

<u>D</u>-band <u>RA</u>dio 5G netw<u>O</u>rk tech<u>n</u>ology (DRAGON)

Vladimir Ermolov

VTT

DRAGON

- Innovation project
- Duration: 3 years
- Starting date: 01.12.2020
- Coordinator: VTT
- Consortium: 13 partners from six countries: France, Finland, Italy, Austria, Spain and Turkey

Vision

Nearly 10x wireless speed increase every 4 years. Extrapolating into the future, 100Gb/s will be required around 2020

> 50% world population in dense urban areas responsible for the majority of wireless traffic

New network architectures required to address high density urban environment. Macro-, micro- and pico-cell coverage, complement each other and need high speed, flexible and lowcost wireless backhaul solutions

DRAGON will reap the fruits of earlier R&D investments in mmW backhaul enabling technologies (H2020 DREAM project (01.09.17 - 28.02.21) http://www.h2020-dream.eu) to demonstrate on field conditions a high-capacity D-band (130-174.8 GHz) wireless back/front haul solution able to address the needs of 5G transport network.

Available portions of D-band for wireless communications (31.8 GHz is available)

ECC Recommendation (18)01 on "Radio frequency channel/block arrangements for Fixed Service systems operating in the bands 130-134 GHz, 141-148.5 GHz, 151.5-164 GHz and 167-174.8 GHz".

DREAM architecture

DREAM technologies for DRAGON

D band active antenna arrays

Highly integrated D-band transceiver analog front-end chip set in low-cost SiGe BiCMOS process

Low-cost integration technologies for D band radio systems based on advanced PCB technologies

Demo of DREAM D band link

DRAGON objectives

On-field network demonstration of a wireless link at data rate up to 100 Gbs in D-band, based on:

- low-cost SiGe BiCMOS transceiver analog front end derived from the chip set developed in the DREAM project;
- ≥1024 element phased array active antenna;
- ≥256-QAM digital base band processor with Adaptive Modulation;
- Flexible Duplexing (fFDD), Full Duplexing (FD) and LoS-MIMO functionalities.

DREAM & DRAGON

DRAGON	main features	DREAM	DRAGON
	Active phased antenna array	✓	✓
	Antenna element number	16	Up to 1024
	Outdoor enclosure and Radome	_	✓
	Antenna array processor	-	✓
	Antenna numbers	2	4
	Digital base band	-	\checkmark
	Modem	Out of the self	Advanced Dual carrier
	Hop lengths	Up to 15m	> 1000m
	ready for LoS MIMO	-	\checkmark
February 13, 2021	Demonstrator	test lab	on field (5G network)

D band transceiver with fine beam steering

10

Project Organization

February 13, 2021 11

Partners

https://www.h2020-dragon.eu/

Vladimir.ermolov@vtt.fi

February 13, 2021 13