updating the existing workflows to the new SP architecture and APIs
	Introducing new workflows to the SP and MANO framework
	Converting the SLM into a task manager
	Workflow Engine Based S/FLM

	Specific Managers Infrastructure
	Specific Managers Registry
	SMR features

	Infrastructure Abstraction
	Infrastructure Abstraction interfaces
	New Infrastructure Abstraction functionalities
	OVS Networking Wrapper
	VTN WIM Wrapper
	OpenStack Heat Wrapper
	Multi PoP deployment example
	Service Lifecycle Status management

	Kubernetes Wrapper
	Kubernetes REST API Client
	Kubernetes API object creation and translation model
	Impact of container based VIM on the IA northbound API

	Monitoring Framework
	Streaming monitoring data to the SDK
	Support of user management functionality
	Enhancements related to scalability and reliability of the monitoring framework
	API extensions

	Internal Interfaces
	Graphical User Interface - Gatekeeper Interface
	Business Support System - Gatekeeper Interface
	Software Development Kit - Gatekeeper Interface
	Gatekeeper - User Management Interface
	Gatekeeper - Catalogue Interface
	Service Platform - Repositories Interface
	Service Lifecycle Manager - Monitoring Manager Interface
	Ia-Vi Interface
	Ia-Wi Interface
	Gatekeeper - Service Lifecycle Manager Interface
	Service Lifecycle Manager - Function Lifecycle Manager
	Service Lifecycle Manager - Infrastructure Adaptor Interface
	Interfaces relevant for Function-/Service-Specific Managers
	Plugin Manager - Plugin Interface

	Conclusions
	Abbreviations
	Glossary
	Bibliography

