
D3.2 Intermediate release of SDK prototype and doc-
umentation

Project Acronym SONATA
Project Title Service Programing and Orchestration for Virtualized Software Networks
Project Number 671517 (co-funded by the European Commission through Horizon 2020)
Instrument Collaborative Innovation Action
Start Date 01/07/2015
Duration 30 months
Thematic Priority ICT-14-2014 Advanced 5G Network Infrastructure for the Future Internet

Deliverable D3.2 Intermediate release of SDK prototype and documentation
Workpackage WP3 Service Programmability and Toolset
Due Date November 30th, 2016
Submission Date December 23rd, 2016
Version 1.0
Status To be approved by EC
Editor Wouter Tavernier (imec)
Contributors Wouter Tavernier, Steven Van Rossem (imec), Lus Conceio, Tiago Batista

(UBI), Michael Bredel (NEC), Geoffroy Chollon (TCS), Daniel Guija, Muham-
mad Shuaib Siddiqui (i2CAT), Manuel Peuster (UPB)

Reviewer(s) Sharon Mendel-Brin (NOKIA), Sonia Castro (ATOS)

Keywords:

SDK, DevOps, Software Development Kit

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Deliverable Type

R Document X
DEM Demonstrator, pilot, prototype
DEC Websites, patent filings, videos, etc.
OTHER

Dissemination Level

PU Public X
CO Confidential, only for members of the consortium (including the Commission Ser-

vices)

Disclaimer:
This document has been produced in the context of the SONATA Project. The research leading to these results has
received funding from the European Community’s 5G-PPP under grant agreement n◦ 671517.
All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is
merely representing the authors’ view.

ii Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Executive Summary:

The first phase of the SONATA project resulted in a release of the first version of the Software
Development Kit (SDK) and Service Platform (SP). These SONATA building blocks complement
each other in the context of next generation of mobile networks and telecommunication standards
referred as 5G, focusing on optimal (re-)use of the available network and cloud infras-
tructure in order to provide telecom services based on a mix of software- and hardware-based
infrastructure.

The SDK is built up as a set of small independent tools which can be combined in one
or multiple workows to develop a SONATA service which is composed of software-based Network
Functions (NFs). This design and programming model enables agile development, involving quick
and iterative cycles of development, with the possibility of rapidly transitioning between develop-
ment and operations (DevOps), which is one of the key characteristics of the SONATA approach.
The software design of the SDK re-uses existing workflows and concepts in software development
such as the use of workspaces, project folders and packaging techniques. An overview of the avail-
able components and functionality after the first phase of the project were provided in D3.1 [5].
The SONATA SP is the primary target platform for the services developed by the SDK, however
re-use and extensibility towards using the same SDK in order to develop and test NFV services
on other MANO platforms is foreseen in the future. The initial SP design, its functionality and
corresponding API was documented in D4.1 [6], while updates and novel components of the SP are
documented in D4.2 [7].

This deliverable documents the updated design, additional features, as well as new components
of the SDK in the intermediate SONATA release. The structure of this document therefore
follows as closely as possible the structure of D3.1 [5], assuming re-use of the existing SDK
design, and focusing on the documentation of changes and additional components.

The SONATA programming model is built around descriptors for packages, network ser-
vices, and network functions. The schema of these descriptors for this release are being updated
to account for novel features including container implementations, automated testing, or improved
licensing support. Validation functionality was made in the first release of the project in order
to validate syntax of descriptors. In this release this functionality has been further extended with
a dedicated tool son-validate which goes beyond pure syntax checking and also checks a range
of semantic aspects, e.g. detection of loops in service graphs. Baseline functionality of the SDK is
built around CLI functionality for creating workspaces, project spaces and interaction with the SP.
These have now been extended with versioning support for workspaces, and modified tools
(i.e., son-access) for interacting with the (gatekeeper of the) SP and associated service and
NF catalogue(s). The latter impacts the deprecation of the use of the SDK-specific son-catalogue
of phase 1. As reported in D3.1 [5] and related scientific publications, the ability to emulate the
SP and associated infrastructure is one of the core value propositions of the SDK. In this inter-
mediate release these main assets have been even further exploited through bug-fixes, improved
APIs, monitoring and debugging capabilities. Additional debugging and monitoring
functionality in this release enables easy inspection and visualisation of network interfaces and
links, as well as functionality to generate particular types of (test) traffic for debugging purposes.
son-analyze functionality has now been integrated with Jupyter Notebook technology [2] enabling
the use of bleeding-edge statistical functionality in scientific Python libraries. The strong set of
features combining the SDK functionality related emulation, monitoring and analysis introduces a
new performance profiling tool son-profile. The latter eases identifying performance trends
under given degrees of resource restrictions. This enables developers to pre-assess performance in
order to optimize scaling behaviour of services on a range infrastructure hardware environments.

SONATA Public iii

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Structure of the deliverable . 1

2 Updated SDK design and new components 2
2.1 Updated SDK interfaces . 2
2.2 Updated SDK workflow . 3

3 Component design 7
3.1 son-schema . 7

3.1.1 Network function descriptor schema . 7
3.1.2 Network service descriptor schema . 8
3.1.3 Package descriptor schema . 8

3.2 son-cli . 8
3.2.1 son-access . 9
3.2.2 son-package . 12
3.2.3 son-push . 13
3.2.4 son-workspace . 13
3.2.5 son-validate . 14

3.3 son-catalogue . 16
3.3.1 Updates and improvements . 16
3.3.2 Planned features . 16

3.4 son-emu . 17
3.4.1 New features and improvements . 17
3.4.2 REST API . 18
3.4.3 Planned features . 21

3.5 son-profile . 23
3.5.1 Design of son-profile . 24
3.5.2 Profiling experiment description . 25
3.5.3 VNF profiling case study . 25

3.6 son-monitor . 27
3.6.1 Son-monitor architecture . 28
3.6.2 Monitor service descriptor . 29
3.6.3 Planned features . 31

3.7 son-analyze . 32
3.7.1 New features and improvements . 32
3.7.2 Planned features . 33

4 Conclusion 36

iv Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

A Manual of son-cli tools 37
A.1 son-workspace . 37
A.2 son-package . 38
A.3 son-validate . 39
A.4 son-access . 40

B Manual of son-emu-cli 42
B.1 son-emu-cli compute . 42
B.2 son-emu-cli datacenter . 43
B.3 son-emu-cli network . 43
B.4 son-emu-cli monitor . 44

C Manual of son-monitor 45
C.1 Ports used by son-monitor . 45
C.2 son-emu monitor features . 45
C.3 SDK son-monitor features . 46

C.3.1 Automatic son-monitor initialization using the MSD file (recommended) . . . 46
C.3.2 Manual son-monitor initialization via the CLI 46

C.4 Manual of son-analyze . 48

D Abbreviations 49

E Bibliography 50

SONATA Public v

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

List of Figures

2.1 Interfaces between the main SDK components . 4
2.2 SDK development workflow . 6

3.1 Initial version architecture for son-access component implementation 10
3.2 Main workflows between SDK and SP Gatekeeper through son-access 11
3.3 SDK and SP Catalogues components interaction workflows 12
3.4 son-package tool . 13
3.5 Example of a Service Network Topology . 15
3.6 Envisioned integration between son-emu and SONATA’s service platform orchestrator 22
3.7 Modular architecture of the SDK, Service Platform and son-emu 23
3.8 Detailed component breakdown of son-profile tool . 24
3.9 Entity relationship diagram of a profiling experiment descriptor (PED) 26
3.10 Example profiling experiment: Throughput comparison of two major snort versions

and changing CPU configurations (CPU time (a) and CPU cores (b)) 27
3.11 Different functional blocks in the SDK monitoring framework 29
3.12 Entity relationship diagram of a Monitoring Service Descriptor (MSD) 30
3.13 Son-analyze current architecture . 33
3.14 An analysis projection into the SONATA SP . 34

SONATA Public vii

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

List of Tables

3.1 son-emu compute and network request interface endpoint 19
3.2 son-emu monitor request interface endpoint . 19
3.3 son-emu response interface endpoint . 20
3.4 Valid VNF Metrics for the MSD file . 29
3.5 Valid NSD Link Metrics for the MSD file . 30

C.1 Ports opened in the SDK by son-monitor . 45
C.2 Ports opened in son-emu by son-monitor . 45

SONATA Public ix

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

1 Introduction

The first version of the SONATA SDK, which was documented in D3.1 [5], provided SDK compo-
nents and tools for setting up a SONATA programming environment, a SONATA platform
emulator and an initial set of tools for monitoring and analysing services developed using
the SDK. The first SDK interacted with the initial version of the Service Platform documented in
D4.1 [6] via the gatekeeper of the Service Platform. The developed SDK tools provided one of the
first integrated set of tools which enabled to deploy services combining both network and cloud
resources in a controlled and uniform way.

Since the release of the first SONATA SDK, the architecture and corresponding interfaces have
slightly changed, improved and refined, and additional components have been developed. These
architectural updates have been documented in D2.3 [4], while updates to the Service Platform are
documented in D4.2 [7]. This deliverable focuses on the updates of SONATA Software Development
Kit following this renewed architecture and SP updates.

1.1 Structure of the deliverable

The document is structured in a very similar way to D3.1 [5]. The section Section 2 refines
the development workflow in relation to the different components of the SDK. Next, the main
design aspects of new components and updates to existing SDK components are described in
Section 3. This involves characterization of adequate schema and descriptors, tools for setting
up the development work space and project space, catalogues, the packaging tool, the emulator,
the monitoring, analysis tool, as well as the novel validation and profiling tool. Each of these
sections also sketches a perspective of further planned features for the considered SDK components.
Section 4 concludes the document, capturing the most important updates of the SDK design, and
summarizes future plans on enhancing the basic SONATA Software Development Kit for last phase
of the project. In order to increase the accessibility and usability of the developed tools, updates
of manuals and instructions of each of the components also have been included in the appendices
of the deliverable.

SONATA Public 1

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

2 Updated SDK design and new components

The SONATA SDK is built as a set of light-weight (CLI-focused) tools helping the developer to
setup the development environment, describe the developed service and network functions, and test
them in a controlled environment before uploading them to a full-fledged Service Platform.

The main design of the SDK, as well as its components and corresponding developer workflow
were described in D3.1 [5]. In this section we refine this process, indicate changes into existing
components and interfaces, and introduce a number of additional SDK tools.

The main development object SONATA’s SDK is addressing is the service, which consists of
a combination of Network Functions (NFs) interconnected through a forwarding graph. In
addition to NFs, a service can also require Service and Function Specific Managers (SSM and FSMs).
The details on each of these components are captured under Descriptors (which have been slightly
updated, see Section 3.1). Descriptors might refer to information available in a catalogue which is
accessed via a (security-enabled) Gatekeeper, which is part of a Service Platform. Note that this
renewed process does not any longer support the (unsecure) previous son-catalogue to be part of
the local developer SDK installation.

A SONATA service is developed through a set of environment and packaging tools. The SONATA
development environment requires a workspace to be set up (son-workspace) in which different
SONATA projects can be developed. From this release on, son-workspace supports versioning of
workspace environments. A SONATA project is the construction environment (son-project) for a
particular SONATA service within a workspace. Particular SDK tools will support the development
of individual VNFs and FSMs and SSMs (son-vnf and son-ssm/fsm) in future releases. The
newly introduced son-validate tool of this release enables validation of syntax as well
as selected semantics of service components in an ad-hoc manner. When a project is ready
to be deployed, it will be packaged into a service package (son-package). The latter can be (and
ultimately will be) deployed (or pushed) on an actual Service Platform using the newly developed
son-access tool. This tool bundles previous son-push functionality as well as functionality for
accessing a catalogue behind the Gatekeeper of the SP. In order to enable quick iterations
in development and testing without requiring the setup of a full-fledged Virtual Infrastructure
Management solution such as OpenStack, together the service platform, an SP emulator (son-emu)
is part of the SDK and enables to locally deploy a service on an environment which is highly similar
to the SP. Within the emulation environment (but also on the SP), monitoring tools (son-monitor)
and newly developed (performance) profiling tools (son-profile) can be used to verify
functionality or performance of developed components. Subsequently, the resulting data might
be analysed using the updated analysis tools (son-analyze) in order to improve or update the
resulting descriptors and ultimately the service package.

2.1 Updated SDK interfaces

Figure 2.1 illustrates the interrelation of existing, new and updated SDK components as well as
parts of relevant parts of the SP. New components are coloured in green, existing components
appear in yellow, significantly updated components are indicated in white, planned components
are orange, and deprecated components are grey. Every interface corresponds to a reference point

2 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

with a particular label and will be documented further in this deliverable:

� The development of SONATA services occurs on a project folder (PRJ) in a workspace
(WKSP) on the filesystem, built by the updated son-workspace (the new functionality is
described later in this document in Section 3.2).

� The interface between the SDK and the SP is mediated via the Gatekeeper, following
the GK REST API documented in D4.1 [6] and updated in D4.2 [7], where the SDK side is
implemented by son-access (integrating now functionality from the deprecated son-push).

� The SDK emulator son-emu is now controllable through an ”EMU REST API”, which
is used by the son-monitor component and the newly designed son-profile component,
enabling performance benchmarking of service components.

� The interface between the son-monitor component and the son-analyze tools follows a
Prometheus-based “MON REST API”. son-monitor might access (real-time) moni-
toring data on the SP using a Websocket-based interface (documented Section 3.6) enabling
seamless DevOps processes alternating between the SDK and SP.

� The interface to the catalogue is now mediated via the Gatekeeper, using the GK
REST API which is documented in Section 3.3.

2.2 Updated SDK workflow

Having small, light-weight SDK components enables multiple developer workflows. This section will
however detail the canonical workflow. This refines the SDK workflow documented in Deliverable
D3.1. The main process is depicted in Figure 2.2, which follows the following steps:

1. In order to be able to deploy a developed service, either a Service Platform or a Service
Platform emulator (son-emu as indicated in the figure), must be initialized by the operator of
the platform. In the described workflow it is started before the service is deployed. However,
this could be done just before step 7 as well.

2. Next, a SONATA development workspace must be created via son-workspace before a
project can be created (this will be done automatically if this step is omitted) by the developer
in the SDK.

3. In order to prepare the development workspace for the development of an individual SONATA
project, a project space is created via son-project by the developer in the SDK.

4. A service can be built using different pre-existing VNFs, SSMs and other artifacts which
might be fetched from a catalogue accessible through the Gatekeeper from the SP using
son-access.

5. Project development using a range of manual actions and/or tools (which might be pro-
vided in the second phase of the project, such as son-vnf and son-ssm) by the developer in
the SDK.

6. The newly released son-validate can be used to assess syntax of descriptors, or to perform
a range of consistency checks across services, components or packages.

SONATA Public 3

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 2.1: Interfaces between the main SDK components

4 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

7. The necessary descriptor files of the service are bundled into a package which can be
deployed using son-package by the developer in the SDK.

8. The resulting package is uploaded to the gatekeeper of the (emulated) Service Platform
via the son-access tool by the developer in the SDK. As a result, an identifier is received
from this interaction.

9. Once uploaded, the received identifier can be used by the developer to actually trigger the
(emulated) Service Platform to deploy it, again using the son-access tool from the SDK.

10. The SP itself might now induce internal (re)-deployment actions in order to make sure the
service gets up and running.

11. In order to monitor particular functional or performance-related service, VNF or SSM pa-
rameters, a deployed service can be monitored using son-monitor from the SDK.

12. The SDK translates the requested monitoring actions into platform specific instructions
(e.g., using the MON REST API interface of the emulator).

13. The (emulated) Service Platform actually starts the requested monitoring actions on the
infrastructure and/or on the VNFs.

14. Monitoring data is generated within the infrastructure or from the VNFs and is sent
back to the Service Platform.

15. The (emulated) Service Platform returns the resulting monitoring data to the SDK in
the form of a stream, file or other format.

16. The SDK tool son-analyze can be used to analyse and visualize the resulting data, helping
the developer to improve the service design and re-start the process at an earlier step of this
process.

17. The new SDK tool son-profile can generate different test setups in order to assess per-
formance and performance trends under one or more multiple resource constraints.

The following sections will go in deeper detail on each of the described tools and how the above
steps are actually conceived in the design of the tools.

SONATA Public 5

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 2.2: SDK development workflow

6 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3 Component design

This section will go deeper into the additional features of this intermediate release of the SONATA
SDK and provide details on some of the planned features for the final release. In order to avoid
excessive verbosity, the sections are expected to be read as an add-on or set of changes of already
existing SDK components compared to D3.1, rather than a full recapitulation of individual design,
functionality and tests.

3.1 son-schema

The SONATA Schemata are used to specify the various descriptors used by the SONATA system.
As described in detail in deliverables D2.2 [3], D2.3 [4], and D3.1 [5] already, schemata are im-
plemented in YAML using the JSON Schema standard [9]. They are based on the ETSI NFV
descriptor specification and can be used by the SDK, the catalogues, and the Service Platform to
validate and verify the actual descriptors.

In the following section we describe the updates and improvements over our first schema imple-
mentation and provide an outlook on future features.

3.1.1 Network function descriptor schema

Network Function Descriptors (VNFDs) are used to specify and provide meta-data to virtualized
network functions. To this end, they contain technical information, like virtual machine images,
that constitutes a network function. This information is used by the Service Platform to manage
the lifecycle of network functions.

The next version of the SONATA VNFDs contains various improvements to adapt to state-of-
the-art developments of other descriptors, like HOT and Tosca, and to adapt the most recent ETSI
NFV specification, which improved and matured over the last year. In addition we corrected some
shortcomings that became obvious during our implementation phase. Namely, the improvements
are:

� Differentiation between different interfaces: In the older version of the VNFD schema,
there was only one type of interface specification. In order to differentiate whether a interface
is public or private, we added internal (private), external (public) and management annota-
tions to ingress and egress ports. This simplifies the integration, say of the FSMs and SSMs,
which can be only connected to internal interfaces, and increases security as, say management
interfaces, are not reachable from public IP addresses any more.

� IPv6 support: As we are running out of IPv4 addresses, modern systems should support the
larger address space of IPv6. To reflect this requirement, we added IPv6 support to the VNFD
respectively. To this end, we added a new interface type that can handle IPv6 addresses.
Thus a VNF now can make use of IPv6 for all of its interfaces, and VNF components can be
interconnected using IPV6. Support of IPV6 by the Service Platform is part of the Service
Platform’s future planned features.

SONATA Public 7

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� Container VDU support: The upcoming version of the Service Platform will support
container-based VIMs like Docker and Kubernetes. Thus, the VNFD has to support not only
virtual machines as a basis for Virtual Deployment Units (VDUs) but also container images,
say for Docker. To this end, we added a new VDU image type, i.e. Docker, to support Docker
images. In the next version, a VNF has to be virtual-machine-based or container-based only.
However, on a longer run, we foresee mixed version containing containers and virtual machines
in parallel as well.

� Automated testing support: In order to further support the DevOps approach, automated
testing is crucial. To this end, the next version of VNFDs contain test section that link to tests
which can be executed by the Service Platform, similar to unit tests in software development.

3.1.2 Network service descriptor schema

Network Service Descriptors (NSDs) are used to specify complex network services that comprise
multiple VNFs described by multiple VNFDs. Similar to the VNFD schema, we adapt the NSD
schema to meet the most recent ETSI NFV specification and corrected some of the shortcomings
we spotted during implementation. Namely, the improvements are:

� NSD as VNF support: In order to improve the re-use of existing resource we enable
recursiveness within the descriptors, meaning that an NSD can not only reference VNFDs
as components, but also other NSDs. To this end, we adapted the identifiers used by the
descriptors and - on the Service Platform and catalogues side - introduced a resolver that
resolves and integrates references artifacts.

� Automated testing support: Similar to the VNFDs, the next version of NSDs contain
test section that link to tests which can be executed by the Service Platform, similar to unit
tests in software development.

3.1.3 Package descriptor schema

Package Descriptors (PDs) are used to provide additional meta-data to NFV packages, which
contain VNFDs, NSDs, and further artifacts, like images and scripts. The packages are very
complete already and less changes are necessary. However, a few improvements have been made,
as detailed below:

� License support: Efficient licensing is a crucial business requirement. In order to support
licensing better, the package descriptor can now link to licenses, licensing scripts, and external
licensing systems which can be used to implement and enforce license policies. This offers a
path to address all kinds of licensing in very general way.

3.2 son-cli

son-cli SDK component is a set of command line tools that are meant to assist the SONATA
service developers on their tasks. It includes a series of tools to cover critical points of service
development within SONATA SDK. This section focuses on the new features, improvements and
implementation details of son-cli tools for SONATA second year. Overall information on the
component can be found in deliverables D3.1 [5] and D2.2 [3].

8 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.2.1 son-access

The son-access is a new component introduced to SONATA Year 2 plan for the SDK side. This
component comes to replace the SDK Catalogue component from the SDK. A new feature for
SONATA Year 2 plan is to have one multipurpose catalogue entity for the whole SONATA ecosys-
tem. This catalogue entity has been decided to be on the Service Platform (SP) side, implemented
by the Service Platform Catalogue. For this reason, SDK Catalogue has been removed from the
SDK and the functionalities it enabled are going to be kept on the SP Catalogue, which must
be an accessible component to the SDK. Furthermore, son-access is a key component inside the
son-cli that enables communication from the SDK to the SP bringing those functionalities from
SDK Catalogue to the SP Catalogues. son-access also points to introduce security features, in
the communication with the SP.

The main goal of son-access component is to provide a secured connection between SDK end-
users and the Service Platform, using their credentials to access the Platform and being able to
submit and request stored package files and descriptors from the SP Catalogue.

3.2.1.1 New features and improvements

The son-access component is a Year 2 new component that is being developed from scratch, but
it also re-uses some components that were responsible for the communication of the SDK Catalogue
with son-cli components. These changes include improvements and implementation of some new
features.

Some SDK components were affected by the removal of the SDK Catalogue. This and changes in
the SDK architecture lead to the need of migrating and upgrading the functionality of the following
son-cli components to son-access sub-components as further described in this section:

� son-push: the component was responsible for submitting SONATA Packages (son-package)
to the Service Platform.

� CatalogueClient: the component was required in order to communicate with the SDK
Catalogue and it allowed to get/post descriptors to SDK Catalogue.

� son-publish: the component was required for the CatalogueClient and the SDK Catalogue.
It was responsible for submitting ‘SDK Project’ elements to the SDK Catalogue.

New son-access component architecture is composed of three main sub-components. Figure 3.1
shows how son-access is internally composed. In order to implement SDK Catalogue functional-
ities in the SP Catalogue, each sub-component is responsible for different processes:

� Access: enables secured API.

� Push: responsible for upstream communication to the SP.

� Pull: responsible for downstream communication from the SP.

Currently, son-access supports new features and present some improvements over former son-cli
components:

Access (Authentication and authorization) The ’access’ sub-component is responsible for security
functions of son-access component. As its name suggests, it enables the SDK to gain secured
access to the Service Platform. It implements the methods to authenticate end-users of

SONATA Public 9

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.1: Initial version architecture for son-access component implementation

SDK to the SP Gatekeeper. Authentication and authorization strongly depends on the User
management component on the Gatekeeper in the SP side. SDK end-users, such developers,
are required to register to the SP, or they are available to log in to the SP using a GitHub
account associated to the SONATA project. When an end-user has a valid account in the
SP, they can start the current son-access workflow to connect from the SDK to the SP.
Figure 3.2 shows the workflow between each component:

1. When authenticating to the SP, SDK end-users (developers) must insert their ‘username’
and ‘password’ to the son-cli (credentials granted when registering). Using “Social login”
credentials such GitHub is still not available from son-access.

2. Then son-access sends developers’ credentials to SP User Management API, which
evaluates the identity of the end-user.

3. If the end-user credentials are valid, SP User Management returns an Access Token (JSON
Web Token or JWT) to son-cli. This Access Token includes the end-user identity, using
OpenID Connect 1.0, which is a simple identity layer on top of the OAuth 2.0 protocol, and
grants authorization based on the role assigned to the end-user (in this case, the developer).
Each Access Token has an expiration time, and a developer can access the platform while
the Token or session is valid. Once the Access Token is received, it will be included in every
message header that is sent to the SP.

If the end-user credentials are not valid, the SP returns an invalid login message.

Push (former son-push and son-publish) This sub-component re-uses and merges code from
son-push and son-publish and implements functions to enable the upstream communication
to the SP using an Access Token. Currently, these functions are:

� Publish SONATA packages (son-package) to the SP. When a son-package is submitted
to the SP Catalogue, it is processed by the Gatekeeper. User Management module in

10 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.2: Main workflows between SDK and SP Gatekeeper through son-access

the Gatekeeper validates the Access Token. Then, the content of the son-package is
split by type and stored on the corresponding catalogue according each descriptor type.
Finally, son-package file itself is stored on the file catalogue. If all the processes succeed,
the Gatekeeper is responsible for returning a response containing the identifier for each
stored descriptor and file to the son-access component.

Pull (former CatalogueClient) This sub-component re-uses and merges code from Catalogue

Client and son-publish and implements functions to enable the downstream communication
from the SP using an Access Token. Currently, these functions are:

� Request SONATA packages (son-packages) from the SP Catalogues. Using an identifier
for the package file (the name trio convention), son-access can request a son-package

that is already stored in the SP Catalogue. User Management module of the Gatekeeper
validates the Access Token of the request and checks its authorization. If it is authorized
the Gatekeeper requests the son-package file from the SP Catalogue, and returns the
file to the son-access component.

� Request descriptors from the SP Catalogues. In the same way as son-packages, using
an identifier for a descriptor, or querying to the Gatekeeper API, a SDK end-user can
request one or multiple descriptors from the SP Catalogue. The process from the SP is
the same for the son-package’ request, however it requests Network Services Descrip-
tors (NSDs), Virtual Network Function Descriptors (VNFDs) and Package Descriptors
(PDs).

3.2.1.2 Planned features

While the component is currently under development, for SONATA Year 2 next releases, son-access
component plans to complete next functionalities. Figure 3.3 shows the complete workflow between
each component:

Access This sub-component will add a security layer to the communications with the SP and will
perform automatically required security processes for each interaction. To achieve this goals,
next features will be addressed:

� Integration with rest of son-cli components, specially son-workspace, which will in-
clude end-user and configuration settings, such log-in credentials.

� Improvements on Access Token management, automatically including Access Token on
each message header to authenticate and authorize developers.

SONATA Public 11

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.3: SDK and SP Catalogues components interaction workflows

Push This sub-component will be integrated with the other sub-components and will face next
changes:

� Submit descriptors such Service and Function descriptors to the SP Catalogue. This
feature is supported partially on the SP Catalogue side, but Gatekeeper API requires
package files instead of descriptors.

� Enable and improve other former son-push functionalities.

Pull As the other sub-components, this will also be integrated and receive improvements:

� Enable downstream functions to retrieve one or multiple descriptors from the SP.

� Enable requests to retrieve son-packages from the SP and store them in developers’
custom file system or storage system according to their preferences.

3.2.2 son-package

The son-package tool has the main role of packaging a project, making it ready and available
for instantiation in the Service Platform. The former specification and design of son-package

is described in D3.1 [5] Previously, the packaging process involved an interaction with the SDK
son-catalogue, however as this component was integrated inside the Service Platform, this in-
teraction will be performed using the son-access tool, in order to retrieve external dependencies.
Moreover, the validation of project and its components that were integrated inside son-package

will be performed by the new son-validate tool.

3.2.2.1 Planned features

Integration with son-access To be able to solve external dependencies, son-package must inter-
act with son-access which will be responsible for retrieving service and function descriptors
from the Service Platform Catalogues. This will not affect the logic and workflow process
of building a service package, but a modification of the inner son-package client to interact
with son-access. To be noted that a cache system for the external dependencies will still
exist and work according to the same logic of the previous implementation.

Integration with son-validate The validation process of services, functions and the final package
itself will also be outsourced to the son-validate tool. As son-validate is being developed
specifically for this purpose, but also providing additional validation features other than
syntax (service integrity and network topology), it is more proficient to use this tool to
perform the validations.

12 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.2.2.2 Planned workflow

As a result from the foreseen modifications, the workflow of son-package will be as illustrated in
Figure 3.4.

Figure 3.4: son-package tool

3.2.3 son-push

The son-push tool as part of the first release of the SONATA SDK will cease to exist as a stand-
alone component. As documented earlier in this section, push-functionality will be integrated into
the new son-access component.

3.2.4 son-workspace

The son-workspace tool plays two major roles, the creation and management of a development
workspace/environment and the creation of projects. A workspace contains a user-specific configu-
ration which can be used for the creation and maintenance of multiple projects. A comprehensive
description of its functionalities and design were specified in D3.1 [5]] and its new features are
specified here.

3.2.4.1 New features

versioning The new requirements of the SDK platform, namely developer authentication, resulted
in drop of support to previous workspace versions. As a result, a new versioning systems was
implemented to force the update of son-workspace to the new version.

SONATA Public 13

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.2.4.2 Planned features

configuration parameters New configuration parameters are being implemented aiming to include
the developer credentials and addresses to multiple SONATA Service Platforms. The devel-
oper authentication credentials to access a specific Service Platform must be stored in its
workspace. Moreover, a developer should be able to access multiple Service Platforms and as
such, the workspace configuration must hold multiple credential entries.

3.2.5 son-validate

The son-validate is a new CLI tool for the SDK with the purpose of aiding the development of
services and functions. This tool was mainly developed to support the validation of SDK projects,
however it is designed to also be utilised outside the SDK scope. Individual service and function
descriptors can be validated independently, without requiring a developer workspace, which makes
it adequate to be used by the SONATA’s Service Platform. The son-validate addresses the
following validation scopes:

� Syntax

� Integrity

� Network Topology

3.2.5.1 Syntax

The service descriptor and corresponding function descriptors are syntactically validated against
the schema templates, available at the son-schema repository.

3.2.5.2 Integrity

The validation of integrity verifies the overall structure of descriptors by inspecting references and
identifiers both within and outside individual descriptors. Because service and function descriptors
have a different structure, it is differentiated in two components, the Service Integrity and the
Function Integrity.

� Service Integrity - Service descriptors typically contain references to multiple VNFs, which
are identified by a composition of the vendor, name and version of the VNF. The integrity
validation ensures that the references are valid by checking the existence of the VNFs. In-
tegrity validation also verifies the connection points of the service. This comprises the virtual
interfaces of the service itself and the interfaces linked to the referenced VNFs. All connection
points referenced in the virtual links of the service must be defined, whether in the service
descriptor or in the its VNF descriptors.

� Function Integrity - Similarly to service descriptors, VNFs may also contain multiple sub-
components, namely the Virtual Deployment Units (VDUs). As a result, the integrity valida-
tion of a VNF follows a similar procedure of a service integrity validation, with the difference
of VDUs being defined inside the VNF descriptor itself. Again, all the connection points used
in virtual links must exist and must belong to the VNF or its VDUs.

14 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.2.5.3 Network topology

The son-validate provides a set of mechanisms to validate and aid the development of the network
connectivity logic. Typically, a service contains several inter-connected VNFs and each VNF may
also contain several inter-connected VDUs. The connection topology between VNFs and VDUs
(within VNFs) must be analysed to ensure a correct connectivity topology. The son-validate

tool comprises the following validation mechanisms. Figure 3.5 shows a service example used to
better illustrate validation issues.

� unlinked VNFs, VDUs and connection points - unconnected VNFs, VDUs and unref-
erenced connection points will trigger alerts to inform the developer of an incomplete service
definition. For instance, VNF#5 would trigger a message to inform that it is not being used.

� network loops/cycles - the existence of cycles in the network graph of the service may
not be intentional, particularly in the case of self loops. For instance, VNF#1 contains
a self linking loop, which was probably not intended. Another example is the connection
between vdu#1 and vdu#3 which may not be deliberate. The son-validate tool analyses
the network graph and returns a list of existing cycles to help the developer in the topology
design. In this example, son-validate would return the cycles:

– [VNF#1, VNF#1]

– [vdu#1, vdu#2, vdu#3, vdu#1]

� node bottlenecks - warnings about possible network congestions, associated with nodes,
are provided. Taking into account the bandwidth specified for the interfaces, weights are
assigned to the edges of the network graph in order to assess possible bottlenecks in the path.
As specified in the example, the inter-connection between vdu#2 and vdu#3 represents a
significant bandwidth loss when compared with the remaining links along the path.

Figure 3.5: Example of a Service Network Topology

Functionalities and Requirements
The son-validate tool offers different validation levels, the syntax, integrity and topology.

However, integrity validation must comprise a syntax validation and in turn topology must comprise
an integrity validation.

As previously mentioned, son-validate can be used inside the SDK, under the developer envi-
ronment, and as an external tool. In the first case, the workspace should be specified in order to
read the environment configuration. Moreover, if an SDK project should be validated a workspace
must be specified. If son-validate is being used outside the SDK it is possible to validate a
service or individual functions. The validation of a service comprises the validation of the service
itself and, if at least integrity is specified, its referenced VNFs. On the other hand, the validation
of functions only verifies each function individually.

SONATA Public 15

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.3 son-catalogue

The son-catalogue component is composed by the API implementation of the SDK Catalogues
and the database for the services and functions descriptors. Development of the SDK Catalogues
is ceased due to the removal of the component in the SDK. The key functionality of the SDK Cata-
logues component was to offer a local API and storage for developers to easily manage descriptors.

While this component is no longer supported in the SDK, it has been stated to support SDK
Catalogues functionalities in the Service Platform Catalogues in order to have one multipurpose
catalogue in the SONATA ecosystem.

3.3.1 Updates and improvements

In SONATA Year 1 version, there were two different catalogues in the SONATA ecosystem, the
Service Platform Catalogues and the SDK Catalogues. However, they both had almost the same
functionalities but for different purposes. For Year 2, it was planned to have one multipurpose
catalogue for the SONATA ecosystem, and then to remove the SDK Catalogues component from
the SDK side. On October 31th, SDK Catalogues was removed as a component from the SONATA
SDK.

Year 1 Service Platform Catalogues was focused on Platform storage for descriptors while SDK
Catalogues was intended to be a local storage in developers’ machine.

While development of this component has ended in release v1.0 version, code is still available in
the GitHub repositories although there is no new updated planned for Year 2. Current status of the
component involves that any development and/or new update will be implemented on Service Plat-
form (SP) Catalogues instead, and SDK Catalogues code will remain available on the repositories
until Year 2 Service Platform Catalogues can fully replace SDK Catalogues functionalities.

SDK Catalogues enabled an API that supported Network Service and Virtual Network Functions
descriptors (NSDs, VNFDs) management and storage on the developers’ local machine. The SDK
son-cli component was fully integrated with the SDK Catalogues in order to push / pull descrip-
tors. SP Catalogues do also support management and storage of NSD and VNFD. In addition,
they also support Package Descriptors (PD) and SONATA packages (son-package) storage. The
Service Platform Gatekeeper controls access to the SP Catalogues from outside the Platform and
other components within the Platform.

In SONATA Year 2, SP Catalogues will replace SDK Catalogues and, in order to meet this
requirement and fill SDK Catalogues functionalities in the SP Catalogues, a new component will
grant access from the SDK to the SP Catalogues. This new component is called son-access, and
it will remain inside the son-cli component (see Section A.4). Updates on the Gatekeeper will be
required in order to grant access to developers from the SDK to the SP Catalogues.

3.3.2 Planned features

SDK Catalogues is no longer supported and no features or updates are planned for Year 2 phase.
The adaptation of SDK Catalogues functionalities in the SP Catalogues is the main goal for the
catalogue component of the SONATA ecosystem. This will require other components to receive
updates in order to successfully support these functionalities. Next list shortly describes involved
components and planned new features or improvements:

� SDK son-access: A new component is being developed under the son-cli component in
the SDK. This component will replace the SDK Catalogues component in the SDK side,

16 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

including updates on the CatalogueClient and former son-push component. It will grant
secured access to the SP Catalogues through the Gatekeeper and will be responsible for
enabling functionalities for submitting and requesting packages to the SP Catalogues. More
details about this new component can be found at Section A.4.

� SP Gatekeeper: It will act as a bridge between SDK son-access and the SP Catalogues. It
features an API that allows users and developers external to the Platform to manage descrip-
tors and packages from the SP Catalogues. It currently supports requests for descriptors and
packages, but only supports submitting packages. The API might be updated to also support
submitting descriptors to the SP Catalogues. More information can be found on Deliverable
D4.2 [7].

� SP Catalogues: This component is not currently having any change in regard to its core
implementation but will be the component responsible for storing descriptors and SONATA
packages from SDK users. It will fully replace the SDK Catalogues functionalities and it will
be secured through the Gatekeeper. In order to gain access and use them, SDK end-users
will be required to be registered to the SONATA Platform. SDK end-users will be free to use
any file system or database locally to save and manage their descriptors.

3.4 son-emu

Our emulation platform called son-emu allows network service developers to locally prototype and
test complete network services in realistic end-to-end multi-PoP scenarios, like already described
in Section 4.2 of [3] and Section 3.4 of [5]. The following sections give insights about new features
available for son-emu and future plans for this component.

3.4.1 New features and improvements

� PoP resource isolation models: The emulator offers a plug-in interface to assign custom
resource models to PoPs. These resource models are then called whenever new compute
instances are requested in a particular PoP and can compute resource limits, such as CPU
cores, CPU shares, or memory, which are then applied to the started container. This mecha-
nism allows developers to emulate resource isolation between PoPs and to simulate cloud-like
overbooking of individual PoPs. There are two example resource models available which are
described and evaluated in [15].

� Gracefully shut down services through the SONATA dummy gatekeeper interface:
The REST interface of the dummy gatekeeper was extended to allow a graceful shutdown of
a previously instantiated service. A shutdown is requested by performing a HTTP DELETE
request on the REST endpoint of the service instance.

� VNFD-based container resource limit support: Resource configurations, such as num-
ber of CPU cores or memory limits that can be defined within a VNFD, are now applied to
the VNF containers running in the emulator when a service is deployed using our dummy
gatekeeper. This improves the compatibility of our dummy gatekeeper to the SONATA de-
scriptors. This feature is also important for the foreseen integration between son-emu and
the planned profiling tool, called son-profile.

� Round-robin placement in dummy gatekeeper: The dummy gatekeeper now distributes
the VNFs of a deployed service evenly across all available PoPs.

SONATA Public 17

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� REST API extension to set CPU limits: Resource allocation can be dynamically altered
during runtime. The resource configuration of the VNFs, deployed as Docker containers, is
exposed via the REST API.

� Isolated E-LAN networks are supported and deployable from the dummy-gatekeeper:
LANs are isolated using a specific VLAN tag for each specified E-LAN network in the service
descriptor file. The OVS switches in the emulated infrastructure network and datacenters
are configured to be used in stand-alone mode so the E-LAN packets are forwarded based on
the switches’ learning capabilities and VLAN tags of their interfaces. For E-Line links, the
interfaces have also unique VLAN tags configured. By using unique VLAN tags on interfaces
belonging to an E-LINE or E-LAN network, it is ensured that the learning virtual switches
isolate network traffic between E-Line and E-LAN networks. More specifically, flooded pack-
ets on an E-LAN network are isolated and not forwarded to other E-Line or E-LAN networks.
E-Line links have dedicated OpenFlow entries in the switches that enable service function
chaining.

� Xterm auto-start for son-emu-cli: The command son-emu-cli xterm <vnf name> can
start an xterm window that attaches to the specified Docker VNF (not yet supported when
son-emu-cli is executed locally and son-emu runs in an isolated VM but this can be solved by
creating a SSH connection to the VM and executing the xterm commands in the VM).

� The son-emu REST API returns the names of connected interfaces of a deployed
VNF: In particular the end of the veth pair which is connected to the emulated PoP switch.
(The other end is included in the container namespace and therefore not visible from the
host). This makes it possible to retrieve the correct interface name that should be monitored,
with e.g. Wireshark, when trying to monitor the network traffic flowing through the emulated
service on the host.

� Bug fixes:

– Added priority field to son-emu-cli networking interface.

– Dummy gatekeeper now returns status 201 when a package is uploaded.

– Dummy gatekeeper does not block if a start command of a VNF container fails.

– CLI compute list output now shows the correct management interface IPs.

3.4.2 REST API

Table 3.1 and Table 3.3 document the REST API endpoint which is provided by son-emu and can
be used to control parts of the emulations. This API is also used by the son-emu-cli tool. All
URLs shown in the tables have to be prefixed with /restapi. All parameters in Table 3.1 have to
be included as JSON into the messages body.

The update of resource allocations of VNFs deployed in son-emu can be controlled via a PATCH
request to a specific VNF. The resource parameters that can be controlled for Docker containers
are exposed: cpu, memory and block IO [8].

18 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Table 3.1: son-emu compute and network request interface endpoint

Action Entity Http
method

Path Parameter

query compute GET /compute/{dc label}
/{compute name}

instantiate compute PUT /compute/{dc label}
/{compute name}

� container specification

� network specification

� image name

� start command

� resource specification

change re-
source allo-
cation

compute PATCH /compute/{dc label}/{compute name}

� resource specification

terminate compute DELETE /compute/{dc label}
/{compute name}

query compute GET /compute/{dc label}
query datacenter GET /datacenter/{dc label}
query datacenter GET /datacenter
install network PUT /network/{vnf src name}

/{vnf dst name}
� src interface

� dst interface

� weight

� match

� bidirectional

� cookie

� priority

remove network DELETE /network/{vnf src name}
/{vnf dst name}

Table 3.2 documents the REST API which controls the export of network metrics related to a
VNF interface or a specific flow in the installed Service Function Chains. This REST API is used
by son-monitor to install custom monitoring metrics. To allow easier implementation of further
extensions, {vnf interface}, {metric} and {cookie} will be implemented as JSON parameters
in the message body, as part of a future update.
{metric} : tx packets, tx bytes, rx packets, rx bytes

{cookie} : chosen integer to identify (a set of) flows installed in the emulator's

network topology to steer the network traffic in the

service

Table 3.2: son-emu monitor request interface endpoint

Action Entity Http
method

Path Description

export net-
work inter-
face metric

monitor PUT /monitor/vnf/{vnf name}
[/{vnf interface}] /{metric}

export traffic rate of specified vnf inter-
face (take first interface of the vnf if no
interface is specified)

SONATA Public 19

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Action Entity Http
method

Path Description

stop ex-
porting
metric

monitor DELETE /monitor/vnf/{vnf name}
[/{vnf interface}] /{metric}

install &
export flow
metric on a
link

monitor PUT /monitor/link/{vnf src name}
/{vnf dst name}

monitor traffic rate of a flow on a specific
link in the service. The link is specified
by the src and dst. After the flow metric
is installed, it is exported, specified by
its cookie. Parameters:

� src interface

� dst interface

� match

� metric

� cookie

� priority

stop moni-
toring flow
metric on a
link

monitor DELETE /monitor/link/{vnf src name}
/{vnf dst name}

export
flow met-
ric of vnf
finterface

monitor PUT /monitor/vnf/{vnf name}
/{vnf interface}
/{metric}/{cookie}

export traffic rate of a flow at a vnf in-
terface, specified by the cookie

stop ex-
porting
flow metric

monitor DELETE /monitor/vnf/{vnf name}
/{vnf interface}
/{metric}/{cookie}

Table 3.3: son-emu response interface endpoint

Action Entity Http
method

Path Responses

query compute GET /compute/{dc label}
/{compute name}

� 200: compute instance informa-
tion dict.

� 500: error

instantiate compute PUT /compute/{dc label}
/{compute name}

� 201: none

� 500: error

terminate compute DELETE /compute/{dc label}
/{compute name}

� 200: none

� 500: error

query compute GET /compute/{dc label}

� 200: compute instances list

� 500: error

20 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Action Entity Http
method

Path Responses

query datacenter GET /datacenter/{dc label}

� 200: datacenter information dict.

� 500: error

query datacenter GET /datacenter

� 200: datacenter list

� 500: error

install network PUT /network/{vnf src name}
/{vnf dst name}

� 200: chain info dict.

� 500: error

remove network DELETE /network/{vnf src name}
/{vnf dst name}

� 200: chain info dict.

� 500: error

export
inter-
face/flow
metric

monitor PUT /monitor/{vnf name}
[/{vnf interface}]/{metric}[/{cookie}]

� 200: info string.

� 500: error

stop ex-
porting
metric

monitor DELETE /monitor/vnf/{vnf name}
[/{vnf interface}]/{metric}[/{cookie}]

� 200: info string.

� 500: error

install flow
metric

monitor PUT /monitor/link/{vnf src name}
/{vnf dst name}

� 200: flow dict.

� 500: error

uninstall
flow metric

monitor DELETE /monitor/link/{vnf src name}
/{vnf dst name}

� 200: info string.

� 500: error

3.4.3 Planned features

Most improvements planned for son-emu for the second half of the project target its integration
with the new son-profile component. However, one major feature that will be investigated is the
integration between son-emu and SONATA’s service platform, as described in the next section. By
integrating son-emu as a dedicated infrastructure, controlled by the SONATA service platform, we
must also keep the design as modular as possible to enable re-use with other service platforms and
compatibility with SONATA SDK features.

SONATA Public 21

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.4.3.1 Integration with WP4 Service Platform Orchestrator and Infrastructure Adaptor

son-emu emulates environments with an arbitrary number of PoPs that can be controlled by one, or
more, MANO systems. In the most simple case the build-in MANO layer, called dummy gatekeeper,
is used to deploy SONATA services in the emulated environment. However, such deployments
would be even more realistic if the MANO system of a real service platform could be connected
to the emulator. One option to do this would be to add additional wrappers for son-emu to the
infrastructure abstraction component of SONATA’s service platform. Another option is to extend
son-emu so that it is able to fake standard cloud interfaces for each of its emulated PoPs, for
example, exposing a REST API that behaves like OpenStack Heat, like shown in Figure 3.6. This
option comes with some obvious benefits. First, SONATA’s service platform does not need any
adaption and we can focus on the son-emu component to do the integration. Second, having
standard cloud interfaces in place might allow to easily integrate our emulation platform with
other MANO systems, such as OSM [12] which increases the usefulness and re-usability of son-emu
substantially.

Figure 3.6: Envisioned integration between son-emu and SONATA’s service platform orchestrator

To create a setup like shown in Figure 3.6 we plan to do some experiments to identify and proto-
type the subset of needed OpenStack API endpoints we have to re-implement to allow the minimal
needed functionality to deploy a service on son-emu by using the MANO system of SONATA’s
service platform.

3.4.3.2 Modular architecture of the emulator’s environment

The service platform developed in WP4 can be used to control the orchestration and monitoring
of services on emulated environments in son-emu. This will allow better integration of all modular
aspects of a SONATA network service in the SDK environment, such as SSM/FSM development
and monitor data gathering/analysis. Furthermore, the development workflow, as described earlier
in Section 2, must be respected.

In a first phase, the SDK environment, the emulator and the service platform will run locally
on the developer’s machine. To keep the SDK environment as light-weight as possible, not all
modules of the Service Platform need to be deployed. A selection will be made to maximize
development support. An example in this context might be message bus access for SSM/FSM
support and orchestration functionality to deploy a SONATA service package on son-emu via the
default SONATA Gatekeeper.

At a later stage, we will investigate how we can exploit the modular approach further, leading

22 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

to an environment where the SDK, Service Platform and Emulator are all running on different
physical node, as illustrated in Figure 3.7. son-emu can be installed in a dedicated VM in this case.
Challenges in this setup are:

� The Emulator is treated as an additional Infrastructure where service can be deployed. When
pushing a service from the SDK, the developer should be able to configure son-emu with a
custom PoP topology and choose it as deployment environment.

� Keep access open to the son-emu REST API. Access control via the Gatekeeper should allow
the SDK to use this REST API for various development features implemented in son-monitor

or son-profile.

Further SONATA emulator and SDK enhancements will be implemented, keeping in mind this
modular approach. The son-emu REST API will be the main interface for SDK development
features to communicate with the emulator.

Figure 3.7: Modular architecture of the SDK, Service Platform and son-emu

3.5 son-profile

son-profile is a new tool planned to be part of SONATA’s SDK to allow network service devel-
opers to automatically profile and test network services before they are deployed to production.
The tool will be released in the second half of the SONATA project and is currently under devel-
opment. The basic idea of son-profile is to deploy network services on SONATA’s emulation
platform and do some load testing under different resource constraints. During these tests a variety
of metrics can be monitored which allows service developers to find bugs, investigate problems or

SONATA Public 23

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

detect bottlenecks in their services. The main purpose of son-profile is to automate big parts
of this workflow to support network service developers as much as possible. The following sections
will shed some light on son-profile early component design and implementation details since the
high-level design and the general concept of NFV profiling was already introduced in Section 3.2.3
of deliverable D2.3 [4].

3.5.1 Design of son-profile

We designed son-profile to be as modular as possible so that other users can easily modify and
extend it, e.g., to be compatible with other service descriptor formats or to interact with other
execution platforms or monitoring systems. Figure 3.8 shows our initial design and the involved
components as well as the artefacts read or written by the tool. It also shows how son-profile

integrates with other components of SONATA to control the execution of profiling experiments.

Figure 3.8: Detailed component breakdown of son-profile tool

The first component in the figure is the Profile Manager which is the central component of the
tool which is responsible to control the workflow and instruct other modules. On the input side,
son-profile offers a CLI which can be used by a developer to start or stop profiling experiments
which are defined in so called Profile Experiment Descriptors (PED). These YAML-based descrip-
tors are read by the PED Parser module which is able to detect and unroll Omnet++-like [11]
parameter macros inside these descriptors. This gives a developer a convenient interface to easily
define complicated parameter studies by editing a single file. These inputs are then passed to
the Configuration Generator which is in charge of computing all necessary service configurations
that should be tested during the planned profiling run. This is typically done by computing the
Cartesian product of all configuration parameters to be tested according to the given PED file.

After all configurations are properly generated, the Service Package Management module is acti-
vated and reads the input package that contains the service to be profiled and that is referenced by
the given PED file. Based on the input package, the Service Package Manager module then gener-
ates one new service package for each generated configuration. The resulting Profiling Packages are
then written to a temporary folder and are deployed one after each other during the actual profiling
phase. It is worth mentioning that the encapsulation of the entire service package management

24 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

into a single component has the advantage that only this component has to be replaced to make
son-profile compatible to other service description and packaging formats, like OSM [12].

Using the generated Profiling Packages, son-profile connects to or starts an execution platform
(default: son-emu) to deploy the first Profiling Package. These profiling services also contain
additional helper VNFs that are called Service Access Points (SAP) and are connected to the
ingress and egress points of the service under test and allow to inject traffic into the service chain,
e.g., iperf (cf. D2.3 [4]). This setup is then executed for a pre-defined time and measurements
are recorded by either son-monitor or based on log files shared by the containers. After these
measurements are done, the service is terminated and the next service configuration (next Profiling
Package) is deployed and tested. To control this entire process, son-profile is able to interface
with external components. First, it can interface with execution environments, like son-emu or any
other service platform, as long as a driver module for it was created. Second, son-profile can
directly interface with the SAP containers, e.g., by SSH, to control the traffic generators and their
properties. Third, son-profile interfaces with son-monitor to kick-off the monitoring process for
each profiling run.

After all profiling runs have been performed, the recorded monitoring data and log files are
collected and processed by the Result Generator which creates the final performance profiles, e.g.,
Network Service Profiles (NSP) and VNF Profiles (VNFP). This component can again be replaced,
e.g., by machine learning algorithms that analyse the results instead of writing the raw values to
disk.

3.5.2 Profiling experiment description

Profiling experiment descriptors (PED) are YAML-based description files that define how a given
network service should be automatically profiled. Figure 3.9 shows an entity relationship diagram
of a PED as it is used in our current prototype. It may evolve over time and will be stable when
the first functional version of ” son-profile” is released. Each PED has some high-level descriptions
fields, such as vendor, name, version, and thus follows the general design of all SONATA description
files. In addition, a PED file contains a service package field which contains a path to the service
package to be used. In each PED file, a developer can define several service and/or function
experiments. A service experiment is used to test or profile a complete network service chain which
may consist of multiple VNFs. A function experiment, in contrast, is used to test or profile a
singe function (a VNF) that is part of the given service. Each experiment contains a reference
that either references the service (NSD) or function (VNFD) that should be used. Further, an
experiment contains parameters, like experiment duration or a time limit to define how long each
configuration will be tested. Inside each experiment, a developer specifies the service access points
(SAP) that should be connected to the service or function in order to send test traffic through
them. Additionally, resource limitations can be specified to test VNFs with different resource
configurations, e.g., test VNF-A with 1, 2, 3, and 4 cores to obtain information about its scaling
behaviour (cf. D2.3 [4]).

3.5.3 VNF profiling case study

We executed a series of initial profiling experiments to validate the feasibility our approach [14].
Figure 3.10 shows some example results of our experiments to indicate how profiling results for a
single VNF, in this case the well-known Snort IDS [1], could look like. The VNF was installed in
an Ubuntu 14.04-based Docker container and the experiments have been executed on a machine
with Intel(R) Core(TM) i7-960 CPU @ 3.20 GHz, 4 physical cores, hyper threading, and 24 GB
RAM. The error bars in all presented results represent 95% confidence intervals.

SONATA Public 25

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.9: Entity relationship diagram of a profiling experiment descriptor (PED)

26 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

All experiments use iperf-based service access point (SAP) containers to send traffic through
the Snort intrusion detection VNF and measure its throughput. We profiled two major versions
of Snort, namely version 2.9 installed from Ubuntu’s package repositories and version 3.0alpha
which is a preliminary release available as source code. Both versions are used in their default
configuration and we profiled them under changing CPU limitations.

Figure 3.10: Example profiling experiment: Throughput comparison of two major snort versions
and changing CPU configurations (CPU time (a) and CPU cores (b))

Figure 3.10 shows the averaged results of 25 repetitions of these experiments. The results provide
insights about the runtime behaviour of these two different Snort versions. Figure 3.10(a) shows
their behaviour under very limited CPU time allocations (son-profile can connect (e.g. via SSH)
and execute the specified commands and start/stop for example traffic generation.

� The specified measurement points should be exported by the monitoring framework.

� Any Resource Limitation for VNFs deployed on son-emu should be controllable via son-emu

’s REST-API.

3.6 son-monitor

In the scope of the entire SONATA project, son-monitor related work in WP3 is focused on
providing helpful and user-friendly ways to monitor developed network services and making this
monitor data available for further analysis and debugging of the service. A demonstration of
the SONATA SDK monitoring features was published in [17]. In its current state, son-monitor
features can gather and store a wide set of metrics on services which are deployed on the son-emu

emulator. A service developer can use the SONATA SDK to view and further analyse these metrics
for troubleshooting, debug or optimization purposes.

In future updates of the SONATA framework, we plan to enhance the monitoring functionality
with the following new features:

� Together with son-emu and son-profile, additional test functionality can be implemented
by using dedicated Test-VNFs with programmable features such as traffic generation and
analysis. Part of the work in son-monitor will be dedicated to the development of such Test-
VNFs and how to control them from the SDK. (e.g. the PED file described in Section 3.5.2)

� son-monitor could leverage standard metric monitoring by also providing ways to monitor
non-numerical data such as packet dumps, log files, configuration files or VNF state informa-
tion.

SONATA Public 27

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� From the SDK, son-monitor should be able to receive monitor data of services deployed in
the actual Infrastructure, using the Service Platform, as described later on in this section.

The current status and further updates regarding son-monitor will be detailed in next sections.
More detailed implementation details and usage is given in Appendix C.

3.6.1 Son-monitor architecture

The planned updates regarding the SDK monitoring features are illustrated in Figure 3.11. The
different functional blocks in the modular architecture of the SONATA SDK are shown. Compared
to previous deliverable D3.1, these updates are already implemented:

� Prometheus Gateway + Database: To respect the modular approach of the SONATA
framework, the Prometheus Gateway is implemented as a Docker container running together
with son-emu (on the same node). The Prometheus Database is also a Docker container but
can be started on any other node (where the SDK is installed). This implementation can
later be made compatible with the Service Platform’s Prometheus Database, which can be
configured to also gather metrics from son-emu ’s Gateway.

� Visualisation using Grafana: To provide a more user-friendly way of monitoring and
debugging, monitored metrics can be visualized using Grafana [10]. This visualizes the queried
metrics from the Prometheus database through a web-based GUI. The Grafana framework is
started as a Docker container. A Monitoring Service Descriptor (MSD) file describes which
metrics need to be visualized and how they should be combined on different graphs. The
son-monitor control code parses this MSD file and translates this to a Grafana Dashboard.
Grafana is then configured to display this dashboard, using its standard REST API. By
default the Grafana REST API and web GUI are available at http://localhost:3000 on
the SDK.

� Network metric exporters in son-emu: Next to the compute, storage and network
related metrics gathered by cAdvisor in son-emu, additional network metrics are gathered
and exported using a query loop. This loop is using an SDN controller to query via the
OpenFlow protocol the packet and byte counters of the (virtual) network interfaces that are
installed in the emulated service. Next to the interface counters, also specific flow counters
can be installed to allow a more finer-grained network traffic monitoring. The set of interface
and flow counters to be monitored can be configured from the MSD file or the son-emu REST
API. All metrics gathered in son-emu are pushed to a Prometheus Push Gateway where they
await to be pulled by the external Prometheus Database in the SDK.

The green boxes in Figure 3.11 depict the updated planned functionality which are further
explained in next sections.

3.6.1.1 Son-monitor REST API

Once monitored metrics are available and stored in the Prometheus Database, they can be queried
and used for further analysis, for example by the son-analyze tool-set. As mentioned in Section 2
and on Figure 3.11 data queries can be done by using the standard Prometheus HTTP API [16].

By default the Prometheus REST API is available at http://localhost:9090 on the SDK.

28 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.11: Different functional blocks in the SDK monitoring framework

3.6.2 Monitor service descriptor

To help a service developer monitor a wide set of metrics, a dedicated descriptor is devised. This
Monitor Service Descriptor (MSD) file instructs the SDK monitoring framework to gather and
display a custom set of metrics. The standard SONATA descriptor files in the service package
(NSD and VNFD) define the metrics that should be gathered when the service is in production.
The MSD on the other hand, defines a broader or different set of metrics that are only needed
during development. It is a dedicated, customizable file since the monitor requirements of a service
in development might be different compared to a service running in production. The MSD file can
be used to dynamically change the monitored parameters of a deployed service in son-emu without
having to interrupt or re-deploy the service. It is given as input to son-monitor who will parse it,
initialize the export of the required metrics, translate it to a Grafana dashboard and configure the
correct Prometheus queries to get the values out of the Database.

The structure of the file is given in Figure 3.12. It can be seen that two major classes of metrics
can be specified:

� VNF metrics: This type of metrics is related to a VNF, interface or service as a whole,
grouped per metric type. This can be used to compare the same metric type for different
VNFs or interfaces.

Table 3.4: Valid VNF Metrics for the MSD file

Parameter Possible values/Type Description

metric type ["cpu", "mem"] Compute related metrics
metric type ["packet loss", "jitter"] Metrics that are exported from a ded-

icated Test-VNF
metric type ["packet rate", "byte rate",

"packet count", "byte count"]

Network metrics for a specific interface

vnf "vnf name:interface" vnf name+interface as used in the
NSD

SONATA Public 29

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Parameter Possible values/Type Description

direction ["tx", "rx"] Monitor the egress or ingress traffic

� NSD link metrics: This type of metrics is related to the network/flow statistics in the
emulated service, grouped per metric type. This can be used to compare in detail different
types of network traffic/flows on the same or different links/chains. If the link is not a
pre-defined chain in the NSD, it cannot be monitored.

Table 3.5 explains the NSD link Metrics which differ from the VNF metrics above.

Table 3.5: Valid NSD Link Metrics for the MSD file

Parameter Possible values/Type/Format Description

link id string link id that is also used in the NSD
metric type ["packet rate", "byte rate",

"packet count", "byte count"]

Network metrics for a specific interface
or flow

source "vnf name:interface" the source of the monitored traffic
destination "vnf name:interface" the destination of the monitored traffic
match string (OpenFlow based match entry) Specify flow using the same syntax as

OpenVSwitch [13]. If match is empty,
total interface counter is used.

Figure 3.12: Entity relationship diagram of a Monitoring Service Descriptor (MSD)

30 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.6.3 Planned features

Future development in WP3’s son-monitor will be related to the topics explained below.

3.6.3.1 Dump packets on any VNF interface deployed in son-emu

A son-monitor command starts a packet dump tool (e.g. tcpdump or wireshark) and looks up the
correct interface/veth pair that is used for the specified VNF/interface in the descriptor. The packet
stream can be saved (as a .pcap file) for further re-use and analysis. As indicated on Figure 3.11,
the packet dump functionality should be executed on the same node where the VNF interface is.
This way, packet capture speed is optimal and the captured stream can be filtered before exported
to the SDK. In practice the packet dump functionality will be first implemented as a micro-service
on son-emu, started via its REST API. The resulting .pcap file can then be transferred to the SDK
side.

Further functionality in this context can focus on the export of other non-numerical data from a
service such as log files, configuration files or VNF state information (e.g. gathered via SSH login to
the VNFs). For the export of this data from the Service platform, special care should be taken to
sufficiently filter out privacy-related parameters (such as ip/mac-addresses and clear text payload).
The gathered files in son-emu or other Infrastructures can be transferred to the SDK and stored
there for further analysis or re-use.

3.6.3.2 Test-VNF functionality

The test VNFs can be deployed in the service’s endpoints on the emulator or can be specified in
the service descriptor and deployed on the SP. They can be used to execute profiling or functional
testing, where Test-VNFs are attached to the service for the duration of the test. In function of the
example services shared via the SONATA GitHub repository, basic functionalities implemented in
Test-VNFs will include:

� Packet generation at the input of a VNF/service.

� Packet monitoring and analysis at the output of a VNF/service.

� Metric export from a Test-VNF to Prometheus.

� SSH login to execute scripts/programs from the SDK.

3.6.3.3 Support for son-profile

As described in Section 3.5, profiling functionality can be implemented in the SONATA framework.
The development done in son-monitor will further support this:

� The PED file defines a set of metrics to be monitored. These values can be queried from the
SDK Prometheus database provided by son-monitor.

� The PED file defines a set of commands that need to be executed on the Test-VNFs to
generate a certain traffic load. son-monitor will provide Test-VNFs which allow execution
of commands by SSH login.

SONATA Public 31

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

3.6.3.4 Web socket connection to the Service Platform

As illustrated in Figure 3.11, a websocket on the Service Platform will be made available on re-
quest from the SDK. The SDK can then connect to this websocket and receive pushed metrics
from services deployed in the Infrastructure controlled by the Service Platform. Access control,
authZ/authC is implemented via the Gatekeeper. The received stream of metrics from the web-
socket on the Service Platform needs to be stored in the Prometheus DB in the SDK. This is also
described in D2.3 [4] (section 3.2.5) and D4.2 [7] (section 7). On the SDK-side a dedicated Metrics
Gateway will be developed which can connect to the websocket and store any received metric in
the SDK Prometheus Database.

3.6.3.5 Functional testing for NFV Services

Using the son-profile and son-monitor features in the SONATA SDK it is possible to automate
the execution of several commands, dynamically changing the traffic load in a VNF or service
and meanwhile monitor the performance. To further extend this to functional testing, an ’assert’
function should exist to check if measured metrics are within pre-defined boundaries. The PED
file could be extended with these asserts and boundaries to fully implement a functional test for a
VNF or service.

Automated functional testing for SONATA services can be implemented with following assump-
tions:

� The SDK can control a deployed Test-VNF by SSH and execute the needed commands to
start the functional tests (e.g. traffic generation).

� The needed monitor data is available in the SDK Prometheus database.

� An extended PED file holds boundary data for the monitored metrics.

� The SDK can query the monitored data and check if the value is between the pre-defined
boundaries (assertions).

3.7 son-analyze

3.7.1 New features and improvements

This sections presents the majors contributions to the son-analyze tool following the D3.1 [5]
release.

3.7.1.1 License compliance

In the first proof of concept version, the R Lang ecosystem was the underlying base of the
son-analyze tool. It used the native compiler to run the SONATA’s R bindings and the RStudio
environment for the graphical interface. RStudio featured the notion of notebook to store and
share an analysis. This setup provided the biggest range of libraries and the best adoption in the
open-source community. But this choice was incompatible with the SONATA’s Apache 2 license.
In particular, parts of the native R library is GPL licensed which infects most of the open-source
libraries. Moreover, the RStudio environment is released under the Affero license. Because the
son-analyze runs inside a container, the copyleft clause is not triggered. But, the situation was
not so clear in terms of derivative work. To avoid license usage issues , the son-analyze tool was
rewritten. Today, its code base is built on top of Python, SciPy and the Jupiter environment. The
Figure 3.13 shows the current son-analyze’s architecture.

32 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

Figure 3.13: Son-analyze current architecture

3.7.1.2 Son-monitor bridge

To operate, the son-analyze tool requires data. When a service is run, the SONATA SP or the
son-monitor tool gather VNFs’ metrics. The first purpose of these metrics is to display to the
service operator the current state of a service and its evolution across a relatively short period
of time. As for the son-analyze tool, the service developer can inject those metrics in various
statistical libraries to infer new pieces of information.

To make this happen, a Prometheus client was developed and shipped inside the son- analyze

library. It comes with helper functions and structures to quickly parse and handle the data coming
from the SONATA SP. With it, the service developer can query metrics to analyse or retrieve
Network Service Descriptors or Network Service Records. By exploring the service’s topology and
components, the service developer will have a better understanding of the generated metrics. The
choice of Prometheus, as a backend to store metrics, has been consistent between the SONATA SP
and the SDK son-monitor. Because of it, the current gathering of metrics is compatible with the
two environment. Now, with the upcoming Y2 release, this situation might slightly change as the
SONATA SP will strengthen its security. As the Gatekeeper will adopt new authentication and
authorization APIs, the flow of metrics will be gated behind a level of security. Thus, the next
version of the son-analyze bindings will have to adapt to these changes.

3.7.2 Planned features

3.7.2.1 New SP bindings

Following the SONATA SP monitoring evolution explained in D4.2, the son-analyze tool might
have to support the new flow mechanism for services’ metrics. With this new feature, the metrics
will be conveyed to the consumers in a live fashion as they are created by the probes in the
SONATA SP. The need of streaming data has yet to be identified as a strong requirement for
son-analyze. But supporting this feature might come handy to let the service developer creates
online algorithms. At the very least, some kind of adaption will be required to comply with the
new Gatekeeper version. In particular, it will roll out some new authentication and authorization
mechanisms to enhance the SONATA SP security. The next Y2 son-analyze version will have to

SONATA Public 33

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

be compliant with them.

3.7.2.2 Adaptation loop

With the new addition of the son-profile tool in the Y2 release, a new lead is currently considered:
an automated learning loop to maximise a service’s QoS. As the son-profile automates the
construction of test harness for services, it builds a performance profile depending on multiple
constraints (for example, the amount of vCPU allocated to VNFs or the amount of traffic on
a link). The service developer can then select the best profile that meet his requirements. For
each profile, the resulting QoS (computed from the metrics) can be seen as a score. Using the
son-analyze tool, the service developer can leverage this process by automatically discover the
service’s topology and constraints that maximize the service’s score.

3.7.2.3 Analysis as a service

As a SDK tool, son-analyze is an optional step that the service developer can use to further
scrutinise a service. In the current version, this tool is not integrated in an automated loop. Right
now, the service developer must implement his analysis and update his service’s topology or VNFs
accordingly to his findings. Those two steps are manuals and, in particular for the first one, it isn’t
the scope of the son-analyze tool to automate them. Yet, it may be interesting to run an analysis
in the SONATA SP to reach a better service adaptation.

A service developer can create, for example, an algorithm that predicts the service CPU load for
the next hour by taking into account the past metrics and the concurrent number of the service’s
clients. By identifying the time ranges when the service’s resource usage reaches its peak and
bottom, the algorithm might learn an optimal scaling profile. But this algorithm lives in the SDK
and it has no direct impact on the running service. Then by considering the dynamic variations of
the algorithm results, it isn’t possible for a service developer to manually apply the scaling decision
all the time.

Figure 3.14: An analysis projection into the SONATA SP

Thus a possible new feature for the son-analyze tool could be to use the SDK CLI tools for

34 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

compacting an analysis into a VNF and a service package. This package could then be instantiated
in the SONATA SP, along side an already existing running service while configuring the necessary
metrics flow. Thus the analysis will be fed with production metrics and make predictions on them.
The Figure 3.14 displays this analysis projection in the SONATA SP. A SSM/FFSM could then
grab this new piece of information to create a better adaptation decision.

3.7.2.4 Default analysis

To demonstrate the capability of the son-analyze tool, some basic algorithms will be supported.
They will take as inputs a service topology and its metrics and computes results in two categories:

� Prediction: of the upcoming workload to scale a service ahead of time.

� Inference: of alerts threshold by detecting anomalies on a given metric.

SONATA Public 35

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

4 Conclusion

For this intermediate SONATA release, we provided an update of the SONATA SDK as a collection
of light-weight tools assisting in the development and testing on a local development machine. The
programming model which unifies these tools is centred on the definition of schema for describing
network services, network functions and associated management functionality.

This deliverable provides updates to existing schema and already existing SDK tools. The SDK
enables now versioning of workspaces, has improved support and unification of monitoring both,
emulated services as well as services deployed on the SP, and modified the way catalogues are ac-
cessed. In this new release, catalogues are securely accessible behind Gatekeeper functionality. The
tool son-validate is a new SDK tool supporting syntactical and semantic validation and verifica-
tion of services and components. In addition, developers might now extend the functional testing
SDK capabilities with performance testing functionality as provided by the new son-profile.

Future releases of the SDK will reinforce and further extend existing components, improve usabil-
ity (e.g., using GUOs), as well as introduce components for assisting developers in the development
of Service and Function Specific Managers (SSM/SSM) or tools to improve interaction with other
MANO platforms and service description formats.

36 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

A Manual of son-cli tools

This manual provides a usage guide for the son-cli tools.

A.1 son-workspace

The son-workspace tool is responsible for creating a development environment, which can be
shared to create and maintain multiple projects. For this reason, it is recommended to create the
workspace at a neutral location, e.g. in user space. Typically, a workspace belongs to a specific
developer, whereas a project may be shared by multiple developers.

The son-workspace tool receives the following arguments:

usage: son-workspace [-h] [--init] [--workspace WORKSPACE] [--project PROJECT]

[--debug]

-h, --help show this help message and exit

--init Create a new sonata workspace

--workspace WORKSPACE location of existing (or new) workspace. If not

specified will assume ’$HOME/.son-workspace’

--project PROJECT create a new project at the specified location

--debug increases logging level to debug

To create and initialize a new workspace execute the following command:

son-workspace --init --workspace /workspace/path

To create a new project, based on the created workspace, execute the following:

son-workspace --workspace /workspace/path --project /project/path

The --workspace argument can be omitted, in which case the workspace will be created at
.son-workspace in the user home directory. Moreover, a workspace and project can be instantiated
in one single command. For example, to create a new project prj1 with a workspace at the default
location, invoke:

son-workspace --init --project prj1

After the initialization of a workspace, a default workspace configuration file is provided, contain-
ing dummy parameters as examples. The workspace configuration file is workspace.yml located
at the workspace root directory. The following paragraphs describe each configuration parameter
in detail.
name: Representative name of the workspace.

log level: Granularity of log messages during the execution. This affects all son-cli tools. The
following levels are accepted: DEBUG; INFO; WARNING; ERROR; CRITICAL. (Default value: INFO)
descriptor extension: Extension of descriptor files. (Default value: yml)

SONATA Public 37

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

catalogues dir: Location of descriptor’s cache storage. Used to store temporary descriptors
when retrieved from private catalogues. (Default value: catalogues)

catalogue servers: Specifies catalogue servers from which the developer wants to retrieve
external components. It also specifies the default catalogues used to publish components. Each
catalogue server entry is configured with the following parameters:

id: Identification of catalogue server

url: Address of the catalogue server, containing the port number of the service (e.g.
http://catalogueserver.com/srv1:4011)

publish: Boolean parameter which defines if, by default, the catalogue should be used
for publishing project components. A value of 'yes' or 'no' must be declared.

schemas local master: The local directory to cache retrieved schema templates from the son-
schema repository. (Default value: $HOME/.son-schema)

schemas remote master: The URL that specifies the son-schema repository address.

A.2 son-package

The son-package tool is used to create a container file of all project components, to be pushed to
the SP Gatekeeper. The packaging process involves the verification and retrieval of dependencies,
the syntax validation of descriptors and the validation of the package itself.

The son-package tool receives the following arguments:

usage: son-package [-h] [--workspace WORKSPACE] [--project PROJECT]

[-d DESTINATION] [-n NAME]

-h, --help show this help message and exit

--workspace WORKSPACE Specify workspace to generate the package. If not

specified will assume ’$HOME/.son-workspace’

--project PROJECT create a new package based on the project at the

specified location. If not specified will assume the

current directory.

-d DESTINATION, --destination DESTINATION

create the package on the specified location

-n NAME, --name NAME create the package with the specific name

The catalogue servers from which son-package will retrieve external dependencies, as well as
the schema templates server, are defined at the workspace configuration. Thus it is only necessary
to indicate the workspace and the project to package.

For instance, in order to package a project named prj1 based on the configuration of a workspace
at the default location, simply run:

son-package --project prj1

Or to specify a workspace located at a different location, invoke:

son-package --workspace /workspace/path --project prj1

38 Public SONATA

http://catalogueserver.com/srv1:4011

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

A.3 son-validate

The son-validate tool can be used to validate the syntax, integrity and topology of SDK projects,
services and functions. It receives the following arguments:

usage: son-validate [-h] [-w WORKSPACE_PATH]

(--project PROJECT_PATH | --package PD |

--service NSD | --function VNFD)

[--dpath DPATH] [--dext DEXT] [--syntax]

[--integrity]

[--topology]

Validate a SONATA Service. By default it performs a validation to

the syntax, integrity and network topology.

optional arguments:

-h, --help show this help message and exit

-w WORKSPACE_PATH, --workspace WORKSPACE_PATH

Specify the directory of the SDK workspace for

validating the SDK project. If not specified will

assume the directory: ’$HOME/.son-workspace’

--project PROJECT_PATH

Validate the service of the specified SDK project. If

not specified will assume the current directory.

--package PD Validate the specified package descriptor.

--service NSD Validate the specified service descriptor. The

directory of descriptors referenced in the service

descriptor should be specified using the argument ’--

path’.

--function VNFD Validate the specified function descriptor. If a

directory is specified, it will search for descriptor

files with extension defined in ’--dext’

--dpath DPATH Specify a directory to search for descriptors.

Particularly useful when using the ’--service’

argument.

--dext DEXT Specify the extension of descriptor files.

Particularly useful when using the ’--function’

argument

--syntax, -s Perform a syntax validation.

--integrity, -i Perform an integrity validation.

--topology, -t Perform a network topology validation.

The different levels of validation, namely syntax, integrity and topology can only be used in the
following combinations:

� syntax (-s)

� syntax and integrity (-si)

SONATA Public 39

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

� syntax, integrity and topology (-sit)

The son-validate tool can be used to validate one of the following components:

� project - to validate an SDK project, the --workspace parameter must be specified, other-
wise the default location $HOME/.son-workspace is assumed.

� service - in service validation, if the chosen level of validation comprises more than syntax
(integrity or topology), the --dpath argument must be specified in order to indicate the
location of the VNF descriptor files, referenced in the service. Has a stand-alone validation
of a service, son-validate is not aware of a directory structure, unlike the project valida-
tion. Moreover, the --dext parameter should also be specified to indicate the extension of
descriptor files.

� function - this specifies the validation of an individual VNF. It is also possible to validate
multiple functions in bulk contained inside a directory. To if the --function is a directory,
it will search for descriptor files with the extension specified by parameter --dext.

Some usage examples are as follows:

� validate a project: son-validate --project /home/sonata/projects/project X --work

space /home/sonata/.son-workspace

� validate a service: son-validate --service ./nsd file.yml --path ./vnfds/ --dext

yml

� validate a function: son-validate --function ./vnfd file.yml --dext yml

� validate multiple functions: son-validate --function ./vnfds/ --dext yml

A.4 son-access

The son-access tool is responsible for authenticate the developer to gain access to the Service
Platform. Once authenticated, son-access allows the developer to submit packages to the Service
Platform Catalogues and request packages and/or descriptors from the Service Platform Catalogues.
This is a work in progress tool which might change its usage during development process.

The son-access tool receives the following arguments:

usage: son-access [-h]

[--auth URL] [-u USERNAME] [-p PASSWORD]

[--push TOKEN_PATH PACKAGE_PATH]

[--pull TOKEN_PATH PACKAGE_ID]

[--pull TOKEN_PATH DESCRIPTOR_ID]

[--debug]

-h, --help show this help message and exit

--auth URL requests an Access token to authenticate the user,

it requires platform url to login,

-u USERNAME username of the user,

-p PASSWORD password of the user

--push TOKEN_PATH

40 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

PACKAGE_PATH

--pull TOKEN_PATH

PACKAGE_ID requests a package or descriptor to the SP by its id,

DESCRIPTOR_ID requires path to the token file

--debug increases logging level to debug

To authenticate a developer and receive an Access Token execute the following command:

son-access --auth <url> -u <username> -p <password>

Valid arguments for this command are:

� url: a string composed of IP address and port, e.g. 127.0.0.1:5001

� username: name for the user account to be authenticated

� password: password for the user account to be authenticated

To push a package execute the following command:

son-access --push /access/path /workspace/path

Valid arguments for this command are:

� /access/path: specific route to the file that contains the token

� /workspace/path: specific route to the package file to be submitted

To pull a package or a descriptor execute the following command:

son-access --pull /access/path <identifier>

Valid arguments for this command are:

� /access/path: specific route to the file that contains the token

� identifier: naming convention that identifies the resource, e.g. vendor.name.version

SONATA Public 41

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

B Manual of son-emu-cli

The following sections describe the command line interface of son-emu-cli.

B.1 son-emu-cli compute

The compute client allows to control the instantiation of compute instances (containers) in an
emulated datacenter (PoP).

$ son-emu-cli compute -h

usage: son-emu-cli [-h] [--datacenter DATACENTER] [--name NAME]

[--image IMAGE] [--dcmd DOCKER_COMMAND] [--net NETWORK]

[--endpoint ENDPOINT]

{start,stop,list,status}

son-emu compute

Examples:

- son-emu-cli compute start -d dc2 -n client -i sonatanfv/sonata-iperf3-vnf

- son-emu-cli list

- son-emu-cli compute status -d dc2 -n client

positional arguments:

{start,stop,list,status}

Action to be executed.

optional arguments:

-h, --help show this help message and exit

--datacenter DATACENTER, -d DATACENTER

Datacenter to which the command should be applied.

--name NAME, -n NAME Name of compute instance e.g. ’vnf1’.

--image IMAGE, -i IMAGE

Name of container image to be used e.g. ’ubuntu:trusty’

--dcmd DOCKER_COMMAND, -c DOCKER_COMMAND

Startup command of the container e.g. ’./start.sh’

--net NETWORK Network properties of a compute instance e.g.

’(id=input,ip=10.0.10.3/24),(id=output,ip=10.0.10.4/24)’

for multiple interfaces.

--endpoint ENDPOINT, -e ENDPOINT

UUID of the plugin to be manipulated.

42 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

B.2 son-emu-cli datacenter

The datacenter CLI can return and list information about the datacenters which are emulated in
the current topology.

$ son-emu-cli datacenter -h

usage: son-emu-cli [-h] [--datacenter DATACENTER] [--endpoint ENDPOINT]

{list,status}

son-emu datacenter

positional arguments:

{list,status} Action to be executed.

optional arguments:

-h, --help show this help message and exit

--datacenter DATACENTER, -d DATACENTER

Datacenter to which the command should be applied.

--endpoint ENDPOINT, -e ENDPOINT

UUID of the plugin to be manipulated.

B.3 son-emu-cli network

The networking client allows to manipulate (install/remove) chaining rules of a running service.

$ son-emu-cli network -h

usage: son-emu-cli [-h] [--datacenter DATACENTER] [--source SOURCE]

[--destination DESTINATION] [--weight WEIGHT]

[--priority PRIORITY] [--match MATCH] [--bidirectional]

[--cookie COOKIE] [--endpoint ENDPOINT]

{add,remove}

son-emu network

positional arguments:

{add,remove} Action to be executed.

optional arguments:

-h, --help show this help message and exit

--datacenter DATACENTER, -d DATACENTER

Datacenter to in which the network action should be

initiated

--source SOURCE, -src SOURCE

vnf name of the source of the chain

--destination DESTINATION, -dst DESTINATION

vnf name of the destination of the chain

--weight WEIGHT, -w WEIGHT

weight edge attribute to calculate the path

--priority PRIORITY, -p PRIORITY

SONATA Public 43

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

priority of flow rule

--match MATCH, -m MATCH

string holding extra matches for the flow entries

--bidirectional, -b add/remove the flow entries from src to dst and back

--cookie COOKIE, -c COOKIE

cookie for this flow, as easy to use identifier (eg.

per tenant/service)

--endpoint ENDPOINT, -e ENDPOINT

UUID of the plugin to be manipulated.

B.4 son-emu-cli monitor

The monitoring CLI allows to setup monitoring metrics which are then received by the son-monitor
tool.

$ son-emu-cli monitor -h

usage: son-emu-cli [-h] [--vnf_name VNF_NAME] [--metric METRIC]

[--cookie COOKIE] [--query QUERY] [--datacenter DATACENTER]

[--endpoint ENDPOINT]

{setup_metric,stop_metric,setup_flow,stop_flow,prometheus}

son-emu monitor

positional arguments:

{setup_metric,stop_metric,setup_flow,stop_flow,prometheus}

setup/stop a metric/flow to be monitored or query

Prometheus

optional arguments:

-h, --help show this help message and exit

--vnf_name VNF_NAME, -vnf VNF_NAME

vnf name:interface to be monitored

--metric METRIC, -m METRIC

tx_bytes, rx_bytes, tx_packets, rx_packets

--cookie COOKIE, -c COOKIE

flow cookie to monitor

--query QUERY, -q QUERY

Prometheus query

--datacenter DATACENTER, -d DATACENTER

Datacenter where the vnf is deployed

--endpoint ENDPOINT, -e ENDPOINT

UUID of the plugin to be manipulated.

44 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

C Manual of son-monitor

This appendix contains technical implementation details and manual how to use the different
functionalities developed in son-monitor.

� son-emu: The extra implementation needed in son-emu to export monitored data.

� SDK features : How to start monitoring from the SDK when deploying a service on son-emu.

C.1 Ports used by son-monitor

The different processes and containers started to enable monitoring functionality in the SDK and
son-emu also open up a number of ports:

Table C.1: Ports opened in the SDK by son-monitor

Port Functionality

3000 Grafana web GUI and HTTP API
9090 Prometheus web GUI and HTTP API

Table C.2: Ports opened in son-emu by son-monitor

Port Functionality

6653 Ryu OpenFlow controller port
8080 Ryu OpenFlow controller REST API
8081 cAdvisor metrics
9091 Prometheus Push Gateway

C.2 son-emu monitor features

At the start-up of son-emu a topology must be loaded. To enable all monitoring features, following
settings should be followed:

def create_topology():

create topology

net = DCNetwork(controller=RemoteController,monitor=True,enable_learning=True)

This enables:

� A remote controller (Ryu controller) to query via the OpenFlow protocol several network and
flow metrics.

� The start-up of the cAdvisor and Prometheus Gateway Docker containers, to gather metrics.

� Enable learning capabilities for the deployed virtual switches in the emulated network topol-
ogy of son-emu (needed to enable E-LAN networks)

SONATA Public 45

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

C.3 SDK son-monitor features

The way to start any monitoring from the SDK has changed since previous deliverable D3.1. While
it remains possible to use the son-monitor CLI, it is now recommended to use the MSD file as
described in Section 3.6.2.

C.3.1 Automatic son-monitor initialization using the MSD file (recommended)

After a service has been deployed on the SDK emulator (son-emu), son-monitor can be used.
Son-monitor uses the son-emu REST API and Prometheus framework.

son-monitor msd -f file.yml : this command reads an msd file, exports the requested metrics
from son-emu and configures a Grafana dashboard. This is the recommended usage for son-monitor.

son-monitor xterm [-n vnf names]: This command starts an xterm for all deployed docker
VNFs in son-emu (if no names are specified, xterms for all vnfs are started)

This command sniffs the packets on a specified vnf interface (if no output file is specified, tcpdump
is started in an xterm window)

son-monitor dump -vnf vnf_name:interface [-f filename.pcap]

son-monitor dump stop

C.3.2 Manual son-monitor initialization via the CLI

son-monitor init : this command starts the Grafana and Prometheus Database containers in the
SDK.

son-monitor init stop : this command stops the Grafana and Prometheus Database contain-
ers in the SDK.

The commands executed in the MSD file can also be executed via the CLI:

Example1: Expose the tx packets metric from son-emu network switch-port where vnf1 (default
1st interface) is connected. The metric is exposed to the Prometheus DB.

son-monitor son-monitor interface start -vnf vnf1 -me tx_packets

Example2: Install a flow entry in son-emu, monitor the tx bytes on that flow entry. The metric
is exposed to the Prometheus DB.

son-monitor flow_total start -src vnf1 -dst vnf2 \

-ma "dl_type=0x0800,nw_proto=17,udp_dst=5001" -b -c 11 -me tx_bytes

Example3: Send a query to the Prometheus DB to retrieve the earlier exposed metrics, or
default metric exposed by cAdvisor. The Prometheus query language can be used.

son-monitor query --vim emu -d datacenter1 -vnf vnf1 \

-q ’sum(rate(container_cpu_usage_seconds_total{id="/docker/<uuid>"}[10s]))’

The son-emu REST API is addressed by son-monitor to export the requested metrics from a
service deployed on son-emu. The son-monitor CLI that can be used to manually start monitoring
actions from the SDK:

46 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

usage: son-monitor [-h] [--vnf_names [VNF_NAMES [VNF_NAMES ...]]] [--vim VIM]

[--vnf_name VNF_NAME] [--datacenter DATACENTER]

[--image IMAGE] [--dcmd DOCKER_COMMAND] [--net NETWORK]

[--query QUERY] [--input INPUT] [--output OUTPUT]

[--source SOURCE] [--destination DESTINATION]

[--weight WEIGHT] [--match MATCH] [--bidirectional]

[--priority PRIORITY] [--metric METRIC] [--cookie COOKIE]

[--file FILE]

{init,query,interface,flow_mon,flow_entry,flow_total,

msd,dump,xterm}

[{start,stop}]

Install monitor features on or get monitor data from SONATA platform/emulator.

positional arguments:

{init,query,interface,flow_mon,flow_entry,flow_total,msd,dump,xterm}

Monitoring feature to be executed

interface: export interface metric (tx/rx bytes/packets)

flow_entry : (un)set the flow entry

flow_mon : export flow_entry metric (tx/rx bytes/packets)

flow_total : flow_entry + flow_mon

init : start/stop the monitoring framework

msd : start/stop monitoring metrics from the msd

(monitoring descriptor file)

dump: start tcpdump for specified interface (save as .pcap)

xterm: start an x-terminal for specific vnf(s)

{start,stop}

Action for interface, flow_mon, flow_entry, flow_total:

start: install the flow entry and/or export the metric

stop: delete the flow entry and/or stop exporting the metric

Action for init:

start: start the monitoring framework

(cAdvisor, Prometheus DB + Pushgateway)

stop: stop the monitoring framework

Action for msd:

start: start exporting the monitoring metrics from the msd

stop: stop exporting the monitoring metrics from the msd

optional arguments:

-h, --help show this help message and exit

--vnf_names [VNF_NAMES [VNF_NAMES ...]], -n [VNF_NAMES [VNF_NAMES ...]]

vnf names to open an xterm for

--vim VIM, -v VIM VIM where the command should be executed (emu/sp)

--vnf_name VNF_NAME, -vnf VNF_NAME

vnf name:interface to be monitored

SONATA Public 47

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

--datacenter DATACENTER, -d DATACENTER

Datacenter where the vnf is deployed

--query QUERY, -q QUERY

Prometheus query

--source SOURCE, -src SOURCE

vnf name:interface of the source of the chain

--destination DESTINATION, -dst DESTINATION

vnf name:interface of the destination of the chain

--weight WEIGHT, -w WEIGHT

weight edge attribute to calculate the path

--match MATCH, -ma MATCH

string to specify how to match the monitored flow

--priority PRIORITY, -p PRIORITY

priority of the flow match entry, installed to get counter

metrics for the monitored flow

--bidirectional, -b add/remove the flow entries from src to dst and back

--metric METRIC, -me METRIC

tx_bytes, rx_bytes, tx_packets, rx_packets

--cookie COOKIE, -c COOKIE

integer value to identify this flow monitor rule

--file FILE, -f FILE service descriptor file describing

monitoring rules or pcap dump file

C.4 Manual of son-analyze

The following section describes the command line interface of son-analyze.

$ son-analyze --help

usage: son-analyze [-h] [-v] [--docker-socket DOCKER_SOCKET]

{version,bootstrap,run,fetch} ...

An analysis framework creation tool for Sonata

positional arguments:

{version,bootstrap,run,fetch}

version Show the version

bootstrap Bootstrap son-analyze

run Run an environment

fetch Fetch data/metrics

optional arguments:

-h, --help show this help message and exit

-v, --verbose increase verbosity

--docker-socket DOCKER_SOCKET

An uri to the docker socket (default:

unix://var/run/docker.sock)

48 Public SONATA

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

D Abbreviations

API Application Programming Interface

CLI Command Line Interface

CPU Central Processing Unit

DB Data Base

FSM Function Specific Manager

GitHub Git repository hosting service

IDS Intrusion Detection System

JSON JavaScript Object Notation

JWT JSON Web Token

LAN Local Area Network

MANO Management and Orchestration

MSD Monitor Service Descriptor

NSD Network Service Descriptor

NSP Network Service Profile

OVS Open Virtual Switch

PED Profile Experiment Descriptor

PoP Point of Presence

REST Representational State Transfer

SAP Service Access Point

SDK Software Development Kit

SP Service Platform

SSM Service Specific Manager

VLAN Virtual LAN

VNF Virtual Network Function

VNFD VNF Descriptor

VNFP VNF Profile

YAML Yet Another Markup Language

SONATA Public 49

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

E Bibliography

[1] Cisco. Snort Ids/Ips, 2016. Online at http://www.snort.org.

[2] Jupyter Community. Jupyter notebook. Website, Dec 2016. Online at http://jupyter.org/.

[3] SONATA consortium. D2.2 architecture design. Website, December 2015. Online at http:

//www.sonata-nfv.eu/content/d22-architecture-design-0.

[4] SONATA consortium. D2.3 updated requirements and architecture design. Website, December
2016. Online at http://www.sonata-nfv.eu/.

[5] SONATA consortium. D3.1: Basic sdk prototype. Website, May 2016. Online at http:

//www.sonata-nfv.eu/content/d31-basic-sdk-prototype.

[6] SONATA consortium. D4.1: Orchestrator prototype. Website, May 2016. Online at http:

//www.sonata-nfv.eu/content/d41-orchestrator-prototype.

[7] SONATA consortium. D4.2: Service platform operational release and documentation. Website,
December 2016.

[8] Docker resource allocation parameters that can be dynamically updated. Online at https:

//docs.docker.com/engine/reference/commandline/update/.

[9] F. Galiegue, K. Zyp, and G. Court. Json schema: core definitions and terminology - draft 4.
Website, March 2013. Online at http://json-schema.org/.

[10] The leading tool for querying and visualizing time series and metrics. Online at http://

grafana.org/.

[11] OpenSim Ltd. Omnet++ Network Simulator. Website, 2016. Online at https://omnetpp.org.

[12] OSM. Google guice: Agile lightweight dependency injection framework, 2016. Online at
https://osm.etsi.org/.

[13] Openflow based syntax for flow matching. Online at http://openvswitch.org/support/

dist-docs/ovs-ofctl.8.txt.

[14] Manuel Peuster and Holger Karl. Understand Your Chains: Towards Performance Profile-
based Network Service Management. In 5th European Workshop on Software Defined Networks
(EWSDN'16). IEEE, 2016.

[15] Manuel Peuster, Holger Karl, and Steven van Rossem. MEdiCinE: Rapid Prototyping of
Production-Ready Network Services in Multi-Pop Environments. In Network Function Virtu-
alization and Software Defined Network (NFV-SDN), 2016 IEEE Conference on. IEEE, 2016.

[16] Http api for querying the prometheus database. Online at https://prometheus.io/docs/

querying/api/.

50 Public SONATA

http://www.snort.org
http://jupyter.org/
http://www.sonata-nfv.eu/content/d22-architecture-design-0
http://www.sonata-nfv.eu/content/d22-architecture-design-0
http://www.sonata-nfv.eu/
http://www.sonata-nfv.eu/content/d31-basic-sdk-prototype
http://www.sonata-nfv.eu/content/d31-basic-sdk-prototype
http://www.sonata-nfv.eu/content/d41-orchestrator-prototype
http://www.sonata-nfv.eu/content/d41-orchestrator-prototype
https://docs.docker.com/engine/reference/commandline/update/
https://docs.docker.com/engine/reference/commandline/update/
http://json-schema.org/
http://grafana.org/
http://grafana.org/
https://omnetpp.org
https://osm.etsi.org/
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
https://prometheus.io/docs/querying/api/
https://prometheus.io/docs/querying/api/

Document: SONATA/D3.2
Date: December 23, 2016 Security: Public
Status: To be approved by EC Version: 1.0

[17] Steven Van Rossem, Wouter Tavernier, Manuel Peuster, Didier Colle, Mario Pickavet, and Piet
Demeester. Monitoring and debugging using an Sdk for Nfv-powered telecom applications. In
IEEE NFV-SDN (NFVSDN2016). IEEE, 2016.

SONATA Public 51

	List of Figures
	List of Tables
	Introduction
	Structure of the deliverable

	Updated SDK design and new components
	Updated SDK interfaces
	Updated SDK workflow

	Component design
	son-schema
	Network function descriptor schema
	Network service descriptor schema
	Package descriptor schema

	son-cli
	son-access
	son-package
	son-push
	son-workspace
	son-validate

	son-catalogue
	Updates and improvements
	Planned features

	son-emu
	New features and improvements
	REST API
	Planned features

	son-profile
	Design of son-profile
	Profiling experiment description
	VNF profiling case study

	son-monitor
	Son-monitor architecture
	Monitor service descriptor
	Planned features

	son-analyze
	New features and improvements
	Planned features

	Conclusion
	Manual of son-cli tools
	son-workspace
	son-package
	son-validate
	son-access

	Manual of son-emu-cli
	son-emu-cli compute
	son-emu-cli datacenter
	son-emu-cli network
	son-emu-cli monitor

	Manual of son-monitor
	Ports used by son-monitor
	son-emu monitor features
	SDK son-monitor features
	Automatic son-monitor initialization using the MSD file (recommended)
	Manual son-monitor initialization via the CLI

	Manual of son-analyze

	Abbreviations
	Bibliography

