
Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 1 of (120)

D2.2 - 5GinFIRE Experimental Infrastructure Architecture and 5G

Automotive Use Case (update)

Editor: Diogo Gomes, IT-Av

Deliverable nature: Report (R)

Dissemination level: Public (PU)

Date: planned | actual 30 June 2018 29 October 2018

Version | No. of pages 1.0 120

Keywords: State of the art, use cases, architecture, 5G, MANO, Automotive,
Smart cities

Abstract

This deliverable is an update to the previously submitted D2.1. It is the result of the project work in
implementing the architecture previously proposed, updating technologies used and correcting
architectures flaws identified during implementation. In addition this deliverable updates the
description of the use cases that are to be demonstrated, including those identified during the first
open call. This deliverable is the guide for the ongoing work of the project on Experimentation
Architecture Tooling, Core MANO Service Management and Orchestration, as well as 5G
Infrastructure Integration and Experimentation Enablement.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 2 of (120)

Disclaimer

This document contains material, which is the copyright of certain 5GINFIRE consortium parties, and
may not be reproduced or copied without permission.

All 5GINFIRE consortium parties have agreed to full publication of this document.

Neither the 5GINFIRE consortium as a whole, nor a certain part of the 5GINFIRE consortium, warrant
that the information contained in this document is capable of use, nor that use of the information is
free from risk, accepting no liability for loss or damage suffered by any person using this information.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732497. This
publication reflects only the author’s view and the European Commission is not
responsible for any use that may be made of the information it contains.

Impressum

Full project title: Evolving FIRE into a 5G-Oriented Experimental Playground for Vertical Industries

Short project title: 5GINFIRE

Number and title of work-package: WP2 - Reference Architecture & Internal Use Case

Number and title of task:

- Task 2.1 - SDN, NFV, SFC Components and Technologies: Adopting State of the Art

- Task 2.2 - 5G Automotive Use Case and Beyond: Detailed Requirements and Design

Specifications

- Task 2.3 - Experimental Infrastructure Architecture, Model Entities Specification and Design

Document title: 5GinFIRE Experimental Infrastructure Architecture and 5G Automotive Use Case

Editor: Diogo Gomes, INSTITUTO DE TELECOMUNICACOES

Work-package leader: Diogo Gomes, INSTITUTO DE TELECOMUNICACOES

Copyright notice

 2018 INSTITUTO DE TELECOMUNICACOES and members of the 5GINFIRE consortium

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 3 of (120)

Executive summary

In 5G, virtualisation is a key concept recognised and adopted by the standardisation bodies such as
ETSI and 3GPP. Following the high industry interest to exploit the promised benefits of virtualisation
at all levels, i.e. compute, storage and networking, a plethora of initiatives have started worldwide to
deliver specifications, open source and commercial products that enable the construction,
deployment and operation of general virtualised infrastructures.

In the first part of this document we identify and briefly assess the technologies that are available for
building the 5GINFIRE experimental infrastructure. We do this for a selected number of popular
technologies, which based on the community engagement, are likely to become pillars for the
commercial deployment of 5G networks by 2020 and beyond. Obviously, an experimental
infrastructure should be as close as possible to an anticipated 5G network, which is a moving target
today.

The assessment of the technologies for consideration in building the 5GINFIRE experimental
infrastructure was based on a set of criteria that are important for a research and innovation project.
These criteria are: (i) open source availability that provides us the benefit of a wider community
engagement and gives us the flexibility to try out alternative options and features by changing the
code, (ii) maturity of the product that provides us confidence to master the technology due to ease
of installation and good documentation, (iii) standard compliance that increases the likelihood of the
deployed infrastructure is as close as possible to the adopted standards in the area, (iv) available
feature set to increase the richness of features of our own infrastructure and finally (v) experience of
the partners in the project with certain open source products in order to better manage the learning
curve that sometimes can be very steep.

Following these criteria we assessed technologies in the areas of general cloud computing, software
defined networking (SDN) and network function virtualisation (NFV) which is a wide area and
includes NFV management and orchestration, NFV infrastructure and network service descriptors.

The Future Internet Research and Experimentation community has also started initiatives to deploy
virtualised network testbeds, as for example in the cases of FED4FIRE and FUTEBOL. We briefly
analyse the status of these initiatives.

In the second part of this document we elaborate of the 5GINFIRE use cases that are used as source
of requirements for building the infrastructure and to showcase its capabilities. The use cases are
positioned in the areas of the automotive vertical sector and smart cities.

In the automotive case the requirements are extracted from scenarios such as sensing-based and
video-camera-based assisted driving, which use a multitude of information sources (intra-vehicle, as
well as inter-vehicle and vehicle-to-infrastructure) to enable assisted driving. A second scenario is
providing event recording services in virtualised multi-stakeholder network environments to
showcase function virtualisation of a service that collects important vehicle data and stores them in
the network in a tamper-proof way, mimicking the functionality of a “black-box”.

In the smart cities case the requirements are derived from the scenarios to facilitate the use and
exploitation of available open data provided by existing sensor deployments in cities, as well as
interfacing with the capabilities of the existing deployments of sensor functionality in the testbeds of
the project partners in Bristol and Aveiro in Europe and São Paulo and Uberlândia in Brazil.

In the third part of this document the 5GinFIRE architectural approach is described that is based on
model entities specification. 5GINFIRE identifies four main actor roles, namely the experimenter, the
virtualised function (VxF) developer, the testbed operator and the service administrator. It specifies
the experimentation workflow that illustrates the interactions among the four actor roles and
exemplifies the interactions through usage scenarios.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 4 of (120)

In the sequel it specifies the architecture by identifying the internal and external components and
their interfaces that are based on existing standards to the extent that such standards exist. A portal
is described that supports the experimenter in obtaining access to testbed resources and available
functionality, e.g. available VxFs that can be orchestrated and deployed. Finally a number of support
services for experimenters are identified and were deployed in order to increase ease of use of the
experimental infrastructure, e.g. helpdesk, tools repository, wiki-based documentation etc.

This document has served as the basis for the project on Experimentation Architecture Tooling, Core
MANO Service Management and Orchestration, as well as 5G Infrastructure Integration and
Experimentation Enablement.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 5 of (120)

Main changes

Deliverable 2.2 – Experimental Infrastructure Architecture and 5G Automotive Use Case is an
updated version of Deliverable 2.1 which has the same name. The purpose of this deliverable was
from the beginning to update the architecture and use-case with changes done during
implementation of the architecture and use case. As such, most of the text is the same already found
in D2.1 with small changes addressing State-of-the-art updates that can impact the project (e.g.
ONAP has become a relevant project to 5GinFIRE, but was not at the time of D2.1) information of
processes adopted (mainly section 3.3), the migration from Bristol is Open to 5GUK testbed and the
new use case deployed in Bristol.

In order to ease the work of the reader, we list here relevant changes:

- Updates in section 2.5.1 (OSM, ONAP replaces ECOMP)

- Section 2.5.4 has been updated with what is being used in the project and current project

roadmap.

- Section 2.6 now describes how 5GinFIRE actually federates with FED4FIRE.

- Section 3.2.1 adds the “Experiment Mentor” actor, who has played an import role in the

project and was absent from the original architecture.

- A new section 3.3.1 explains the infrastructure process.

- A new section 3.3.2 explains how VNF are validated.

- A new section 3.3.3 explains how NSD’s are validated.

- A new section 3.3.4 explains the deployment process.

- A new section 3.5.1.5 identifies the issue tracking system adopted by 5GinFIRE

- Section 3.7.2 has been updated to the currently used testbed status (infrastructure and

services)

- Section 3.9.1 has been updated with the current testbeds being used (note the change from

BiO to 5GUK), namely the reference to the 1st open call testbeds described in D5.1.

- In section 4.2 some of the diagrams have been update, as well as some details have been

clarified (taking into account the open call requests for clarification)

- A new section 4.2.2.3 presents smart city use cases deployed in Bristol.

- Section 4.3.3.2 replaces Bristol is Open testbed with 5GUK test network.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 6 of (120)

List of authors and reviewers

List of authors

Company Authors

B-COM Riwal Kerherve, Olivier Choisy,
Michel Corriou

INSTITUTO DE
TELECOMUNICACOES

Diogo Gomes, Susana Sargento,
Miguel Luis, Rui L. Aguiar

UNIVERSIDAD CARLOS III
DE MADRID

Ivan Vidal.

UNIVERSITY OF BRISTOL Aloizio Pereira da Silva, Reza Nejabati

UNIVERSITY OF PATRAS Spyros Denazis, Christos Tranoris

UNIVERSIDADE FEDERAL
DE UBERLANDIA

Flavio de Oliveira Silva

UNIVERSIDADE DE SAO
PAULO

Rubens Mendonça

TELEFONICA
INVESTIGACION Y
DESARROLLO SA

Diego R. Lopez, Juan Rodríguez

EURESCOM Halid Hrasnica, Anastasius Gavras

List of reviewers

Company Reviewers

EURESCOM Anastasius Gavras

EASY GLOBAL MARKET
SAS

Franck le Gall

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 7 of (120)

Table of Contents

Executive summary ... 3

List of authors and reviewers .. 6

Table of Contents .. 7

List of figures ... 9

List of tables .. 11

Abbreviations .. 12

1 Introduction ... 14

2 Adopting State of the Art on Cloud, SDN and NFV .. 15

2.1 Objectives .. 15

2.2 Methodology ... 17

2.3 Cloud.. 18

2.3.1 VIM Solutions .. 19

2.3.2 5GinFIRE Candidates.. 21

2.4 SDN .. 22

2.4.1 SDN Controllers ... 22

2.4.2 5GinFIRE Candidate(s) ... 30

2.5 NFV .. 31

2.5.1 NFV management and orchestration .. 31

2.5.2 NFV Infrastructure ... 43

2.5.3 Network Service Descriptors: Models and Catalogue solutions for Describing and
Configuring service topologies .. 48

2.5.4 5GinFIRE Candidate(s) ... 50

2.6 FIRE .. 53

2.6.1 FED4FIRE and Authentication .. 53

2.6.2 Concepts slice, sliver and Rspecs ... 54

2.7 Conclusions .. 55

3 Experimental Infrastructure Architecture, Model Entities Specification and Design 57

3.1 Introduction ... 57

3.2 5GinFIRE actors and terminology .. 57

3.2.1 Actors... 57

3.2.2 Terminology ... 57

3.3 5GinFIRE Experimentation Workflow .. 58

3.3.1 Experimenting with 5GinFIRE infrastructure process ... 59

3.3.2 Validating a VNF (manual process)_ .. 61

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 8 of (120)

3.3.3 Validating a NSD (manual process)_... 61

3.3.4 Handling Deployment Request Process .. 62

3.4 5GinFIRE experimentation platform usage scenarios and requirements 63

3.5 5GinFIRE architecture .. 70

3.5.1 Internal and external components and their interfaces ... 70

3.6 Exposed VxFs and APIs to the experimenters ... 76

3.6.1 5G-In-A-Box ... 76

3.7 Testbed components and extensions to support 5G experimentation 77

3.7.1 5G-In-A-Box ... 77

3.7.2 Testbed components in the 5TONIC laboratory.. 81

3.8 Resources reservation ... 83

3.9 Integration and deployment strategy ... 83

3.9.1 Integration ... 83

3.9.2 Deployment ... 84

3.10 Experimentation Support components and services .. 84

3.10.1 Helpdesk .. 84

3.10.2 Wiki .. 86

4 5GinFIRE Use Cases ... 87

4.1 Introduction ... 87

4.2 Use Cases ... 87

4.2.1 Automotive Domain .. 87

4.2.2 Smart Cities Domain .. 93

4.3 Testbeds in 5GinFIRE Use Cases .. 104

4.3.1 Automotive .. 104

4.3.2 Smart Cities.. 106

4.3.3 Additional Testbeds Required in 5GinFire ... 108

5 Conclusion ... 114

References ... 115

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 9 of (120)

List of figures

Figure 1: 5GinFIRE Experimentation Workflow, Technologies and Infrastructures.............................. 15

Figure 2: ETSI's NFV Reference model... 16

Figure 3: OP-NFV building blocks .. 17

Figure 4: : OpenDaylight - Operational view ... 22

Figure 5: ONOS subsystem .. 25

Figure 6: OpenContrail System Overview [22] .. 27

Figure 7: Ryu Architecture ... 29

Figure 8: NFV-MANO Architecture .. 32

Figure 9: OSM Mapping to ETSI NFV MANO ... 33

Figure 10: OpenMANO Architecture ... 36

Figure 11: Open Baton Architecture ... 38

Figure 12: ONAP Platform ... 39

Figure 13: ONAP Architecture ... 40

Figure 14: Juju in ETSI-NFV MANO Structure .. 42

Figure 15: OPNFV Platform Architecture (Release Fraser) .. 44

Figure 16: Conceptual architecture of Ionic [77] .. 47

Figure 17: Concepts of slices, slivers [49] .. 55

Figure 18: 5GinFIRE experimentation workflow overview.. 58

Figure 19: Use cases diagram .. 64

Figure 20: Architectural approach of 5GinFIRE ... 70

Figure 21: b<>com * Unifier GW * functional Architecture Overview ... 78

Figure 22: 5G-In-A-Box deployed as a PNF locally to testbed ... 80

Figure 23: b<>com * Unifier GW * deployed as a set of VNF locally to testbed 81

Figure 24: 5GinFIRE environment support organization ... 85

Figure 25: Support basic process flow ... 85

Figure 26: Interactions between sensors, vehicles and access points/road side units 88

Figure 27: 5GINFIRE architecture in the ITS and IoT infrastructure .. 89

Figure 28: Sensing-based automotive scenario for assisted driving. .. 90

Figure 29: Emulation of traffic signal devices. .. 91

Figure 30: Scenario for video-camera-based assisted driving. .. 92

Figure 31: 5GINFIRE architecture in the Smart City and IoT infrastructure .. 96

Figure 32: 5GINFIRE IoT Integration Components .. 97

Figure 33: Networks and Service requirement for smart cities .. 98

Figure 34: Vehicular Network Architecture... 104

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 10 of (120)

Figure 35: OBU .. 105

Figure 36: RSUs mounted in the municipality building and in a traffic light 106

Figure 37: 5GINFIRE Testbeds for Smart Cities ... 107

Figure 38: Distribution of the testbed access technologies .. 109

Figure 39: University of Bristol top level system architecture .. 110

Figure 40: Software used for management and orchestration of the testbed resources 111

Figure 41: FIWARE IoT Platform .. 113

Figure 42: FIWARE IoT General Infrastructure .. 113

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 11 of (120)

List of tables

Table 1: SDN Controllers Comparative Analysis .. 30

Table 2: NV Comparative Analysis ... 51

Table 3: Selected technologies .. 56

Table 4: Testbed VIM version .. 83

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 12 of (120)

Abbreviations

5G : 5th Generation

AGPL : GNU Affero General Public License

API : Application Programming Interface

BSS : Business Support System

CI/CD : continuous integration/continuous deployment

DCU Data Collection Unit

DSRC : Dedicated Short Range Communication

ETSI : European Telecommunications Standards Institute

EVI : Experimental Vertical Instance

GPL : GNU General Public License

HA : High Availability

HOT : Heat Orchestration Template

IF-MAP : Interface for Metadata Access Points

ISG NFV : Industry Specification Group for Network Functions Virtualization

KVM : Kernel-based Virtual Machine

MAAS : Metal as A Service

MANO : management and orchestration

NBI : Northbound Interface

NETCONF : Network Configuration Protocol

NFV : Network Function Virtualization

NFVI : NFV Infrastructure

NFVO : NFV Orchestrator

NoSQL : not only SQL

NSO : Network Service Orchestrator

OBU : On Board Unit

OP-NFV : Open Platform for NFV

OS : Operating System

OSGi : Open Services Gateway initiative

OSM Open Source Mano

OSS : Operations Support System

OVSDB : Open vSwitch Database Management Protocol

PNF : Physical Network Function

PXE : Preboot Execution Environment

REST : Representational state transfer

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 13 of (120)

RO : resource orchestrator

RSU : Road Side Unit

SBI : Southbound interfaces

SDN : Software Defined Network

SFC : Service Function Chaining

TOSCA : Topology and Orchestration Specification for Cloud Applications

VIM : Virtual Infrastructure Management

VNF : Virtual network function

VNFM : VNF Manager

VXLAN : Virtual Extensible LAN

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 14 of (120)

1 Introduction

5GinFIRE is an EU H2020 project that aims to build and operate an Open 5G NFV based reference
ecosystem of Experimental facilities. It intends to allow 5G NFV-based architectures for verticals
industries and enables experimentations through Open Calls. Their objective will be to deploy
applications on top of the provided ecosystem.

To do this, one of the 5GinFIRE ambitions is to interact with other related projects from EU H2020
like FIRE projects where some of the partners are already involved. It is the case also for the FI-PPP
with the FIWARE platform and 5G-PPP.

Indeed, synergies are quite straightforward with FIRE, which is an initiative that offers the possibility
to experiment with networks, infrastructures and tools in a multidisciplinary test environment.
Interactions with FIRE during the 5GinFIRE Open Calls will be a real asset. Regarding the FIWARE
platform, it is already integrated in some of the 5GinFIRE testbeds.

At the same time, 5GinFIRE aims to design a 5G experimentation reference platform that can support
vertical industries across the same platform. In this context, 5GinFIRE project will target the 5G
Automotive Vertical sector as pilot as well as environmental monitoring in a SmartCity context.
Nevertheless, the platform will be engineered as generic as possible in order to support any vertical
EVIs.

To answer that challenge, this deliverable describes the foundation stones that will drive other work
packages until the end of the project.

Indeed, in the section 2, it is provided the state of the art concerning Cloud, SDN, NFV and SFC
components and technologies. Keeping the objective to build an architecture that is aligned with on-
going standardization process, this section highlights software and technologies that will be adopted
within 5GinFIRE. Two FIRE projects, which are candidate projects to interact with, are detailed in this
section.

The section 3 focuses on use cases and on testbeds. Two use cases that can use 5GinFIRE testbeds
facilities have been identified. First one is an automotive use case and the second one is an
environmental use case. Both use cases lead us to identify the requirements for the 5GinFIRE
experimentations hosting.

Based on two previous sections, the section 4 defines the architectural choice, the integration and
deployment strategies that the project will follow.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 15 of (120)

2 Adopting State of the Art on Cloud, SDN and NFV

2.1 Objectives

The objectives of this section are to identify the State-of-the-Art technologies that were used to
implement the methodology and experimentation workflow as defined in 5GinFIRE DoW displayed in
Figure 1.

Figure 1: 5GinFIRE Experimentation Workflow, Technologies and Infrastructures

Our approach takes into account the following high-level requirements and ambitions:

 Adopt and being interoperable with current Cloud/SDN/NFV/MEC standards

 Use open standards and integrate technologically mature, and widespread open source

toolsets

 Put effort to enable experimentation and make it effortless for experimenters to deploy

experimentation scenarios

 Being interoperable with FIRE standards and facilities

5GinFIRE objective was to adopt the ETSI architectural recommendation for services that are being
considered for NFV and being implemented under the NFV model, augmented for application/service
composition and experimentation capabilities. In order to instantiate experimentation scenarios end-
users will use the 5GInFIRE portal as well as tools to design/deploy the experiment

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 16 of (120)

5GinFire testbed has been updated to reflect what a 5G network can become, in accordance with
ETSI’s NFV reference architecture (Figure 2).

Figure 2: ETSI's NFV Reference model

5GInFire target is to provide an implementation of this architecture and one objective of this
document is to provide a state of the art of the candidate building blocks. Such building blocks were
selected from a list of carrier grade and state-of-the-art open source solutions. A possible reference
can be OP-NFV recommendations which are providing the following set in its third "Colorado"
release:

 Operating Systems: Linux (Ubuntu & CentOS)

 Hypervisor: KVM, tuned for VNFs support

 Virtual Infrastructure Manager: OpenStack

 SDN Controller: OpenDaylight, ONOS, OpenContrail

 VNF Orchestrator: not yet addressed

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 17 of (120)

Figure 3: OP-NFV building blocks

OP-NFV recommendations were very valuable; those building blocks (Figure 3) fit a set of criteria that
matter to us.

The Objective chapter will provide the set of criteria and the state of the art will be split in 4 main
chapters:

 A Cloud chapter where different VIMs were evaluated,

 An SDN chapter on which we will describe 4 different SDN controllers,

 An NFV chapter that describes the set of tools that is used to do and manage the service

chaining like some orchestrators, some deployments tools, etc.

 A FIRE chapter that describe and compare the projects FED4Fire and Futebol as testbed.

2.2 Methodology

We targeted some technologies from the most popular that can be found nowadays, and we
compared them with each other. To that end, we identified some criteria the technologies we
wanted to use in 5GinFIRE should meet.

Open source:

Open source is one key aspect of the technologies we want to choose, shall be. But we must also pay
attention to the license type (Apache, GPL, AGPL, etc.) because some of the included conditions can
determinate how our contributions will be protected or not and many other matters. The frequency
of contributions is a good signal to judge if software is in good health and well maintained.
Measuring the number of contributors and looking at strong contributors coming from industries are
other major aspects that we will consider when making our choice.

Maturity:

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 18 of (120)

We want to minimize our efforts on maintenance or on development and this can be carrying out by
looking at the maturity of each controller. We want to be aware if they are carrier class, if software is
well packaged to ease its installation, but also if the documentation is available, well described and
up to date.

API and standard compliance:

Commonly speaking, every equipment or technology is interfaced with other equipment’s on its
northbound or southbound interfaces then we should inspect the supported APIs or standards for
each of them.

For instance, on SDN state of the Art, we will ensure on the southbound interface, it is OpenFlow
compatible and check the version it is supporting. Due to the disparity in switch equipment’s, it
would also help if it supports other standard like Netconf, Yang or TOSCA. On its northbound
interface, we will confirm it is "Open Source MANO compliant".

Feature set:

Every Equipment or technology has its own supported features or plugins, and some can be
interesting for the project and other less. We checked them out and enumerate the ones which fit
the most to our needs.

In the case of the SDN, we can also check the complexity of developing and integrating a plugin in the
SDN controller we evaluate.

Capacity to be mastered by partners:

In 5GinFIRE project, every partner has their own fields of expertise, we are coming from different
areas: research, education or the industries. For instance, some of us might have already a lot of
experience with one component and wish not to spend too much effort on learning a new one doing
the same thing. This was taken into account in the choice we made.

2.3 Cloud

Cloud Computing takes a very important role in 5G due to the move from dedicated hardware to
software-based network elements. Cloud Computing is therefore a vital technology that supports the
5G infrastructure and functionalities and that can ultimately define the success of 5G deployments.

Cloud Computing solutions range from public offering such as Amazon Web Services (AWS), Google
Compute Engine, Microsoft Azure, to name a few, to private clouds instantiated in-house through
software packages provided by leading software developers such as VMWare, Mirantis, Ericsson.
Supporting these offerings are many times Open Source software solutions that can be customized
by companies such as OpenStack, OpenNebula and Eucalyptus or built upon such as Docker,
Kubernetes, XenServer.

The previous solutions provide either an ecosystem of resources (Processing, Storage, Network, IAM,
etc.) or a single resource (Processing in the case of Docker, Kubernetes and XenServer). In order to
deploy a service on top of these resources it is necessary to orchestrate those resources. In some
cases, it is even necessary to connect resources belonging to different service providers and/or
software providers.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 19 of (120)

Virtual Infrastructure Management (VIM) is therefore a requirement for a successful and scalable
Cloud resource usage.

2.3.1 VIM Solutions

VIM (Virtual Infrastructure Management) Solutions enable the network operator to make use of the
Cloud Resources (Processing, Storage and Network) to build and/or instantiate their own network
elements. The VIM solution has a strong impact in the overall 5G architecture as it will enable or limit
many of the foreseen 5G functionalities.

In this section we analyse 3 solutions, chosen due to their popularity in the VNF community

2.3.1.1 OpenStack

Excellence

OpenStack is the most prominent Open Source project on Cloud Computing. OpenStack consists of
an ecosystem of several smaller projects that manages compute, storage, networking and various
support functions such as Identity, Orchestration, and Monitoring.

OpenStack adopts Apache 2.0 license, which allows for the use the software for any purpose, to
distribute it, to modify it, and to distribute modified versions of the software, under the terms of the
license, without concern for royalties. This licensing enables commercial companies to profit from
OpenStack results and to include OpenStack on its products and services.

Evaluation

OpenStack is a very mature project with a governance model laid out on top of the OpenStack
Foundation. This governance model is very important as there are more than 60k contributors many
of which financed by various IT companies worldwide. With such many contributors, the vitality of
the project is undeniable.

OpenStack is currently on its 14th release and 7 years have gone by since the initial release
codenamed “Austin” in 2010. In these years, OpenStack has kept steady biannual release cycles
which receive support from the community for periods ranging one year. The project claims to be
carrier grade, with many carriers advertising the use of OpenStack in their portfolios, nonetheless
several the burden of running OpenStack is very high and requires dedicated and highly trained
technicians. Documentation is extensive but spread around various locations and versions, which in
turn may difficult the adoption.

OpenStack has come to dominate the Private Cloud much the same way as AWS dominates the
Public Cloud. In an area where defacto standards dominate the market, is widely accepted that
OpenStack API is the most supported API in the industry.

OpenStack is extremely feature rich, which means that the number of features supported by
OpenStack far exceed the needs of 5GinFire.

5GInFire requires a VIM solution that can be responsible for controlling and managing the NFV
infrastructure (NFVI) compute, storage, and network resources, these easily map to OpenStack
components Nova, Cinder and Neutron.

In 5GInFire, several partners are involved in OpenStack which makes it a very good candidate to be
adopted by the project, as these partners have the right expertise to support OpenStack in the scope
of the project.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 20 of (120)

Summary

We enumerate the main features of OpenStack:

 Prominent open-source project with Apache 2.0 license.

 Mature project with strong community

 Well documented

 Feature rich

2.3.1.2 OpenVIM

Excellence

OpenVIM is the VIM solution of Open Source MANO (OSM), an open source project that implements
ETSI NFV architecture. OpenVIM enables all-in one installation and is fully integrated with the other
OSM components such as VNF Configuration & Abstraction and the Resource Orchestrator. OpenVIM
is therefore the reference VIM in OSM and provides Enhanced Platform Awareness (EPA).

OpenVIM is released with Apache 2.0 license, similarly to OpenStack. OSM (which OpenVIM is part
of) governance is help by ETSI and has the support of the European Telecommunication Industry.

Evaluation

The project is currently in its first release (Release ONE), although it had existed before being
contributed to ETSI. This means that there are various previous versions, but that the project is
mostly very recent.

OpenVIM is mostly a shoehorn VIM solution to demonstrate MANO concepts. Even in the scope of
OSM, OpenVIM is just one of the possible VIM solutions, being OpenStack the other most prominent
VIM. Nevertheless, OpenVIM integrates perfectly with the remaining OSM components and makes it
the obvious solution when all-in-one MANO solutions are desired (such as for development
purposes).

Feature wise, OpenVIM provides about what the minimum requirements of a VIM in the scope of
OSM. Choosing OpenVIM as a VIM solution should be tightly coupled with choosing OSM as the
overall MANO solution, and even then, one should consider the limitations of the all-in-one approach
of OpenVIM.

Since in 5GInFire at least one partner is involved in OSM, OpenVIM can be fully supported and made
an adequate candidate for VIM solution.

Summary

We enumerate the main features of OpenVIM:

 Fully compatible with Open Source MANO (OSM).

 Open Source License

 Easy to use

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 21 of (120)

2.3.1.3 VMWare

Excellence

VMWare is a commercial virtualization solution broadly used by telecommunication operators.
VMWare has a broad portfolio of products targeting various areas, which include the
telecommunication market, and more specifically creating NFV Platform.

VMWare vCloud NFV platform is aligned with ETSI NFV Architectural Framework and provides
components for compute, storage and network devices. In the scope of VMWare vCloud NFV
platform VMWare cVenter Server Appliance, VMWare vCloud Director and VMWare NSX Manager
play the role of the VIM as specified in ETSI MANO.

Evaluation

VMWare is a closed source solution that provides carrier grade services. It is very stable and has a
very good commercial support. VMWare vCloud NFV platform adheres to ETSI standards and easily
integrates with existing telecommunication systems providing business continuity for telecom
operators.

VMWare’s solution clearly matches the requirements of 5GinFire, but its intrinsic costs hinder the
adoption by partners and researchers with limited budgets. Furthermore, customization of the
solution is very limited, as there is no access to the source code.

Summary

VMWare provides all the necessary features, but lacks an Open Source License.

2.3.2 5GinFIRE Candidates

5GinFire is only targeting carrier grade open source solutions so VMWare will not be considered in
the scope of the project as closed source.

OpenVIM is targeted at all in one installation, since the projects intends to run a broad infrastructure
it will not be considered.

OpenStack is the defacto Open Source VIM solution, most developers are aware of OpenStack API
and capabilities and several partners have knowledge running OpenStack deployments.

No development work is going to be required inside 5GinFIRE, only integration work as well as
maintenance is to be considered. Since testbeds already dispose of some OpenStack nodes (some
coming from the FIWARE project) as well as on 5TONIC infrastructure, integration efforts should be a
reasonable task.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 22 of (120)

2.4 SDN

SDN (Software-defined networking) is a novel architecture that could be briefly described by
providing separation of the control plane and forwarding plane and allowing through open APIs to
program network dynamically. It proposes a centrally managed architecture via SDN controllers and
the role of this chapter is to strive providing the SDN controller for the 5GinFIRE project.

2.4.1 SDN Controllers

We decided to focus on 4 of the most emerging SDN controllers that are OpenDaylight, ONOS,
OpenContrail and Ryu. We studied them by following the aspects describe in section 2.2.

2.4.1.1 OpenDaylight

Excellence

OpenDaylight is an open source SDN controller first released on February 2014. The OpenDaylight
Foundation is part of the Linux Foundation, a large open source community pushing several projects
in different fields.

The architecture of OpenDaylight (Figure 4) reflects the general concepts of SDN.

 On the north are located the applications that control the network. They use the controller

to gather information about the network and push new rules.

 The central control platform implements a set of pluggable modules to perform all the

required actions.

On the south are located the different routing elements of the network, either real or virtual.
OpenDaylight southbound API implements a set of protocols to communicate with those devices,
such as OpenFlow or Netconf.

Figure 4: : OpenDaylight - Operational view

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 23 of (120)

OpenDaylight is backed by a very large community. In 2016, 524 developers contributed to the
project, for a total of 920 developers since the beginning of OpenDaylight, ranking OpenDaylight
project team among the top teams of the open source world. Moreover, the evolution of the project
is keeping the same frequency compared to 2015. There are about 2000 commits per month [2]. The
community can gather on a regular basis during the OpenDaylight summits that take place once a
year, or for more specific events such as developer’s forum. Beside the developers that participate to
the project as volunteers, the companies can join the project as members. Today many companies
are part of the project, with different levels of involvement. Among the most involved and most
influent members (called platinum members) we can quote Cisco, Intel or Red Hat [3]. This
demonstrates a real interest of the communities of developers and enterprises for the OpenDaylight
project. Thanks to this active community the 5thversion of the controller, Carbon, is already under
development.

OpenDaylight is not only a demonstration product, as some SDN controllers have been in the past. It
includes characteristics of carrier grades solutions. OpenDaylight controllers can be clustered [4].
Clustering is a key feature since it allows the enforcement of High Availability and the fast scaling of
resources, especially in the cloud context. OpenDaylight also uses microservices architecture to deal
with complex problems with simple functions. This architecture is an asset for large, complex
systems. Indeed, it makes each component lighter, simpler, easier to upgrade and more efficient in
its work.

Evaluation

As part of the Linux foundation OpenDaylight is fully open source, published under the eclipse public
license v1.0 [2].

Thanks to the large community, which activities have been presented in the previous section, the
project has quickly evolved to reach a high level of maturity, with about one new version every 8
months. First released on February 2014 with the Hydrogen version, the project is now on its 4th
stable version, Boron, released on December 2016. The next version, Carbon, is under development
[5]. In in addition to this very fast evolution OpenDaylight has been proven to be stable and mature
enough to be used in the industry. Per a 2016 study [6] 61% of the enterprises that have deployed an
SDN solution have chosen OpenDaylight, and most companies that consider deploying SDN solutions
in the future also wants to start with this controller. Among the solutions using (or based on)
OpenDaylight we can find HPE Carrier SDN, Huawei Agile controller, Brocade SDN Controller, Extreme
networks oneController, Inocybe Open Networking Platform or Virtuora Network Controller (Fujitsu).
This adoption by industry tends to prove that OpenDaylight is a carrier grade controller, and this is
confirmed by the carrier grade features that are implemented, such as clustering or microservices
architecture.

Such popularity is probably due to the vast number of features displayed by OpenDaylight. On its
southbound interface the controller can handle various standardized protocols, including OpenFlow
(all versions), Netconf [7] and OVSDB [8]. The northbound APIs are not standardized, as in any other
SDN controllers, but they still offer a lot of possibilities. Among all the available features we can
highlight NEMO [9], an intent NBI developed by Huawei that could represent a kind of standardized
NBI.

If the available northbound applications or plugins do not fit the needs of the project OpenDaylight
offers a rich documentation to help developers to code their own features. This documentation is
updated with each new release, which represents a high frequency.

Beside its efficiency as a standalone controller OpenDaylight can also be integrated in a more general
architecture such as the NFV architectural framework defined by ETSI [10]. In this framework, the
controller is tightly linked with the MANagement Organization (MANO) component and the Virtual
Infrastructure Manager (VIM). As part of the Linux Foundation, MANO Open-O is specifically

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 24 of (120)

designed to be able to work with a controller, and especially with the two controllers supported by
the foundation: OpenDaylight and ONOS [11]. However other MANO components, such as Open
Source MANO (ex OpenMANO) can be used through some manipulations [12].

OpenDaylight profits from a strong popularity, leads the SDN controllers’ community and 5GinFIRE’s
partners naturally work with it on their internal projects and acquire then significant competences.
After having gone through all the partners, a good number of them claim to have a high expertise
with OpenDaylight: B-COM, ITav, UnivBris, UFU and TID, who is a Contributor of the NetIDE project
and a member of the ODL Advisory Board.

Summary

As we saw in the previous section OpenDaylight:

 Is open source, with a very large and active community

 Is mature

 Offers a rich standardized southbound API

 Offers a rich northbound API

 Possesses a lot of features and applications

 Can be integrated in an NFV architectural framework using Open-O or OSM

 Benefits of a high partners’ expertise

2.4.1.2 ONOS

Excellence

With its first version released on December 2014 [10] ONOS (Open Network Operating System) is the
most recent mainstream open source controller. ONOS presents itself as an OS for networks [11], as
opposed to the traditional SDN controller seen as experimental devices. As a network, OS ONOS has
the same place in the architecture as a traditional SDN controller, but is supposed to have much
more responsibilities, such as:

 Manage the limited resources and divide them between users

 Isolate different users from each other

 Provide abstraction to hide resource complexity

 Provide security

 Supply useful and basic features, so that developers do not have to code them again and

again

Those OS-oriented features tend to make ONOS completer and more useful than a traditional SDN
controller, whose role is much more limited. In fact, ONOS supporters consider that traditional SDN
controllers are basically rule-pushers, with not a lot of added values.

Besides the attributes listed below a very important aspect of ONOS - the most important
perhaps - is the distributed aspect. ONOS is thought, from architecture to implementation, to be
distributed. Distribution allows High Availability (HA) and easy scaling of resources by addition of new
servers.

The Figure 5 describes the ONOS subsystem distribution.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 25 of (120)

Figure 5: ONOS subsystem

Evaluation

As part of the Linux Foundation ONOS is fully open source.

Although it is a recent project, ONOS is supported by a large community and has already many
releases. The first one, Advocet, was delivered on December 2014. The 9th and last one, Ibis, was
delivered on December 2016 [13]. ONOS is adopted by many professionals, which demonstrate its
maturity. 23% of the enterprises that have deployed an SDN solution have chosen OpenDaylight, and
21% of the companies that consider deploying SDN solutions in the future also wants to start with
this controller [3]. Those figures show that ONOS is not as popular as OpenDaylight, by far. However,
this might change in the future, for two reasons. Firstly, as explained in the previous section ONOS is
more recent than OpenDaylight, which gives OpenDaylight an advantage, but in the same time it is
supposed to be more carefully designed, more mature, which could give it an important advantage in
the long run. Secondly OpenDaylight and ONOS are not designed to play the same role: while
OpenDaylight is more data centre-oriented ONOS is more adapted for the WAN management. Since
SDN is more deployed in the data centers today it seems logical that OpenDaylight is more adopted,
but this might change in the future [14].

Among the solutions using ONOS, or a controller based on ONOS, we can find: Huawei, ECI, Virtuora
Network Controller (Fujitsu) or Atrium (ONF).

ONOS architecture pays a lot of attention to its NBI and SBI. As an OS, ONOS is designed to accept
any new southbound protocol to communicate with any network device and hide the complexity and
diversity of the network to higher levels. Among the southbound protocols already supported we can
quote OpenFlow (all versions), Netconf and OVSDB. The north API is not standardized, but ONOS
provide a REST API for northbound applications. Beside this generic API ONOS provides an intent
framework to simplify application developers’ work, and a general view of the network [11].

If the available northbound applications or plugins do not fit the needs of the project ONOS offers a
rich documentation to help developers to code their own features. This documentation is updated
with each new release, which represents a high frequency.

Regarding the MANO architecture ONOS is equivalent to OpenDaylight. As part of the Linux
Foundation, Controllers Open-O is designed to integrate it [8]. It is also possible to use it in Open
Source MANO [9].

Even if its notoriety cannot be compared to OpenDaylight, ONOS is a serious alternative and very
promising. By polling partners of the project, few of them declared having a strong expertise with
ONOS, but for most of them they already started considering it and improving their skills.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 26 of (120)

Summary

As we saw in the previous section ONOS:

 Is open source, with a larger and larger community

 Is mature, although it is not as much adopted as OpenDaylight

 Offers a rich standardized southbound API

 Offers a rich northbound API, including a homemade intent API

 Possesses features and application, maybe less than OpenDaylight

 Can be integrated in an NFV architectural framework using Open-O or OSM

 Benefits of a medium expertise from the partners

2.4.1.3 OpenContrail

Excellence

OpenContrail [21] defines itself as an open-source network virtualization platform for the cloud. The
OpenContrail system is a platform for Software Defined Networking [22]. This platform has two main
components: the OpenContrail controller and the OpenContrail Virtual Router (vRouter).

Although the literature has several quantitative and qualitative [15], [18] controller comparisons,
most of them do not consider OpenContrail. In [23] provides a high-level quantitative comparison
that includes OpenContrail.

The Controller is a logically centralized and physically distributed SDN controller. It is important to
notice that it not an OpenFlow controller, but, the responsible for providing management, control
and analytics functions for the virtualized network.

The vRouter is a forwarding plane of the virtualized networks. It is conceptually like an open source
vSwitch, such Open vSwitch (OVS), but it also provides routing and higher layer services. The
Controller provides the logically centralized control plane and management plane and is responsible
for the vRouter orchestration.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 27 of (120)

Figure 6: OpenContrail System Overview [22]

The Contrail System presented in Figure 6 [22] is composed by a set of nodes with the roles of
Configuration, Analytics and Control. The instances of these nodes can be physical servers or virtual
machines.

The Configuration Nodes are responsible for the management layer and provides the northbound
REST API that is used by a web-based GUI of the Contrail System and can be used by OSS/BSS systems
or other applications [22]. Each Configuration Node has a persistent storage of the configuration
state that is that is synchronized with other configuration instances. Using the Interface for Metadata
Access Points (IF-MAP) protocol the configuration high-level data model is pushed down in a low-
level configuration to the Control Nodes.

The Analytics Nodes collect, store and correlate information from network elements such as
statistics, logs, events and errors [22]. These nodes also provide a northbound REST API to allow
client applications to submit queries. The analytics information is stores in a NoSQL database and is
synchronized with other Analytics Nodes instances of the Contrail System. The analytics information
is gathered from the Control Nodes using an XML over TCP protocol called Sandesh.

The Control Nodes receive the configuration state from the Configuration Nodes and exchange this
information with the vRouters agents that are running inside Compute Nodes using the XMPP
protocol [22]. These nodes are also responsible to exchange routes with the gateway nodes (routers
and switches) using BGP and send configuration state to the gateway nodes using NETCONF. Control
nodes interact with each other and with network elements to ensure that network state is eventually
consistent.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 28 of (120)

The other component of the Contrail system is the vRouter, as presented in Figure 5. The vRouter
runs inside the Compute Nodes, a general-purpose x86 server that hosts VMs. The vRouter has two
building blocks: the vRouter Agent and the vRouter Forwarding Plane.

The vRouter Agent is a linux user space process that is peer point of the Control Nodes [22]. It
receives the low-level configuration state and installs it in the forwarding plane. Also, it reports
analytics information. Each vRouter agent is connected to at least two control nodes for redundancy
in an active-active redundancy model.

The vRouter Forwarding Plane is a Linux kernel mode process that is responsible to handle the data
plane [22]. The forwarding plane is a set of routing instances. Each routing instance is assigned to a
tenant and has internally a Forwarding Information Base (FIB) and a Flow Table. This flow table is
used to apply forwarding policies to packets. This component of the vRouter is also responsible to
support the Overlay tunnels based on MPLS over GRE, MPLS over UDP or VXLAN to transport packets
between different compute nodes. The Flow Table has the same concept of an OpenFlow table but
there is no relation to it.

Evaluation

The controller is licensed under an Apache 2.0 License [19] and the vRouter is distributed under the
terms BSD 2-Clause License [20]. By analysing the GitHub repository is possible to show that Contrail
has a strong commitment from Juniper and consistent number of commits in the last four years
(2013 to 2017). The controller has a group of 116 different contributors [19] while the vRouter a
group of 44 unique contributors [20].

The system has a documentation that guides the installation, configuration, monitoring and
troubleshooting [17] and also detailed description of the Configuration API [16]. The northbound
REST API is proprietary, and it is not “Open Source MANO compliant”.

The 5GINFIRE partners reported limited expertise regarding Open Contrail platform.

Summary

As we saw in this section regarding Open Contrail:

 Is open source, with an active community

 Is mature

 Offers a REST based northbound API

 It is not based on OpenFlow

 Provides a comprehensive documentation

 5GINFIRE has limited expertise with the platform

2.4.1.4 Ryu

Excellence

Ryu is a component-based software defined networking framework [24]. The first release of the Ryu
controller was in September 14 2013 [24]. Many improved updates since then have been released
from the Ryu developers. Ryu provides software components with well-defined Application Program
Interfaces (API) that make it easy for developers to create new network management and control

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 29 of (120)

applications. By using Southbound APIs [25] Ryu communicates information to the network switches
and routers, also implementing Northbound APIs for the application layer communication.

Figure 7: Ryu Architecture

Ryu supports various protocols for managing network devices [26], such as OpenFlow, Netconf, OF-
config, etc. Written entirely in Python all the code is open source and freely available under the
Apache 2.0 license [24]. Ryu is managed and maintained by the open Ryu community. Ryu
implements the general SDN architecture as depicted in Figure 7. The communication between the
SDN applications and the OpenFlow switches is possible through the Southbound and Northbound
APIs. Ryu supports all the versions of OpenFlow [24].

Evaluation

Ryu controller is entirely written in python, with many example applications and tutorials making Ryu
easy to use [25]. Often researchers choose Ryu since it is easier to implement their methodologies
and evaluate them, also Ryu controller is preferred for data center virtualization. Although Ryu
comes with a good documentation and it is easy configurable other controllers like OpenDaylight
(ODL) and ONOS are selected for industrial purposes [27] since they provide more features and have
larger communities. Moreover, ODL uses the java framework OSGi [28] which allows ODL to be
preferred for professional use since maintainability and scalability is a high priority. Unfortunately,
Ryu does not come with this advantage.

Summary

Ryu controller in a nutshell:

 Fully open source with available tutorial for applications.

 Supported by the Ruy Community.

 Licensed under the Apache 2.0 license.

 Often selected for research purposes.

 Provides Northbound and Southbound APIs.

 Supports all OpenFlow Versions.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 30 of (120)

2.4.2 5GinFIRE Candidate(s)

This section concludes the SDN Controllers comparative analysis and provides thus the SDN
controller candidates to the 5GinFIRE infrastructure architecture.

Table 1: SDN Controllers Comparative Analysis

CRITERIA ONOS OpenDaylight OpenContrail Ryu

Open Source

Type of License Apache 2.0
Eclipse Public

Licence - Version
1.0

Apache-2.0
(Controller) and
BSD-2 (vRouter)

Apache 2.0
license

Number of
Contributors

162 (GitHub) 994 (GitHub)
116 (controller) and

44 (vRouter)
74

(GitHub)

Frequency of
Contributions

Weekly Weekly Weekly Weekly

Maturity

First Release
Date

Dec. 5, 2014
Avocet

February 4, 2014
Hydrogen

September, 2013
September

14 2013

Latest Release
Date

Dec 2016, Ibis
November 3 2016

Boron
3.2 (December,

2016)
February
11, 2017

Medium
Release Interval

New release
every 3
months

New release
every 18 months

New release or
update every 4

moths

New
release
every 5
months

Carrier Grade Not open-source Open Source
Not open-

source

Ease to Install easy easy

Documentation
Available

Official
Website

Official website Official website
Official
website

Documentation
Up to Date

Up to date for
latest release

Up to date for
latest release

Up to date for
latest release

Up to date
for latest
release

API and
Standard

compliance

Northbound
APIs

REST REST REST REST

OpenMANO
Compliant

yes v0.4 release no

Southbound
APIs

OpenFlow,
Netconf,
OVSDB

NetConf, CLI,
SNMP (via MIBs),

XMPP, or
OpenFlow,

OVSDB

OVSDB, BGP,
Netconf, XMPP

OF-Config,
NETCONF,
OpenFlow

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 31 of (120)

OpenFlow
Versions

Supports
version 1.0

and 1.3.
Implementati

on of 1.5 is
ongoing

Handling version
1.0 or 1.3 on the

fly.
NA

Supports
fully 1.0,
1.2, 1.3,
1.4, 1.5

Capacity to be
mastered by

partners

medium
expertise

strong expertise limited expertise
medium
expertise

This section described the Software Defined Networking (SDN) technology, more precisely the SDN
controllers were analysed in detail in order to come to a conclusion and select a controller as the
5GinFIRE candidate. The controllers evaluated are the OpenDaylight, ONOS, OpenContrail and Ryu.
For the evaluation the comparison included the licence of each controller the maturity of the
software and the adaptability, the APIs quality and expendability and finally the feature set provided
by the controllers, this information aided us into our assessment to select the controller that fits the
standards that the project demands.

By summarising the architecture and the capabilities of all the controllers the project arrives to the
choice of the OpenDaylight controller as the candidate for the project experiments and architecture.
This choice is based on the comparison between the controllers’ evaluations, OpenDaylight is the
most commonly used tool and the best fit for the project needs. Also, it is the most supported
controller among all of them as well as the one with the larger community and the most mastered by
partners. Finally, OpenDaylight provides the software that can assess all the requirements of the
project and can scale to accomplish future project goals.

Besides, with OpenDaylight the integration shall be very limited in time as this controller is already
present inside 5TONIC infrastructure and ready to be used. No particular development is necessary,
the project is much more focused for stability and efficiency. Some maintenance efforts are
considered to maintain the SDN stack in a production-level.

2.5 NFV

This section presents an overview of the main projects and technologies that have been identified by
the 5GinFIRE consortium as relevant in the field of Network Functions Virtualization (NFV). In the
following, we analyse the diverse functionalities provided by these solutions in the context of the
NFV reference architecture defined by the ETSI Industry Specification Group for Network Functions
Virtualization (ISG NFV). We conclude this section presenting a summary of the main features and
functionalities of the analysed solutions, along with the considerations motivate that have d the
selection of technologies to support NFV functionalities within 5GinFIRE.

2.5.1 NFV management and orchestration

This section covers the most relevant projects and open-source initiatives that focus on the
development of specific solutions to support the management and orchestration of NFV services and
resources. To serve as a reference,

Figure 8 presents the NFV reference architecture developed by ETSI, showing the structure of the
NFV management and orchestration (MANO) system and its interrelation with the other components
of the architectural framework. This subsection does not cover Virtualized Information Manager
(VIM) solutions, as these are specifically addressed in Section 2.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 32 of (120)

Figure 8: NFV-MANO Architecture

2.5.1.1 Open Source MANO

Excellence

Open Source MANO (OSM) [52] is an ETSI-hosted open-source project involving leading network
operators, NFV cloud providers and research and academic centers, including Telefónica, Telenor, BT
Group, Intel, Canonical, RIFT.io, Amazon Web Services, VMware, 6WIND,Universidad Carlos III de
Madrid, University of Bristol, Instituto de Telecomunicações, and DELL, among others (the up-to-date

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 33 of (120)

list of members and participants is provided in the OSM website, [53]). The project aims at providing
a practical open source implementation of an NFV Management and Orchestration (MANO) stack
aligned with the NFV reference architectural framework defined by the ETSI NFV ISG [29].

Figure 9 (extracted from Whitepaper: OSM Release TWO, a Technical Overview [30]) illustrates the
different architectural components that comprise the Release TWO of the OSM stack, and their
relationship with the other components defined by the ETSI framework. At the time of writing, OSM
Release TWO provides the software implementation of the production MANO platform of 5GinFIRE.

Figure 9: OSM Mapping to ETSI NFV MANO

OSM RELEASE TWO – A TECHNICAL OVERVIEW 5

OSM Scope

The OSM community has defined an expansive scope for the project covering both design-

time and run-time aspects related to service delivery for telecommunications service

provider environments. The express goal is that the OSM code base can be leveraged in

these environments as-is in a Roll-Your-Own context, or in whole and/or part of a commercial

product offering.

Figure 1 shows the approximate mapping of scope between the OSM components and the

ETSI NFV MANO logical view (the background image was extracted from Figure 4 in the NFV

Reference Architecture Framework, ETSI GS NFV 002 V1.2.1 (2014-12)).

Figure 1 OSM Mapping to ETSI NFV MANO

Virtualised

Infrastructure

Manager(s)

VNF

Manager(s)

NFV

Orchestrator

Main NFV reference points

NFV Management and Orchestration

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Ve-Vnfm

Nf-Vi

Service, VNF and

Infrastructure

Description

Resource
Orchestrator

(Includes VIM/SDN
Connectors)

VNF
Configuration
& Abstraction

Network Service Orchestrator

GUI & Design-Time Tools

OpenVIM VMware
Open
Stack

OSM Run-Time Components Other Components

NFVI

ONOS

Floodlight

VNFs

EMSs

OSS/BSS

PNFs

Specific
VNFMs

ODL

AWS

OSM Design-Time Components

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 34 of (120)

The Network Service Orchestrator (SO), takes care of the delivery of end-to-end network services,
interacting with the Resource Orchestrator and the VNF Configuration & Abstraction components
of the OSM architecture. It provides the point of contact in the OSM architecture to support the
lifecycle management of network services, catalogue management and on-boarding/configuration
of network services and VNFs, among others. Release TWO of the OSM software stack includes a
User Interface (UI), which provides an intuitive easy-to-use mechanism to interact with the SO,
providing the necessary tools for VNF on-boarding and for the creation and instantiation of
network services. (this UI is in fact part of the SO component in Release TWO)

The resource orchestrator (RO), coordinates the allocation and setup of the computing, storage and
network resources that are necessary for the instantiation and interconnection of VNFs. For this
purpose, the RO may interact with multiple Virtualized Infrastructure Managers (VIMs), which may
be of different types (see the Evaluation section). This component provides most of the functions
associated with the NFV Orchestrator defined by the ETSI NFV framework and follows a plug-in
model to support the addition of several types of VIMs and SDN Controllers.

Finally, the VNF Configuration and Abstraction layer (based on Juju Charms from Canonical) [56] is
aligned with the VNF Manager defined by the ETSI NFV reference architectural framework,
overseeing VNF configuration per the corresponding VNF descriptors, following a model-driven
approach.

Regarding the evolution of the OSM software, the OSM community has recently published Release
FOUR1 [126], which is now in an early state. OSM Release FOUR includes substantial improvements
and architectural changes to the previous versions of OSM and is being evaluated by 5GinFIRE
partners to provide the next version of the 5GinFIRE MANO platform. In particular, OSM Release
FOUR provides an improved monitoring module, software upgrade of VNFs, a lightweight build with a
minimal footprint, and a northbound interface aligned with the ETSI NFVI specification SOL005,
among other features. This release also includes a standalone light-UI capable of interacting with the
MANO system through its northbound interface, allowing the lifecycle management of network
services.

Evaluation

OSM source code is available under the Apache License, Version 2.0 [57]. In addition, the current
version of the OSM stack utilized in 5GinFIRE (OSM Release TWO), available from 2016April 2017,
supports a plug-in model framework that facilitates maintenance operations and future extensions of
the platform, while improving the interoperability with other components like VNFs, VIMs or SDN
controllers. This plug-in model is maintained in release FOUR. OSM plug-in model allows integrating
multiple VIMs (Release TWO supports OpenStack, OpenVIM, VMware vCloud Director)., and Amazon
Web Services Elastic Compute Cloud In addition, OSM allows the deployment of multi-site network
services that span across multiple datacentres, and Release TWO includes OpenVIM as part of the
OSM run-time environment to provide a reference VIM for all-in-one installations with support of
Enhanced Platform Awareness (EPA), aiming at having greater awareness about the capabilities of
the platform under control.

Moreover, OSM provides a wiki [58] with up-to-date documentation covering technical details
concerning the project, along with an installation and a user guide. The project foresees the provision
of new releases with a periodicity of six months.

1 ETSI Open Source MANO announces Release FOUR, https://www.etsi.org/news-events/news/1306-
2018-05-news-etsi-open-source-mano-announces-release-four-moving-faster-than-ever (last access
on June 2018),

https://www.etsi.org/news-events/news/1306-2018-05-news-etsi-open-source-mano-announces-release-four-moving-faster-than-ever
https://www.etsi.org/news-events/news/1306-2018-05-news-etsi-open-source-mano-announces-release-four-moving-faster-than-ever

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 35 of (120)

Finally, we want to highlight that the 5GinFIRE consortium includes partners with direct involvement
in the development of OSM, particularly Telefónica and University of Bristol, as OSM members, and
UC3M and ITAv, as OSM participants.

Summary

In the following, we enumerate the main features of OSM, as previously presented:

 ETSI-hosted open-source project.

 Practical open source implementation of an NFV MANO stack aligned with the ETSI NFV

reference architectural framework.

 Supported by leading network operators, NFV cloud providers and research and academic

centers (at the time of writing 46 members, 56 participants).

 Licensed under Apache License 2.0.

 Up-to-date documentation available.

 Supports a plug-in model framework to facilitate maintenance, future extensions and

interoperability.

 Multi-VIM support.

 One-step installing process.

 Providing an intuitive easy-to-use UI.

2.5.1.2 OpenMANO

Excellence

OpenMANO is an open source project led by Telefonica that aims at providing a practical
implementation of a Management and Orchestration stack aligned with the NFV reference
architectural framework under standardization at ETSI’s NFV ISG [31]. The OpenMANO architecture
(see Figure 10) is composed by three main software components:

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 36 of (120)

Figure 10: OpenMANO Architecture

 OpenMANO: reference implementation of a Network Functions Virtualisation Orchestrator

(NFVO). OpenMANO interfaces with an NFV Virtualized Infrastructure Manager and provides a

northbound interface, where NFV services are offered including the creation and deletion of

virtual network functions (VNF) templates, VNF instances, network service templates and

network service instance. This component has been contributed to the open source community

project Open Source MANO (OSM) hosted by ETSI, as it was commented previously in this

document.

 OpenVIM: reference implementation of an NFV VIM, which provides virtual computing and

networking resources and supports the deployment of virtual machines, interfacing with an NFV

Infrastructure (NFVI) and an OpenFlow controller. This implementation follows the

recommendations of [32].

OpenMANO-GUI: web graphical user interface to interact with the OpenMANO API.

Evaluation

OpenMANO is a result of the innovation work of Telefónica in the field of NFV MANO. Being part of
the Open Source MANO software stack (it provides the basis of the OSM RO), its use in 5GinFIRE will
be considered within the context of OSM.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 37 of (120)

Summary

The main features of OpenMANO are summarized next:

 Open-source project.

 Practical implementation of a Management and Orchestration stack aligned with the NFV

reference architectural framework standardized by ETSI

 Includes a graphical user interface (GUI), and the functionality of a NFVO and a VIM.

2.5.1.3 Rift.ware

Excellence

RIFT.ware is an ETSI-compliant NFV MANO solution and commercial distribution of ETSI Open Source
MANO (OSM) that radically simplifies the deployment of multi-vendor VNFs and orchestration of
complex, multi-vendor network services in carrier and enterprise clouds. It supports everything
needed for highly automated, end-to-end service delivery and lifecycle management. RIFT.ware
features intelligent workload placement and integrated platform awareness (EPA), such as Intel
Enhanced Platform Awareness, to optimally use available network and cloud infrastructure
capabilities. [59]

Evaluation

Rift.ware is offered by Rift.io. RIFT.io is a founding member of the OSM project and contributed
significant code, including network service orchestration, graphical user interface, and automation
tools. RIFT.ware 4.3.3 is available as a commercially solution to accelerate market adoption of OSM
and NFV through advanced, carrier-grade features that simplifies the onboarding and management
of virtual network functions (VNFs) across one or more service provider data centers.

Summary

The main features of Rift.ware are summarized next:

 Mature product.

 It has good support since it is implemented and supported by Rift.io.

 Fully compliant with OSM APIs and interfaces.

 It is offered as a commercial distribution.

2.5.1.4 Open Baton

Excellence

Open Baton is an ETSI NFV compliant MANO framework. It enables virtual Network Services
deployments on top of heterogeneous NFV Infrastructures.

It integrates with OpenStack and provides a plugin mechanism for supporting additional VIM types. It
supports Network Service management either using a generic VNFM or interoperating with VNF-
specific VNFM. It uses different mechanisms (REST or PUB/SUB) for interoperating with the VNFMs. It
integrates with additional components for the runtime management of a Network Service. For
instance, it provides auto scaling and fault management based on monitoring information coming
from the monitoring system available at the NFVI level.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 38 of (120)

Figure 11: Open Baton Architecture

Open Baton (see architecture in Figure 11) provides many different features and components:

 A Network Function Virtualisation Orchestrator (NFVO) completely designed and implemented

following the ETSI MANO specification.

 A generic Virtual Network Function Manager (VNFM) able to manage the lifecycle of VNFs based

on their descriptors.

 A Juju VNFM Adapter to deploy Juju Charms or Open Baton VNF Packages using the Juju VNFM.

 A driver mechanism for adding and removing different type of VIMs without having to re-write

anything in your orchestration logic.

 A powerful event engine useful based on a pub/sub mechanism for the dispatching of lifecycle

events execution.

 An auto scaling engine which can be used for automatic runtime management of the scaling

operation operations of your VNFs.

 A fault management system which can be used for automatic runtime management of faults

which may occur at any level.

 It integrates with the Zabbix monitoring system.

 A set of libraries (the openbaton-libs) which could be used for building your own VNFM.

 A Marketplace useful for downloading VNFs compatible with the Open Baton NFVO and VNFMs.

Evaluation

Open Baton is a project developed by Fraunhofer FOKUS and TU Berlin. It is supported by different
European publicly funded projects: NUBOMEDIA, Mobile Cloud Networking, CogNet, SoftFIRE. Open
Baton is one of the main components of the 5G Berlin initiative.

It can support different OS such as:

 Linux OS: Direct installation of a standalone or complete Open Baton environment on top of a

Linux OS (Ubuntu/Debian) using either the source-code or binary version.

 Mac OS: Install the Open Baton NFVO on MacOS using the provided brew formula.

 Docker: Launching a pre-configured Docker image containing a standalone Open Baton

environment.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 39 of (120)

 Vagrant: Launching a vagrant box using the provided 'Vagrantfile' containing a standalone Open

Baton environment.

Built from scratch following the ETSI MANO specification. The NFVO uses the ETSI NFV data model
internally for the definition of the Network Service and Virtual Network Descriptors.

Allows interoperability being interoperable is one of the challenges brought by the fragmented
ecosystem in the management and orchestration area. It requires a lot of work to make two different
vendors solution working together need of a single vendor-independent platform.

Easily extensible based on a message bus architecture it provides several mechanisms for being
extended with new functionalities and integrated in existing platforms.

Summary

As we saw in previous section Open Baton has:

 Consistent roadmap evolution.

 Integration with different OS.

 The community is not so big, and it is mainly leaded by German.

 Integrated with OpenStack.

 It is distributed under the Apache License 2.0

2.5.1.5 ONAP

Excellence

The Open Network Automation Platform (ONAP) is an open source project that aims to provide the
capability to orchestrate physical and virtual networks. The project is the result of a merger of
previous project ECOMP and Open-O, currently backed by the Linux Foundation and founded by
AT&T and China Mobile, offers network automation through its platform by allowing its end users
and their network/cloud providers to instantiate network elements. The interaction occurs with a set
of Northbound REST APIs and the ONAP’s modular and layered nature simplifies integration allowing
it to support multiple VNF environments.

Currently, the top use cases are vCPE and Voice Over LTE.

Figure 12: ONAP Platform

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 40 of (120)

In order to design, engineer, plan, bill and assure these services, there are three major requirements:

 A robust design framework that allows specification of the service in all aspects – modelling

the resources and relationships that make up the service, specifying the policy rules that

guide the service behaviour, specifying the applications, analytics and closed-loop events

needed for the elastic management of the service

 An orchestration and control framework (Service Orchestrator and Controllers) that is

recipe/policy-driven to provide automated instantiation of the service when needed and

managing service demands in an elastic manner

 An analytic framework that closely monitors the service behaviour during the service

lifecycle based on the specified design, analytics and policies to enable response as required

from the control framework, to deal with situations ranging from those that require healing

to those that require scaling of the resources to elastically adjust to demand variations.

Figure 13: ONAP Architecture

 The platform provides tooling for service designers as well as a model-driven run-time
environment, with monitoring and analytics to support closed-loop automation and ongoing service
optimization. Both design-time and run-time environments are accessed through the Portal
Framework, with role-based access for service designers and operations personnel.

 The design-time framework provides a comprehensive development environment with tools,
techniques, and repositories for defining and describing resources, services, and products. This
includes policy design and implementation, as well as an SDK with tools for VNF supplier packaging
and validation.

The run-time environment executes the rules and policies distributed by the design and creation
environment, as well as the Controllers that manage physical and virtual networks. The Active &
Available Inventory (A&AI) component provides real-time views of a system’s resources, services,
products and their relationships with each other. In a fast-moving environment with rapid
deployment and teardown of virtual resources, this real-time monitoring and mapping is critical to
service assurance.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 41 of (120)

ONAP’s current version, the demonstrated in the architecture, is from the Beijing Release and dates
June 7, 2018.

Evaluation

 ONAP source code is available under the Apache License, Version 2.0. As it was said before,
the project is maintained by the Linux Foundation, but it was originally founded by AT&T and
China Mobile. On January 1, 2018, LFN (LF Networking Fund) was created with the purpose
of building the agglomeration of many networking projects such as ONAP and OPNFV. Thus,
ONAP is connected with huge members like Cisco, Huawei, IBM, Vodafone among others.

 The purpose of this project is to improve service velocity, simplify equipment
interoperability and integration and reduce the operators’ costs. It supports multiple data
models (YANG and TOSCA) and supports multiple VIMS, VNFMs and SDN Controllers.

 The Beijing release brought the evolution of the information model and framework
utilities which contributed to the improvement of the topology, workflow and policy models
for ETSI NFV MANO.

 There’s also a wiki (https://wiki.onap.org/) available with documentation, user
guides, sub projects documentation among others. It is up to date and it has a lot of
interaction between users.

Summary

The main features of ONAP are:

● Open Source Project

● Supported by big companies

● Compatibility with ETSI NFV MANO

● Multi-VIM Support

● Up-to-date documentation available

● Licensed under Apache License 2.0

● High interoperability and easy VNF integration

2.5.1.6 Cloudify orchestrator

Excellence

Cloudify enables to orchestrate an entire application lifecycle by modelling a topology once, and then
deploying it to a target infrastructure of choice, all while managing, monitoring, scaling and healing
everything in the same place. Cloudify is OpenStack native and works out-of-the-box with all the
OpenStack APIs from Neutron through Murano.

Cloudify is open-sourced software, and its scope includes provisioning, configuring, and monitoring.
It uses the Topology and Orchestration Specification for Cloud Applications (TOSCA), an emerging
modelling language whose mission is to be able to model every aspect of an application. In terms of
where Cloudify fits into the ETSI NFV MANO architecture, it provides a network functions
virtualization orchestrator (NFVO) and a virtual network functions manager (VNFM). [60] [61]

https://wiki.onap.org/

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 42 of (120)

Evaluation

Cloudify, based on TOSCA claims to be [62] the only real-world and most extensive technology
agnostic implementation of ETSI's MANO specification. This is witnessed by Tier-1 telecom operators
selecting Cloudify as their tool of choice for NFV orchestration. For example, there is the work done
by Orange Labs using Cloudify for orchestration in their vIMS POC (and even fork the code). [63]

Summary

As described above Cloudify offers:

 Open source solution, which implements the ETSI's MANO specification.

 It offers standardized APIs and provides an NFVO component.

 TOSCA modelling languages is a first-class citizen for describing deployments.

2.5.1.7 Juju

Excellence

Juju by Canonical [64] enables application developers and cloud administrators to publish various
cloud-ready applications in a browsable categorized catalogue. Charms are sets of scripts for
deploying and managing services. With event handling built in, they can declare interfaces that fit
charms for other services, so relationships can be formed. Bundles are collections of charms that link
services together, so a user can deploy whole chunks of app infrastructure in one go.

Evaluation

Juju technology is already integrated in OSM as an implementation of the VNF Configuration &
Abstraction component, as the Figure 14 shows. [65]

Figure 14: Juju in ETSI-NFV MANO Structure

Summary

The main features of Juju are summarized next:

 Open source project.

 It provides open and compliant APIs.

 It is integrated with OSM for VNF configuration and management.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 43 of (120)

2.5.1.8 Murano

Excellence

OpenStack Murano [66] introduced an application catalogue to OpenStack, which allows application
developers and cloud administrators to publish their cloud-ready applications in a browsable , easily
navigable and categorized catalogue. With Murano, the new backend provides roles and permissions
to enable the administration of the applications - so you can have an application developer role (who
develops an application and uploads it to Murano) a cloud user role (who uses the uploaded
applications) and an administrator role who manages the Murano service itself. This simplifies the
management of apps on OpenStack significantly. Murano makes all this possible on OpenStack.
However, when applications are deployed or shared between multiple clouds or not deployed on
OpenStack at all, Murano cannot do much for you.

Evaluation

Mirantis (which develops and maintains Murano) places Murano as an NFV orchestration project in
OpenStack. The actual deployment itself will be done by the existing software orchestration tools
(such as Openstack Heat). [67] Mirantis will contribute Murano application catalogue models along
with open source software which is currently used in production NFV deployments to help accelerate
OSM’s Resource and Service Orchestrators. Mirantis, one of the Openstack Foundation Board
members, is working on creating a liaison between ETSI’s OSM and Openstack’s Murano Project. The
initial project announced will integrate Telefónica’s OpenMANO software with RIFT.io’s Canonicals’
Juju-generic VNF Manager, and the Rift.io orchestrator.

Summary

The main features of Murano are summarized next:

 Murano seems an active project supported by Mirantis.

 It targets the NFVO component and OSM’s Resource and Service Orchestrators.

 The liaison between ETSI’s OSM and Openstack’s Murano Project is still ongoing.

2.5.2 NFV Infrastructure

This subsection presents the main projects and open source technologies that have been identified
to be of potential interest to support the functionalities of a NFV infrastructure, as defined by the
ETSI NFV architectural framework.

2.5.2.1 OPNFV

Excellence

Open Platform for NFV [68] (OPNFV) is a collaborative project under the Linux Foundation [69]
supported by several important telco companies like Cisco, Intel, DELL, Nokia, Red Hat, SUSE and
IBM, among others (the complete list of members can be found in [70]). OPNFV works closely with
ETSI NFV ISG, IETF (Internet Engineering Task Force, [71]), MEF (Metro Ethernet Forum, [72]), among
others Standards Developing Organizations (SDOs) and aims at providing a carrier-grade, integrated
and open source platform based on open standards and software to establish an open environment
for NFV solutions, while allowing continued integration, automated implementation and testing.

To accomplish this, OPNFV is committed to an ‘Upstream First’ methodology, integrating
components from upstream projects such as OpenStack or OpenDaylight. With this philosophy,
OPNFV adopts diverse upstream open source projects and devotes development resources towards
integration and testing activities, instead of new developments, avoiding proprietary forks of the
adopted products and components.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 44 of (120)

According to this philosophy, OPNFV provides a platform which can support a set of use-cases
including: (1) lifecycle management of virtual network functions (VNFs), which include deployment,
instantiation, start and shutdown, among others; (2) specifying, onboarding and interconnecting
VNFs, virtual network function components (VNFCs) and physical network functions (PNFs); (3)
instantiating VNFs dynamically to meet the current performance, scale and networks bandwidth
needs; (4) detecting faults and failure in the NFVI, VIM and other components of the infrastructure
and recovering from those failures; (5) sourcing and sinking traffic from/to PNF to/from VNF; (6) and
hosting different VNF instances from different vendors on the same infrastructure leveraging the
NFVI as a Service.

Figure 15: OPNFV Platform Architecture (Release Fraser)

Figure 15 shows the architecture of the current release of OPNFV, Fraser, at the time of writing. The
figure represents components from upstream projects that are integrated in the platform, such as
OpenDaylight, Kubernetes, ONOS, OpenStack, Ceph, KVM, Open vSwitch and Linux to provide the
NFV Infrastructure (NFVI) and Virtualized Infrastructure Management (VIM). As mentioned in the
OPNFV documentation [73], the portfolio has been extended in the current OPNFV release to include
Management and Network Orchestration MANO components primarily for application composition
and management.

In addition, a key part within OPNFV platform is the Pharos Community Labs project [74] as well as
OPNFV bare metal lab infrastructure hosted by the Linux Foundation. The former provides a
federated NFV testing infrastructure of community labs around the world and aims at testing of the
OPNFV platform, hosting continuous integration/continuous deployment (CI/CD) and helping to
ensure OPNFV applicability across architectures, environments and vendors through a collection of
labs and broad range of hardware.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 45 of (120)

Evaluation

OPNFV is an open source project where participation is not only open to organizations and
companies, but also to end users and developers (even considering the connection of end user
experimentation environments to the federated Pharos infrastructure).

As such, the goal of OPNFV is not to develop a specific NFV solution. Instead, OPNFV aims at building
a reference NFV platform to accelerate time-to-market for NFV products and services, while
facilitating the development and evolution of NFV components within relevant open source projects.
The work on the OPNFV platform considers the following key aspects: openness, leveraging open
interfaces to enable the integration of diverse NFV components developed in upstream projects;
integration, focusing on the configuration and deployment aspects that support the operation of the
multiple hardware and software components that comprise a NFV infrastructure, the deployment
and testing of OPNFV experimentation scenarios and the incorporation of new projects into the
OPNFV platform; robustness, taking account diverse aspects related with scalability, throughput,
fault tolerance, security, high availability, support of multi-site capabilities and upgrade-ability; and
agility, by supporting appropriate DevOps continuous integration and deployment methodologies.

Source code is under Apache License 2.0 [57] and the current release of OPNFV (, 12/08/2016Fraser
6.20158) is available through the OPNFV website [75]. Complementary to this information, OPNFV
provides consumable releases every six months.

Given the commitment of OPNFV to an ‘Upstream First’ methodology, OPNFV integrates diverse
components, products and solutions that may be of relevance to 5GinFIRE partners, making it an
appealing solution to be considered within the project scope.

Summary

The main features of OPNFV are indicated below:

 Collaborative project at Linux Foundation supported by relevant telco companies.

 Carrier-grade integrated, and open source platform based on open standards and software to

establish an open environment for NFV solutions.

 ‘Upstream First’ methodology.

 Source code licensed under Apache License 2.0.

2.5.2.2 Ironic (OpenStack)

Excellence

OpenStack bare metal provisioning (Ironic) [76] is an OpenStack project aiming at provisioning bare
metal (physical) machines instead of virtual machines. Ironic may be used as a standalone software
program, or it may be integrated with other OpenStack services (e.g., Nova).n, neutron and glance,
among others As mentioned in the OpenStack documentation [78], there are several use cases where
the use of physical machines may be of relevance, such as supporting the rapid deployment of a
high-performance cloud infrastructure, executing tasks that require specific-purpose hardware or
database hosting, among others.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 46 of (120)

Figure 16 shows the logical architecture of OpenStack Ironic, and its relationship with the diverse
OpenStack services to provision a physical server.

To support operations related to bare metal provisioning, OpenStack Ironic makes use of diverse
technologies and protocols, including: (1) Preboot Execution Environment (PXE) [33], developed by
Intel and Microsoft to configure and boot a physical system over a communication network; (2) DHCP
[34], to distribute the network information that is necessary to support bootstrapping procedures;
(3) TFTP [35] to download the software that is required to boot a physical server (i.e., the Network
Bootstrap Program); and (4) Intelligent Platform Management Interface (IPMI) [36], to support out-
of-band management and monitoring of systems (e.g., remote power on).

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 47 of (120)

Figure 16: Conceptual architecture of Ionic [78]

Evaluation

The source code of Ironic and complete documentation is available through the OpenStack website
[76]. [78] As an OpenStack project, the parameters relevant to the evaluation of this solution have
been covered in Section 4.

Summary

In the following, we enumerate the main characteristics of Ironic:

 OpenStack project aiming at provisioning physical machines.

 It may be used standalone or integrated with other OpenStack services.

 It makes use of standard technologies and protocols: PXE, DHCP, TFTP, and IPMI, among others.

 It is distributed under the Apache License 2.0.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 48 of (120)

2.5.2.3 Metal as a Service (MAAS)

Excellence

Metal as A Service (MAAS) [78] is a hardware provisioning software from Canonical that aims at
allocating physical servers to execute user applications, automating the deployment and dynamic
provisioning of computing environments. As mentioned in MAAS documentation [79], MAAS turns
bare metal into elastic cloud-like resources and allows managing a large number of physical machines
by discovering, commissioning and deploying physical servers. Making physical resources available
for future workloads and releasing physical machines when they are no longer required.

In addition, MAAS is designed to be integrated with Juju (see section about Juju, previously
commented in this document) to deploy complex services and scale them up or down as demand
requires.

Evaluation

MAAS is available as open-source, although it does not offer all of its features freely (there is specific
pricing for large-volume and public clouds with dynamic scale).

Summary

The main features of MAAS are listed below:

 It aims at allocating (bare metal) physical servers.

 Up-to-date comprehensive documentation.

 As already commented, it does not offer all of its features freely.

2.5.3 Network Service Descriptors: Models and Catalogue solutions for
Describing and Configuring service topologies

The 5GinFIRE DoA defines the Application Composer Toolkit which will be used by end-users to
create the composition of services needed to instantiate an application that will contain the Artefact
Under Test (UT) (e.g. a service, VxFs, etc.). This request will be transformed to the service
composition. This section explores technologies, specification and models that can be processed by
orchestration engines as service templates to instantiate applications. In case of 5GinFIRE such
technologies could be used to describe the service under test as well as the setup of the
experimentation environment.

Network Service Descriptors can be described by various format and languages. For example, there is
OpenStack's Heat Orchestration Template (HOT), TOSCA, CloudFormation(Amazon), Juju charms.
Although there is no clear winner, TOSCA seems to win in popularity and acceptance due to
involvement and support by many telecoms.

2.5.3.1 TOSCA

Excellence

OASIS has formed the Topology and Orchestration Specification for Cloud Applications (TOSCA)
technical committee to from the TOSCA standard. Its focus is to create an interoperable specification
based on a simple profile. Main activities are around:

 NFV and SDN which explores the description of Network Services composed of Virtual Network

Functions. TOSCA on this topic work closely with ETSI NFV standards Working Group

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 49 of (120)

 Definition of an instance model which provides a representation of a service deployment based

on TOSCA

 Containers and Clustering which explores service descriptions for containers as well as consider

the deployment

 Monitoring which proposes potential implementation details

A most notable deliverable from the TC today is the TOSCA Simple Profile in YAML Version 1.0
Committee Specification 01 [80]. The deliverable defines the authoring of TOSCA service template by
using YAML.

Evaluation

The TOSCA standardization effort is supported by many companies like IBM, Red Hat, VMWare, etc.
Nevertheless, most notable and related to 5GinFIRE are the following efforts found at the time the
project took its own decision:

 ARIATOSCA [81] is an open source implementation, for the command line, that can be used to

translate TOSCA based orchestrations

 Openstack support. There is an official TOSCA Parser [82]

 OPEN BATON support: There is an official TOSCA support [83]

 Rift.io: as of version 4.2.2.0 in related Information model translation [84] RIFT.ware can read in

MANO descriptors that are in TOSCA or YAML format. A developer can on board these

descriptors in both NS AND VNF packages to the Launchpad.

 Juju: There is a juju-Tosca implementation [85] to import/export TOSCA specification, but seems

old

 Openstack Murano seems not yet to support TOSCA, although it is in its roadmap [86] although it

seems to be a solution on using Murano with Cloudify [61]

Summary

The main features of TOSCA are summarized next:

 Promising for the use as an experiment descriptor.

 It is already being supported by many tools both commercial and open source.

2.5.3.2 The YANG data modelling language

Excellence

The YANG data modelling language is used to model configuration and state data manipulated by
NETCONF. The NETCONF protocol is a formal application programming interface (API) that allows
configuration data information to be retrieved and manipulated. NETCONF provides full set of
semantics for configuration management. YANG provides many features specific to configuration
management.

Evaluation

While TOSCA is very good supporting the latter requirements, Netconf/YANG is very good at
configuring network devices. Combining those two could support of the following:

 Provisioning IaaS components which mainly include compute network and storage. (This would

be done with the TOSCA-based templating)

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 50 of (120)

 Configuring network devices which include lots of configuration details per device type (This

would be done via Netconf/YANG modelling)

 Topology-driven monitoring (TOSCA)

 Day to day operations that are performed on the topology graph like upgrades, self-healing

scaling etc. (TOSCA)

Moreover, a TOSCA orchestration can communicate with Netconf/YANG-based components and
drive network configurations and orchestration via Netconf/YANG-based products. In this way, we
can leverage the best of the two worlds.

Summary

The main features of YANG are summarized next:

 Mature data modelling language.

 It cannot be used to model a deployment, together with a descriptor.

 Like TOSCA could offer much more powerful scenarios.

2.5.4 5GinFIRE Candidate(s)

The following table presents a summary of the technologies covered in this section, reflecting their
contributions in the scope of the NFV reference architectural framework defined by ETSI:

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 51 of (120)

Table 2: NV Comparative Analysis

NFV MANO

NFVI

Maturity & Applicability

Open
Source
license

NFV Orchestrator
VNF

Manager

Virtualized
Infrastructure

Manager

OSM

Provides a Network
Provides modular design
(release TWO includes a

service orchestrator and a
resource orchestrator);

allows the deployment of
multi-site network

services that span across
multiple datacentres

Includes a VNF
Configuration

and Abstraction
layer, based on

Juju Charms
from Canonical.

Release TWO includes
OpenVIM as part of
the OSM run-time
environment; also

supports OpenStack,
VMware vCloud

Director, and Amazon
Web Services Elastic

Compute Cloud; follows
a plug-in model to

support the addition of
other types of VIMs.

-

High maturity. Open source. Four
successful releases, including a

commercial distribution by RIFT.io.

Directly applicable and almost direct
feedback channel to the community

Apache License 2.0

Yes

Open
Baton

Provides a NFVO
implemented following

the ETSI MANO
specification

Includes a
generic VNFM;

may
interoperate

with VNF-
specific VNFMs

Integrates with
OpenStack; provides a
plugin mechanism for
supporting additional

VIMs

-
Medium. Academic project.

Announcements of collaboration
with OSM

Yes

ONAP

Provides an NFV
Orchestrator based on

ETSI NFV MANO; includes
a network service life
cycle manager, an NFV

Interworks with
multi-vendor

VNFMs

Interworks with
different VIMs

- Medium. Strong community but very
few stable releases

Yes

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 52 of (120)

Cloudify Provides a NFVO
Includes a

VNFM
Integrates with

OpenStack -

High maturity. Cloudify Community
version is open source. There is a
premium commercial distribution

for telecoms. Unsure about feedback
opportunities

Yes

Murano

Currently exploring the
establishment of a liaison
with ETSI OSM, with the

target of helping to
accelerate OSM’s NSO and

RO.

-
Introduces an

application catalogue to
OpenStack

-
Medium. In the process of

positioning in the MANO open source
landscape

Yes

OPNFV
In the Fraser release, it includes MANO
components primarily for application

composition and management

Main focus on building NFVI and VIM; integrates components
from upstream projects (ODL, OpenStack, Kubernetes, Ceph

Storage, KVM, Open vSwitch, and Linux)

High. Sixth release already launched.
Very active community and good

prospects for feedback
Apache License 2.0

Yes

Ironic - - -

Aims at provisioning bare metal
(physical) machines instead of
virtual machines; may be used

standalone or may be integrated
with other OpenStack services.

Medium, though it has a strong
traction within the OpenStack

community

Apache License 2.0.

Yes

MAAS - - -

Hardware provisioning software
from Canonical that aims at

automating the deployment and
dynamic provisioning of

computing environments; designed
to be integrated with Juju to

deploy and scale complex services.

High maturity. Provided as
commercial distribution. Feedback

opportunities may be limited, though
the strong implication of Canonical in

OSM could help.

Yes

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 53 of (120)

The technical solution adopted in 5GinFIRE for the orchestration of network services, consists in the
implementation of a single orchestration domain, where an NFV orchestrator manages and
coordinates the creation of end-to-end network services, potentially involving multiple VNFs, across
the diverse experimentation infrastructures provided by the project partners. With this purpose, the
NFV orchestrator of 5GinFIRE will interact with the appropriate VIMs available at these experimental
infrastructures, coordinating the allocation and setup of the computing, storage and network
resources, which are necessary for the instantiation and interconnection of VNFs. Each partner
running an experimental infrastructure will be in charge of the deployment and maintenance of a
VIM, compliant with the necessary interfaces, as defined by the 5GinFIRE reference architecture.

According to our analysis of the main practical implementations of NFV MANO, available under the
umbrella of open source projects, the technology chosen to provide the management and
orchestration functionalities envisaged in 5GinFIRE has been Open Source MANO (OSM). The main
reasons that have motivated our selection are: (a) it is an ETSI-hosted project that provides a
comprehensive and operational implementation of an NFV MANO software stack; (b) it is supported
by a large community of leading network operators, NFV cloud providers and research and academic
centres, which includes the direct involvement of several 5GinFIRE partners, i.e. Telefónica and
UNIVBRIS, as OSM members, and UC3M and ITAv, as OSM participants; (c) it supports a plug-in
model that allows integrating diverse VIM solutions (in particular, OpenStack, selected as the
reference VIM by the majority of the 5GinFIRE partners providing experimental infrastructures); (d) it
offers the level of maturity and stability required for 5GinFIRE, as indicated by the availability of
commercial distributions (e.g., rift.ware); (e) it supports the automated instantiation of end-to-end
network services across multiple sites, each with a supported VIM; and (f) OSM source code is
available to 5GinFIRE partners, granted under an Apache license.

The utilization of Open Source MANO (OSM), has enabled 5GinFIRE partners to build a production-
level MANO stack supported, with the support of a wide open-source community. This MANO stack
has been deployed at 5TONIC, and integrated with the 5GinFIRE portal, enabling the platform users
to onboard NFV descriptors and packages and request the lifecycle management of experiments. In
addition, a pre-production NFV environment has been set up at UC3M, ITAv and UNIVBRIS, which
enables to test the latest functionalities and corrections to the base software of the orchestration
platform, as well as new developments. Among these, ongoing work focuses on: widening the
configuration options for VNFs (in particular, supporting Ansible in addition to Juju); enhancing
security with the integration of OpenStack Keystone at different layers in the OSM architecture;
integrating SDN into the orchestration platform; measuring and monitoring the performance of the
orchestration platform; optimizing inter-site control and data communications.

2.6 FIRE

As presented in the DoW and in the workflow of Figure 1, 5GinFIRE will be as much as possible
interoperable with existing FIRE standards and facilities. As the most notable effort in FIRE is the
FED4FIRE initiative (FED4FIRE+ is its current funded EU project name) we present here some
representative technologies that are considered to be used within 5GinFIRE, namely the
Authentication scheme and RSPECs.

2.6.1 FED4FIRE and Authentication

5GinFIRE architecture and implemented services allow the federation (via the SFA Wrapper) with
other FIRE testbeds via the Fed4FIRE AAI technology, thus accepting seamlessly FIRE users allowing

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 54 of (120)

the creation of experiments and facilitate integration of existing FIRE facilities. Fed4FIRE testbeds can
grant access to actors outside of the federation if they trust them. Two are the most considerable
components fromFED4FIRE:

 Identity provider: An Identity Provider (IdP) is run by an organization to provide experimenters

and services working on their behalf with the means to authenticate themselves within a security

domain. Organizations register Experimenters and services with IdPs through trusted registration

processes. Testbeds can deploy their own IdP (testbed A) or rely on 3rd party IdPs, for example

those operated by the Federation Facilitator. IdPs issue security tokens to subjects that codify

signed assertions about them, which can be presented to services at the point of use. The

services then enforce policies related to level of trust in the IdP and the subject by associating

rights (or declining rights) to each security token.

 Certificate directory: Each IdP provides a root of trust for subjects within a security domain. Each

testbed must decide which IdP they trust to make assertions about subjects in authentication

and authorization decisions. The current architecture relies on a public key infrastructure where

the root of trust in each security domain is a Certificate Authority. The Certificate directory

provides a mechanism to distribute root certificates for IdPs and avoid the need to manually

exchange certificates between testbed providers and experimenters.

To achieve the FIRE user acceptance to use the 5GinFIRE infrastructure, a solution around the SFA
Wrapper service provided by FIRE is implemented. Thus, an Aggregate Manager -AM (in terms of
FIRE) is provided around the 5GinFIRE portal to allow to access resources of the portal via SFA client
tools. To invoke operations in the AM the user needs to present a credential. This credential is used
for authentication and authorization. It contains information about the permissions that a certain
user has, so the AM can determine if the user can perform the requested operation. (see
https://wiki.confine-project.eu/sfa:implementation)

To achieve the above, the SFAWrapper allows users from the FIRE federation domain to use the
5GinFIRE facility, that is to request deployments. These users are external, they do not belong to the
5GinFIRE domain. Therefore, the users interacting with the 5GinFIRE SFA Wrapper do not have an
account in the 5GinFIRE portal. They have accounts from other FIRE trusted authorities. To achieve
this the 5GinFIRE SFA Wrapper can log in with this generic user account and perform any requested
action in behalf of the external users. However, when requested a deployment the FIRE user will
need to provide some contact details, since through the SFA wrapper there is no way of identifying
the user.

2.6.2 Concepts slice, sliver and Rspecs

5GinFIRE implementation around the SFA wrapper, is able to expose its available artefacts (VNFs,
NSDs) to other FIRE facilities via an RSpec. FED4FIRE has already introduced the concepts of Slice,
Sliver and RSpec. A slice is the tool that allows the connection of resources when they belong to the
same experiment, often when the experiments use multiple testbeds. The sliver is the part of the
slice containing information about a single testbed. Slivers use an RSpec (Resource Specification) on a
single testbed to define the sliver on the testbed. The RSpec and thus the sliver can contain multiple
resources. Note that there is an important difference between the concept sliver as defined in the
Aggregate Manager API v2 and v3.

https://wiki.confine-project.eu/sfa:implementation

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 55 of (120)

Figure 17: Concepts of slices, slivers [49]

Version 2 of the AM API supported only one sliver per slice per testbed [42]. Hence in this version of
the AM API a sliver denotes all the slice’s resources on a testbed. (e.g. the delete sliver call deletes all
resources of a slice on a single testbed). In the figure above Sliver C1 and C2 cannot exist in AM API
v2 (of course, a testbed can decide to work internally as such, but the slivers are not individually
addressable through the API).

In version 3 of the AM API, one of the several important problems that was solved is that of adding
resources of a testbed to a slice. In AM APIv2, as only a single sliver is supported per testbed and
slice, it was not possible to add extra resources to this same slice for that testbed (and remove them
afterwards). For this, API v3 now supports addressing of individual slivers, and the SFA calls such as
allocate, provision, etc. can now work on multiple slivers on a single testbed. For instance, the call
“allocate” returns a struct of slivers.

 In practice, it is a little more complicated since testbeds have the total freedom to adopt one of
multiple methods when allocating resources to slivers [44]. If you request an RSpec with multiple
resources, a testbed can decide to create multiple slivers, only one, or any allocation strategy in
between. This has then as a consequence that it depends on the testbed if an experimenter can
remove single resources/slivers or only everything at once. E.g. on the virtual wall testbed, if you
allocate 2 nodes with a link, you get back 3 slivers (2 for the nodes and 1 for the link).

For 5GinFIRE to expose the infrastructure, as an RSPEC, we provided a specific API end point that
when SFA tools request SFA listing resources, the 5GinFIRE portal responds with the list of available
VNFs and public NSDs. The provided RSpec has similarities with most published RSPecs of other FIRE
testbeds. However, there are some extra elements that may help tools to display information to
experimenters. For example, there are description elements, display name of the VNF, NSD resource
and the package location.

Slice request in 5GinFIRE is mapped to deploy an NSD on a specific schedule. For example, if an
experimenter via a tool wants to reserve the rift_ping_pong_ns on the corresponding lease element
one should write in an RSPEC:

<lease from="2018-05-20T15:03:57+03:00" until="2018-05-28T15:03:57+03:00">true</lease>

This means that the node will be reserved for several days from 20/5/2018 15:00 UTC.

2.7 Conclusions

The state of the art concerning Cloud, SDN, NFV and SFC described in the previous chapters has been
analysed with the target to support the use cases and the architecture depicted in next chapter. This
analysis permitted to select the technologies and components we will use along 5GinFIRE project.
This analysis was necessary and even required in order to define in this document a first version of
the 5GinFIRE architecture and its use cases.

We considered different criteria to make those choices: Open Source, Maturity, APi and standard
compliance, features and the capacity to be mastered by Partners. We confronted them to different

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 56 of (120)

popular technologies or components of the moment and we made our selection. Those criteria were
in one side generic and in another side specific for our project.

We selected:

 OpenStack, which is one of the biggest open source projects. It is the central player in the

cloud technology.

 OpenDaylight, which is the most mature as well as the most SDN controller known by the

partners. SDN is still an emerging technology so our choice is wise.

 Open Source MANO, not only because it’s fitting our standards but because also, we will

profit from the knowledge of some of our partners who are leading this project.

Orchestration services are very new, and we are still in the experimental phase. Along with

OSM, comes a set of tools and components that will be used within 5GinFIRE because they

are necessary for OSM to operate: Rift.ware, OpenMANO, Juju, Murano, Ironic and MAAS.

Table 3: Selected technologies

Technology Selection Generic criteria Specific Criteria

VIM (Virtual
Infrastructure
Manager)

OpenStack One of the biggest
active open source
projects

Central player in the
cloud technology

Carrier grade solution

Defacto Open Source
VIM solution

Several partners have
knowledge running
OpenStack
deployments.

SDN (Software Defined
Networking) Controller

OpenDayLight Most supported
controller as well as
the one with the larger
community

Carrier grade solution

SDN controller which is
more known by the
partners

NFV Orchestrator OSM (Open Source
MANO)

ETSI NFV model
compliancy

Production-level
MANO stack

Supported by a wide
open-source
community

Some of 5GinFire key
partners who are
leading the project are
deeply involved in
OSM

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 57 of (120)

3 Experimental Infrastructure Architecture, Model
Entities Specification and Design

3.1 Introduction

The section presents 5GinFIRE architectural approach, processes and envisaged roles and usage
scenarios of 5GinFIRE platform. It is comprised by technical and non-technical perspectives.

3.2 5GinFIRE actors and terminology

3.2.1 Actors

5GinFIRE offered services and tools target to accommodate the following envisaged user roles. All
users are assumed to be of an Authenticated role:

 Experimenter: This role represents the user that will utilize our services and tools to deploy

an experiment. That is the experiment description in terms of e.g.: NSD (Network Service

Descriptor) or TOSCA Specification

 VxF developer: This role is responsible to upload VNF and NSD Descriptors in the 5GinFIRE

services

 Testbed provider: This role represents users that are responsible for testbed administration,

configuration, integration, adaptation, support, etc

 Experiment Mentor: responsible for monitoring the progress of an experiment, resource

usage and allowing or not the deployment of an experiment

 Services administrator: This role represents the user that are responsible for maintenance of

the 5GinFIRE services

Finally, an anonymous user role exists who has some really simple usage scenarios (e.g. signup
through the portal)

3.2.2 Terminology

Experiment: In 5GinFIRE it is defined as a set of experimentation activities that will be conducted
during an allocated time-slot (probably spanning for several days); the experiment may probably
involve multiple 5GinFIRE test-beds; it might require the utilization of several network services,
which will be indicated during the experiment definition and will be validated by the 5GinFIRE
operations; these network services may be used by the experimenter during the allocated timeslot.

VxF: complex constellations of virtual functions, all running on a mix of real and virtual network or
computing elements. We refer to virtual functions as VxFs when we do not want to distinguish
between network-centric functions and vertical-centric functions.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 58 of (120)

3.3 5GinFIRE Experimentation Workflow

Figure 18: 5GinFIRE experimentation workflow overview

Figure 18 displays an envisaged overview of the workflow process. There are three main horizontal
lines: the experimenter, the 5GinFIRE operations and the 5GinFIRE testbed providers that interact
during an experimentation life-cycle. At the simplest case, users signed-up to the platform via the
portal will be approved by 5GinFIRE Operations. To perform an experiment on top of the 5GinFIRE
infrastructure at its simplest form the user needs to create an experiment, e.g. some experiment
metadata, scheduling, purpose, etc and select available VNFs or deploy new ones. Then he needs to
compose the experimentation solution. This can be done either as an OSM Network Service
Descriptor or in terms of a TOSCA specification. In a first version of the architecture, the user will
provide an OSM-supported YAML description of the network service, potentially aided by a graphical
composer. Subsequent refinements of the architecture may consider the utilization of TOSCA-based
NFV descriptions, which would be mapped to into OSM-supported YAML by specific 5GinFIRE
middleware (this development will depend on the availability of specification for VNF descriptors
based on the TOSCA model, which is currently being addressed by both OASIS and ETSI NFV). As soon
as everything is in place for an experiment description, the experimenter selects the testbed facility
based on resource availability after the experiment is submitted for validation.

5GinFIRE prepares a process for validating an experiment in terms of various rules such as schedule,
resource availability, etc. The validation process is closely performed together with the target
testbed providers. We expect this to be iterative in various cycles involving the experimenter by
either asking questions or modifying any experiment details and parameters.

As soon as an experiment is approved, it is scheduled by 5GinFIRE operations for deployment.
Through the portal or OSM the 5GinFIRE operations will create a deployment (i.e. uploading
descriptors etc) and OSM will later on orchestrate it (trigger the services instantiation). We expect
that there will be a close collaboration during the management of the orchestration/deployment
with the testbed providers. After deployment the resources are available and accessible to the
experimenter.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 59 of (120)

In the end of the experiment schedule, the resources of the experiment are released, and access is
revoked. We expect though that any available results of the experiment will be available to the
experimenter.

Next sections describe the identified processes in detail:

3.3.1 Experimenting with 5GinFIRE infrastructure process

The following is a list of steps that experimenters can follow to deploy experiments on top of
5GinFIRE Infrastructure based on the generic process defined on Section 3.3

1. Experimenter Selects target testbed(s)

Select target testbeds to deploy an experiment. The experimenter might consider this list:
http://wiki.5ginfire.eu/5GinFIREtestbeds and also the usage of the Unifier Gateway
http://wiki.5ginfire.eu/unifiergateway

2. Select or Create and Upload VNFs

A VNF is described in terms of a Virtual Network Function Descriptor.

Either the experimenter browses the public VNF catalogue at
https://portal.5ginfire.eu/#!/vxf_marketplace or you create his own VNFs.

Currently 5GinFIRE supports VNFs compliant with OSM TWO

Pre-validation

The VNF developer verifies that the VNF can be onboarded via the 5GinFIRE "mirror platform
(http://wiki.5ginfire.eu/guide/5ginfire-mirror-platform). If so, the developer can proceed with
submitting the VNF. Otherwise, the developer should fix any error regarding the VNF packages or
descriptors, until on-boarding is successful. VNF developers can request support from 5GinFIRE
partners to address any issues regarding VNFs, e.g., through the mailing list, Bugzilla, or the slack
channel. The request will be visible to all partners working on infrastructures and services, such that
anyone can provide support to the questions.

Portal uploading

When the VNF is ready the experimenter needs to upload it to the portal. The experimenter needs to
open an account to the portal. https://portal.5ginfire.eu

By default, when an experimenter opens an account has the roles of "EXPERIMENTER" and
"VXF_DEVELOPER", as described in http://wiki.5ginfire.eu/5-gin-fire-portal-user-guide

VNF validation

Submitted VNF(s) will be validated by the 5GinFIRE operations.

The experimenter will be notified if the VNF is valid in terms of:

- VNF Packaging for target OSM version (Currently TWO but we are moving to FOUR)

- Onboarding capability

- Deployment capability

VNF onboarding

If the VNF is valid, it will be onboarded to OSM.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 60 of (120)

At this stage the VNF is available to be included in experiments described as NSDs

3. Describe and upload an NSD Experiment

Select or Create an NSD

An experiment is described in terms of a Network Service Descriptor as described in:
http://wiki.5ginfire.eu/packagingvxfnsd

The experimenter either browses the public NSD catalogue at
https://portal.5ginfire.eu/#!/experiments_marketplace or you create his own NSD currently
compliant with OSM TWO

Pre-validation

The NSD developer verifies that the NSD can be onboarded to the 5GinFIRE "mirror platform”. If so,
the developer can proceed with submitting the NSD. Otherwise, the developer should fix any error
regarding the NSD packages or descriptors, until on-boarding is successful. NSD developers can
request support from 5GinFIRE partners to address any issues regarding NSD, e.g., through the
mailing list, Bugzilla, or the slack channel. The request will be visible to all partners working on
infrastructures and services, such that anyone can provide support to the questions.

Portal uploading

When the experimenter prepared the NSD it must be upload it to the portal.

NSD validation

After submission the NSD will be validated by the 5GinFIRE operations. The experimenter will be
notified if the NSD is valid in terms of:

- NSD Packaging for target OSM version (Currently TWO but we are moving to FOUR)

- Onboarding capability

- Deployment capability

NSD onboarding

If the NSD is valid, it will be onboarded to OSM.

At this stage the NSD is available to be deployed as an experiment**

4. Experimenters Makes a deployment request

Through the portal the experimenter makes a Deployment request for an experiment.as described
in: http://wiki.5ginfire.eu/5-gin-fire-portal-user-guide#experimenter-user-interface-description

Accessing deployed experiment: Request VPN Credentials

The experimenter then needs to report at 5GinFIRE Operations via submitting an issue that requests
VPN credentials.

Accessing deployed experiment: OpenVPN operations

Once the experimenter has his credentials and OpenVPN config file, he follows instructions as
included in http://wiki.5ginfire.eu/tutorials/guide-external-access-experimenters.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 61 of (120)

3.3.2 Validating a VNF (manual process) _

This section describes the process for validating a VNF. This manual process will be also supported by
an automated process

Portal submission

The VNF archive is submitted to the portal. This automatically creates a ticket in Product: 5GinFIRE
Operations, Component: Validation

This first step triggers that at least the portal has correctly parsed the descriptor.

VNF Onboard by portal administrator

The VNF is then onboarded by the portal administrator to the 5GinFIRE OSM component at 5TONIC.

The issue changes assignee to a person in 5TONIC/OSM team

In nominal situation the VNF will get the status ONBOARDED.

At this stage, if there is no way to onboard the VNF due to errors, the 5TONIC team needs to
manually identify why this is not possible, e.g. via OSM logs.

OSM verification

The 5TONIC/OSM team will try to check the VNF (this could also involve the Mentor for the
experiment)

If the team claims that the VNF is valid or invalid, changes the issue in Bugzilla accordingly, so that
portal administrators and VNF creator are notified.

VNF is VALID

If everything is ok, the VNF should be available for usage in NSDs.

3.3.3 Validating a NSD (manual process) _

This page describes the process for validating an NSD. This process will be supported by an
automated process.

Portal submission

The NSD archive is submitted to the portal. This automatically creates a ticket in Product: 5GinFIRE
Operations, Component: Validation

This first step triggers that at least the portal has correctly parsed the descriptor.

NSD Onboard by portal administrator

The NSD is then onboarded by the portal administrator to the 5GinFIRE OSM component at 5TONIC.

The issue changes assignee to 5TONIC/OSM team

In nominal situation the NSD will get a status ONBOARDED.

 if there is no way to onboard it due to errors, the 5TONIC team needs to manually identify why this
is not possible

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 62 of (120)

OSM verification

The 5TONIC/OSM team will try to check the NSD (this could also involve the Mentor of the
experiment)

If the team claims that the NSD is valid or invalid, changes the issue in Bugzilla accordingly, so that
portal administrators and NSD creator are notified.

NSD is VALID

If everything is ok, the NSD should be available for usage in experiments.

3.3.4 Handling Deployment Request Process

An experimenter creates a Deployment request through the portal

An experimenter creates a Deployment request through the portal. This triggers an automated New
Issue in Bugzilla, Under 5GinFIRE Operations, Operations Support. By default, the responsible
Assignee is the component owner of 5GinFIRE Operations->Operations Support. Moreover, the
5GinFIRE team is also get notified via the tickets@ mailing list. The Experimenter is added also in the
CC list of the issue.

Change the Assignee to the Mentor of the experiment

At this stage 5GinFIRE team changes the Assignee to the Mentor of the experiment.

The Mentor supports the process

The Mentor supports discussions between 5TONIC and VIM owners. He also needs to:

- Verify that the requested experiment is deployable. This implies, at least: checking that all the
components are onboarded; and checking that the VNFs can be executed in the involved testbeds
(e.g., a VNF for an EPC should be executed in a testbed with radio equipment).

- Coordinate with the testbed providers a specific time slot for the execution of the experiment. This
time slot may be different from the time slot requested by the experimenter. In case that the time
slot requested by the experimenter is not feasible, I would suggest that the experiment request
should be rejected, with an indication of a valid time slot(s) and the possibility to resubmit the
experiment request in case that the alternative time slot(s) is adequate for the experimenter.

- Currently in the portal the mentors (Role in portal=MENTOR). can respond through the portal and
change the status of the Deployment Request. Whatever change happens in the portal is reflected in
Issue system Bugzilla. For example: if the Deployment Request will have a status SCHEDULED in
Bugzilla will go IN_PROGRESS.

The Mentor gives green or red light

After discussions the Mentor gives green (ACCEPT) or red light (REJECT) and changes the status (e.g.
SCHEDULED) and the scheduled deployment dates, or simply reject that (REJECTED).

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 63 of (120)

 Deployment Status

If the Experiment Deployment Request has SCHEDULED status then the OSM team should be aware
for the date of orchestration, deployment and tear down

2) When it is orchestrated the Experiment Deployment Request goes to RUNNING

3) When it is tear down the Experiment Deployment Request goes to COMPLETED

At any stage the portal has a Feedback text form to write text that also is copied to the experimenter
and the ticket

3.4 5GinFIRE experimentation platform usage scenarios and
requirements

This section presents use cases that the described actors will perform through 5GinFIRE provided
tools and services. It will help at a later stage to verify our proposed solution. Figure 19 displays a
UML use case diagram with the identified actors. It is expected that supported features, capabilities
and provided services of the proposed 5GinFIRE architecture arrive from the Task 2.2 use-case
experiments driven approach we have described. More requirements for the architectural
components and the processes are defined from the usage scenarios that we describe here. In the
tables apart from the responsible actor and a description we have identified a target responsible
service.

Please also notice that the roles of Experimenter, VxF developer, Testbed provider and Services
Administrator are all subclasses actors of the Authenticated role. That means that they get their role
as soon as they are authenticated in the platform.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 64 of (120)

Figure 19: Use cases diagram

Generic usage scenarios

No #1001

Title Signup, Login to Portal

Actor Anonymous User

Description The anonymous user can create an account and login as one of the roles:

Experimenter, VxF Developer, Testbed provider, Services administrator.

During sign up the user can express the interest of such a role or roles.

The Portal Services administrator needs to approve a user and his role(s) (see
#5010).

More specifically, the user can create an account:

- Specifying a username and a password, along with any personal data and indented
role(s)

- From federated FED4FIRE credentials

Target service Portal

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 65 of (120)

No #1002

Title Issue resolution and technical support

Actor All Authenticated

Description An experimenter or a VxF developer should be able to identify operational issues
and obtain technical support, using the diverse communication channels
established for these purposes (i.e. through Wiki, email or the issue tracking tool of
the project). Issue resolution and technical support may involve testbed providers
and/or the services administrator.

Target service

Issue tracking tool and the 5GinFIRE wiki

Experimenter usage scenarios

No #2010

Title Browse available VxFs, NSDs and Experiments in portal

Actor Experimenter

Description An experimenter can browse all available VxF descriptors and NSDs registered at
the portal marketplace. It can browse its uploaded experiments or any publicly
shared experiment descriptions.

Target service Portal

No #2020

Title Define experiment

Actor Experimenter

Description An experimenter should be able to define an experiment. An experiment definition
may include: a) time requirements (e.g. list of proposed dates and duration of the
experiment); b) indication of the Network Services that will be instantiated during
the experiment; c) description of the testbeds, facilities and resources required for
the experiment; etc.

The service chaining can be defined by submitting an OSM-supported YAML
description or possibly enhanced by using a graphical interface

Target service

Portal

No #2030

Title Description and availability of experimentation resources

Actor Experimenter / Testbed provider

Description Using the portal, an experimenter should be able to get a description and a

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 66 of (120)

tentative availability of experimentation resources in the 5GinFIRE platform (i.e. the
availability of the different 5GinFIRE testbeds and facilities). This information may
serve as a reference to the experimenter, for the purposes of experimentation
planning, but might not be the final scheduling as this will be decided by the
experiment validation phase. Information about the availability of resources may
be updated by testbed providers according to their scheduled experimentation
activities (see #4020).

Target service

Portal

No #2040

Title Upload an experiment description to portal

Actor Experimenter

Description It will be possible to upload just a YAML descriptor created on some other tool,
through the portal. The experimenter will upload an experiment description based
on YAML. More Experiment metadata: name, creation date, etc must also be
available during upload

Target service

portal

No #2050

Title Management of Network Services

Actor Experimenter

Description An authorized experimenter should be enabled to upload to the 5GinFIRE
repository a deployment template for a Network Service (NS), i.e. an NS descriptor,
including the description of the VxFs that comprise the service and their
interconnection. In a first stage of the architecture, the user will provide an OSM-
supported YAML description of the network service. This functionality may be aided
by a graphical composer. The user should be able to refer to the NS in the 5GinFIRE
repository for subsequent use. By default, a network service is only visible to its
creator. Complimentary, the experimenter should be able to edit and delete a NS.

Target service

Portal, OSM NS graphical descriptor

No #2060

Title Submit an experiment for Validation

Actor Experimenter / Testbed provider

Description The experimenter should be able to request the validation of the experiment,
which will be evaluated offline by the responsible entity of 5GinFIRE operations,

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 67 of (120)

probably with the support of the testbed providers (e.g. to check the suitability of
the experiment to be executed over the 5GinFIRE facilities). Independently of the
established validation process, the experimenter should be able to check the status
of the validation request from the portal. In case of successful validation, the
information provided to the user may also include indication of time slots allocated
to the experiment.

Target service

Portal, and Issue tracking tool

No #2070 (same as #3030)

Title Search for VxFs

Actor Experimenter

Description An authorized Experimenter should be able to search for a VxF definition in the
repository.

Target service

Portal

VxF developer usage scenarios

No #3010

Title Register a VxF definition

Actor VxF developer

Description An authorized VxF developer should be able to create a VxF definition in the
repository. The VxF developer registers any metadata of the VxF together with a
packaging archive to the repository.

Target service Portal and 5GinFIRE wiki

 No #3020

Title Management of VxFs

Actor VxF developer

Description The developer should also be enabled to update a VxF descriptor, along with the
archive of the VxF, to the 5GinFIRE repository. The VxF developer may or may not
set the VxF descriptor as public/visible to other users of the platform (it may want
to test the implementation of a VxF before making it available to experimenters
and/or other VxF developers). Analogously, the VxF developer should be able to
edit or delete a VxF descriptor (along with its corresponding archive images).

Target service

Portal

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 68 of (120)

No #3030

Title Search for VxFs

Actor Experimenter

Description An authorized VxF developer should be able to search for a VxF definition in the
repository.

Target service

Portal

Testbed provider usage scenarios

No #4010

Title Deployment support of a Validated experiment

Actor System Administrators

Description In case of successful validation of an experiment by System Administrators and
Testbed Providers, the experiment is marked as Validated. The deployment process
may require support from the testbed providers, prior, during and/or after the
experiments.

Target service

Portal and Issue management system

No #4020

Title Description and availability of experimentation resources

Actor Experimenter / Testbed provider

Description The description and availability of resources may be updated by testbed providers
according to their scheduled experimentation activities.

Target service

Portal

Service Administrator

 No #5010

 Title Management of user accounts

 Actor Service Administrator

 Description Authorizes and manages users and their roles

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 69 of (120)

Target service

Portal

No #5020

Title Validation of an experiment

Actor Service Administrator

Description The experiment will be evaluated offline by the responsible entity of 5GinFIRE,
probably with the support of the testbed providers (e.g. to check the suitability of
the experiment to be executed over the 5GinFIRE facilities). Portal and Issue
management services will be used to communicate with the experimenter and
validate it

Target service

Portal and Issue Management Service

No #5030

Title Deploy a Validated experiment

Actor Service Administrator

Description In case of successful validation of an experiment by 5GinFIRE responsible System
Administrators and Testbed Providers, the experiment is marked as Validated.

5GinFIRE responsible System Administrators should be able to instantiate the
network services indicated by the experiment definition, during the time slots
assigned to the experimentation activities.

Target service

Portal

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 70 of (120)

3.5 5GinFIRE architecture

Figure 20: Architectural approach of 5GinFIRE

Figure 20 displays the core architectural components envisaged so far in 5GinFIRE together with their
connections. Next section describes each component and its interfaces

3.5.1 Internal and external components and their interfaces

3.5.1.1 Portal

A portal in terms of web application that end users (Experimenters, VxF developers) can subscribe,
manage experiments, browse our repository, monitor experiment results, etc. It will also offer
services that will allow admins to manage the offered 5GInFIRE platform as well as to manage the
repository. It will provide Access to the 5GInFIRE repository of VxFs metadata and templates,
categorized in EVIs through well specified APIs. Finally, it will contain a

AAA mechanism with other FIRE testbeds via the Fed4FIRE AAI technology, thus accepting seamlessly
FIRE users allowing the creation of federated experiments and facilitate integration of existing FIRE
facilities

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 71 of (120)

Interfaces of Portal

OSM: uses this interface to communicate with OSM via the OSM API in order to push experiment
descriptions, VxF descriptors, etc

IDP; An identity provider mechanism for authenticating 5GinFIRE users

Public VxF descriptors repository: contains all VxFs registered by 5GinFIRE users

OSM VxF descriptors repository: It is the OSM repository where VxF that will be instantiated need to
be committed

3.5.1.2 IDP

An Identity provider (IdP), used to provide identifiers for users that will interact with 5GinFIRE
services and provide other information about the user

Interfaces of IDP

Portal: authenticating portal users

Support tools: Ticketing system authentication

3.5.1.3 Public VxF descriptors repository

It holds a catalogue of all registered VxF descriptors. These descriptors are available to be used by
experimenters.

Interfaces of Public VxF descriptors repository

Portal: Will accept request of managing VxF descriptors and their archives

3.5.1.4 5GinFIRE MANO platform

MANO (Management and Orchestration) is one of the core concepts of the ETSI NFV reference
architectural framework, in charge of allocating and configuring the infrastructure resources used by
a virtualized network service, deploying and interconnecting the associated virtual network functions
(VNFs) and their components, and managing the lifecycle of these functions and services on the NFV
infrastructure. Considering a detailed state-of-the-art analysis on the existing open-source MANO
frameworks, we have chosen Open Source MANO (OSM) as the base software platform to build the
MANO component of the 5GinFIRE architecture (the reasons for this selection are motivated in
Section 2.5.4). The version of OSM that has been used to build the production-state 5GinFIRE MANO
platform is OSM Release TWO. Currently, the consortium is concluding the evaluation of Release
FOUR as the candidate version to evolve the MANO platform.

The MANO platform of 5GinFIRE can receive orchestration actions from the 5GinFIRE portal (e.g., to
create/delete a VNFD in/from the OSM catalogue, or to create/delete an NSD in/from the OSM
catalogue) At the time of writing, the instantiation of a NS is done through a graphical User Interface
(UI) provided by OSM. Through this interaction with the portal or the UI, the Service Orchestrator
(SO) of the OSM stack receives appropriate information to onboard NSes, along with their
constituent VxFs, as well as to instantiate NSes and handle the corresponding events related to their
lifecycle. The SO takes care of the delivery of the services, interacting with the Resource Orchestrator
(RO) and the VNF Configuration & Abstraction (VCA) components of the OSM architecture. The RO
coordinates the allocation and setup of the computing, storage and network resources, which are
necessary for the instantiation and interconnection of VxFs, interacting with the appropriate

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 72 of (120)

Virtualized Infrastructure Managers (VIM) available at the experimental infrastructures connected to
it (as it is detailed in Section 3.5.1.6, each partner providing an experimental facility in 5GinFIRE will
deploy and maintain a VIM).

3.5.1.5 Issue Management System

The platform has integrated an Issue Management System based on Bugzilla, in order to track issues
and notify respective owners. The portal has the ability to automatically create and update issues.

OSM operations and relation to the 5GinFIRE experimentation workflow.

OSMRelease TWO supports the diverse actions identified in the 5GinFIRE experimentation workflow
(see Section 3.3), related with the orchestration and lifecycle management of network services. In
the following, we provide a set of snapshots, obtained from the graphical user interface of OSM, to
serve as illustrative examples of the main operations that can be executed using the OSM software
stack.

Environment Login. Operations over
the OSM deployment are done
under an administrator profile.

Configuring a Resource
Orchestrator (RO) account (e.g.
OpenMANO).

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 73 of (120)

Configuring a VIM tenant for the
resource orchestrator (the
configured VIM will manage a
datacenter where NSse will be
deployed). In the case of using
OpenMANO, this configuration is
done through the command line
interface, as shown in the snapshot.

On-boarding VNF and NS
descriptors to the OSM catalogue
through packages distributed in
tar.gz format.

Browsing and managing available
VNFDs

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 74 of (120)

Composing network services in
terms of VNF Descriptors.

Setting up the NS instantiation with
the input parameters, supporting
multi-site deployments if more than
one datacenter has been
configured.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 75 of (120)

Monitoring and lifecycle
management of network services

The above-mentioned examples show that OSM supports the main operations related to the
deployment and management of network services and virtualized network functions that are
required to implement the experimentation workflow of 5GinFIRE. Besides the graphical user
interface, these operations can also be executed using a command line interface (CLI). In addition,
OSM Release TWO provides a REST Application Programming Interface [122] (API). This API serve has
d to implement the interactions between the 5GinFIRE portal and the MANO platform, enabling to e
NS and VNF package management. Our future work considers supporting the lifecycle management
of NSes from the portal using this REST API.

Evolution of OSM and relation to 5GinFIRE.

The short and medium-term evolution of OSM aims at making new releases of the MANO software
stack to be “deployment ready” and is governed by the requirements that for each successive release
are agreed by the OSM EUAG (End User Advisory Group). 5GinFIRE has put in place a continuous
integration mechanism for the MANO platform, able to guarantee the availability of a state-of-the-
art MANO platform as the OSM software base evolves, making it compatible with the specific
requirements of an experimental facility like 5GinFIRE. The main directions identified by the OSM
community for Release FIVE and beyond are [123]:

 Consolidation of the new architectural model, along with its components, services and
features (e.g., fault & performance management, lightweight build, etc.)

 Monitoring (e.g., VNF metrics).
 Enhanced security with role-based access control and authentication (i.e.., keystone

integration).
 Support of physical components in a VNF deployment.
 Scaling of VNFs.
 Support of different approaches to service function chaining.

Interfaces of the 5GinFIRE MANO platform

Portal: this interface is based on the REST API of OSM and enables the MANO platform to receive
requests from the portal to execute orchestration actions.

VIMs: interfaces towards the VIM endpoints, to request the allocation and release of computing,
storage and network resources at the partners' NFV Infrastructures.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 76 of (120)

3.5.1.6 VIMs (Cloud Controllers)

Following the architectural design of Figure 20, each partner providing an experimental
infrastructure to 5GinFIRE is in charge of the deployment and maintenance of a Virtualized
Infrastructure Manager (VIM) supported by the 5GinFIRE MANO platform. Being based on the
current release of OSM, release TWO, our MANO platform natively supports OpenVIM, OpenStack,
VMware’s vCloud Director, and Amazon Web Services Elastic Compute Cloud. All our infrastructures
operate OpenStack nonetheless, as per individual choice.

This way, each VIM deployed at a partner infrastructure domain, provides a compliant northbound
API that may be used by the 5GinFIRE MANO deployment to control and manage the allocation of
computing, storage and network resources at the partner NFV Infrastructure (NFVI).

Interfaces of VIMs

5GinFIRE MANO: Support the interactions with the 5GinFIRE MANO platform.

Testbed resources: to control and manage the computing, storage and network resources of a
partner NFVI.

3.5.1.7 Testbed services

These are some testbed specific services that could be handover to the experimenter in order to ease
the operations during experimentation

3.5.1.8 Testbed resources

The available resources for experimentation located in each target testbed

3.6 Exposed VxFs and APIs to the experimenters

3.6.1 5G-In-A-Box

Different UEs can connect from Wi-Fi and/or 4G radio to b<>com * Unifier GW *. b<>com * Unifier
GW * manages authentication, sessions establishment and provides IP connectivity (IPv4 only) to:

 other servers hosting application(s) and/or

 Internet access.

Thanks to this IP Connectivity provided to Applications, the Application providers (e.g. OpenCall) can
provide features to the connected UE using different protocols on top of this IP Connectivity.

Examples applications are:

 web server (http, ftp, … protocols),

 sip phone server (tcp/sip, udp/rtp protocols for instance),

 Video streaming or others.

It can be used also by other specific Applications using information from the connected UE
(localization information, information from UE camera …) to aggregate them and/or provide
contextual service to the users.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 77 of (120)

In conclusion, the b<>com * Unifier GW * does not have any APIs to expose to the experimenters.
However, the b<>com * Unifier GW * simplify connection to APIs available either on its access
networks either on PDNs that it provides.

3.7 Testbed components and extensions to support 5G
experimentation

3.7.1 5G-In-A-Box

3.7.1.1 b<>com * Unifier GW *

The b<>com * Unifier GW * is a virtualized network element in charge to aggregate different network
accesses (LTE, Wi-Fi, fixed networks). Thanks to virtualization, it can be deployed at different
locations in Operator’s datacenter, in distributed Point of Presences (PoP) or even closer to the users,
at enterprise premises for instance. The b<>com * Unifier GW * provides access authorization, user
authentication and IP address allocation. This enables the Unifier Gateway to route user’s traffic with
different policies whatever the used access network is cellular or fixed/Wi-Fi.

The Unifier Gateway is expected to:

 Manage a Wi-Fi/LTE infrastructure built from standard equipment: compatible to

Commercial Off-The-Shelf Wi-Fi Access Points and eNodeBs, instantiation on standard IT

infrastructure

 Provide Service continuity with a Unified DHCP that enables seamless mobility between

connected RAN for all services profiles

 Unify user subscriber management for the different accesses

 Separate completely control plane from user plane traffic (CUPS implementation).

 Be deployable as a VNF in a datacenter or in an OTS server

 Secure access management

 Be able to dynamically adjust behaviour depending on monitoring (e.g. through probes

measurements)

 Have a platform that is available for external high-value services, and that auto-configures

services deployment

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 78 of (120)

Figure 21: b<>com * Unifier GW * functional Architecture Overview

The target of the Unifier Gateway is to provide a pre-5G Mobile Edge private connectivity enabler to
the testbeds and to the experimenters, with the following key benefits:

 Affordable solution for private/corporate operators (based on open source software with a

license scheme compatible with the industry)

 Move seamlessly from indoor to outdoor coverage without service interruption

 Scale network footprint and density by adding new switches. (Multiple sites can be served by

the same gateway)

 Dead simple installation and provisioning procedures (this benefit should be even be greater

with the integration inside Open Source MANO in the scope of 5GinFire project)

 Fully secure and reliable communications suitable for critical services

 Open to new VxF integration thanks to an SDN and SFC based architecture

3.7.1.2 5G-In-A-Box overall presentation

5G-In-a-Box is built from b<>com * Unifier GW *. It is a set of VNFs providing various radio access
technologies and core network features by embedding EPC with MME, HSS, S/P GW functions
(virtualized : vEPC and “SDNized” : S/P GW-C and S/PGW-U) as well as AAA , DHCP and NAT. These
VNFs have the ability to handle standalone private LTE and Wi-Fi networks but, within the scope of
5GinFire, the target is to insert it in a more global framework.

The scope of the deployment is:

 On one hand (see section 3.7.1.3), interface with established testbeds like 5GUK Test and/or

IT Automotive Testbed,

 not deploying new radio access infrastructure but interconnecting with deployed one’s

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 79 of (120)

 Providing connectivity in order to integrate Application Services at the edge of the network,

close to the user in order to benefit from a low latency (“Over-the-top applications at the

Edge Cloud”)

 On the other hand, interface with 5TONIC core platform (see section 3.7.1.4) to deploy and

orchestrate VNFs installed in the established “local” testbeds (Edge Clouds managed from a

central core platform)

In a MEC architecture, in order to get a low latency, the VxF may be hosted near to the edge, so close
to the user. The Unifier Gateway which can have the role of an edge gateway with various radio
access networks could handle the unified mobile access and provide the unified network interface
for Over the Top Application Services. b<>com * Unifier GW * does not provide hosting capacity to
host the different Applications Services. It will only provide the IP connectivity for external
applications which will implement different use cases. However, b<>com * Unifier GW * deployment
may be customizable (data-path management must be to the edge, for control management, it may
depend of context).

An example of use case in the context of Smart City could be to illustrate benefits of dual radio
coverage (WiFi/LTE) with unique secured authentication to provide some advanced services. An
example could be (depends on what will be described in Use Cases and OpenCall candidates) to
provide a VoIP application service taking benefit of b<>com * Unifier GW * for instance for City
employees for “on site” actions with real time/live shared information (video …) using UEs
(eventually “advanced UEs” as google glass).

So, the Unifier Gateway could provide:

 A common unified mobile access to a Cloud Edge where Over the Top Network Applications

Services (AS) may operate; these AS would be supervised and managed by 5TONIC

Orchestration.

 A network interface available for VxF in order to provide Network Application services locally

with better network latency. These VxF are so Cloud Edge resources hosted on Edge compute

node(s), deployed on local IASS and managed by the VIM manager run by 5TONIC

In addition, these VxF are hosted on these Cloud resources and shall be under Service Orchestrator
run by 5TONIC

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 80 of (120)

3.7.1.3 b<>com * Unifier GW * as a PNF (e.g. 5G-in-a-box from
DoA)

The b<>com * Unifier GW * may be installed on the local test bed as an autonomous embedded VNF
running on a dedicated hardware resource (VNF provided by B-COM as a package with hardware
platform). The Unifier Gateway shall be managed as a whole (hardware/software) by the Network
Service Orchestrator. The Unifier Gateway will manage locally the users (embedded HSS). In such a
case, there will be no capability of roaming, consistent unified users’ database between the different
tests beds: no central common HSS.

The Unifier Gateway shall also establish the data path from local radio access networks to PDN (i.e.
Internet local access in order to avoid any “tromboning” effect with a central PDN gateway); this
data-path established possibly through VxF (depending on use cases).

Figure 22: 5G-In-A-Box deployed as a PNF locally to testbed

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 81 of (120)

3.7.1.4 b<>com * Unifier GW * as a set of VNFs

b<>com * Unifier GW * VNFs will be adapted to be deployed on an Openstack infrastructure.
Different types of deployment may be experimented depending on the available infrastructures and
capabilities from TestBeds:

 If Openstack infra is available at TestBed level, b<>com * Unifier GW * VNFs are deployed on

it

 If no Openstack infra is available, b<>com * Unifier GW * may be provided as a “5G-in-a-box”

with its own Openstack infra.

The whole b<>com * Unifier GW * will be instantiated at a TestBed level (a b<>com * Unifier GW *
instance (e.g. set of VNFs) per Testbed).

Figure 23: b<>com * Unifier GW * deployed as a set of VNF locally to testbed

The b<>com * Unifier GW * deployment will be handled by OSM (at 5TONIC level) instantiating the
different b<>com * Unifier GW * VNFs at testbed side.

3.7.2 Testbed components in the 5TONIC laboratory

The 5TONIC laboratory includes a solid baseline of facilities and infrastructure that supports
advanced experimentation in the area of 5G network technologies. The laboratory offers a data
center with multiple communication racks, a VPN access service and high-speed network
connectivity with external networks. through RedIRIS and GÉANT Communication racks are allocated
to individual 5TONIC members and may be flexibly interconnected according to any experimentation
requirements. Additionally, 5TONIC provides its members with access to a common infrastructure
with specific-purpose hardware, to assist in experiments, trials and demonstrations with 5G products
and services. Due to confidentiality reasons, we cannot disclose all the software and hardware

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 82 of (120)

available in the laboratory, which also includes experimental prototypes from the industrial and
academic members. Consequently, in the following we keep our description focused, highlighting the
main infrastructure and equipment at 5TONIC that is offered for experimentation within the
experimental infrastructure architecture of 5GinFIRE (more comprehensive information can be found
in Deliverable D4.1).

Regarding the orchestration service, the OSM stack runs in a virtual machine using a server computer
with 16 cores, 128 GB RAM, 2 TB NLSAS hard drive and a network card with 4 GbE ports and DPDK
support. This server computer also hosts an OpenStack Ocata VIM. An additional and independent
instance of OpenStack Ocata is deployed in a separate server computer with six cores, 32GB of
memory, 2TB NLSAS and a network card with four GbE ports and DPDK support.

The utilization of two separate VIMs allows allocating experiments to two separate NFV
infrastructures (NFVI). On the one hand, the laboratory includes a dedicated NFVI allocated to
experimentation activities within 5GINFIRE. This consists of three server computers, each with six
cores, 32GB of memory, 2TB NLSAS and a network card with four GbE ports and DPDK support. These
servers are interconnected by a GbE data-plane switch. Additionally, 5TONIC also offers a second
NFVI based on two high-profile servers, each equipped with eight cores in a NUMA architecture,
128GB RDIMM RAM, 4TB SAS and eight 10Gbps Ethernet optical transceivers with SR-IOV
capabilities. These servers are currently interconnected in the data plane by a 10Gbps Ethernet
switch. The latter NFVI forms part of the infrastructure of the IMDEA Networks Institute at 5TONIC
and may be used to support high resource demanding experiments. This specific infrastructure will
be available for experimentation in 5GINFIRE under specific terms and conditions as described at the
project website2. Finally, the experimentation infrastructure offered to 5GinFIRE includes a number
of server computers to support complementary functionalities to aid experimentation, such as a
network management system and a VPN service.

Experimenters deploying VxFs over 5GinFIRE need the capability to connect to their deployed
modules for configuration, monitoring, troubleshooting, etc.; the VPN service available at 5TONIC has
been offered to the project for this purpose. In that sense, experimenters connect to the VPN and
the VPN server derives them directly into a Jump Machine, which controls to which address ranges
(from all the 5GinFIRE interconnected test beds, not only from 5TONIC) experimenters are allowed to
connect. Undesired access to OSM and VIM components, for example, are blocked at this element.
The Jump Machine is a commercial Juniper M7i router, implementing access profiles and powerful
filtering. Experimenters have their own access (i.e. CLI) profile, where the only permitted operation is
to start SSH connections; this way, external experimenters cannot modify the Jump Machine
behaviour.

In addition, 5TONIC provides multi-site capability by incorporating infrastructure and equipment
located at TID dependencies in downtown Madrid, that can work independently or in connection
with the 5TONIC main site. When this equipment is available and not committed to other
experiments, it can be incorporated to support specific experiments in 5GINFIRE. This test-bed,
known as the TID Future Network Lab, includes four high-end standard servers for NFV and SDN
applications, five dedicated OpenFlow switches, and a scalable platform to support OpenVSwitch
nodes on Intel-based micro-computers. In addition, a metro-core network setup composed by
IP/MPLS and optical devices is available, together with several GMPLS nodes running software
developed internally, built on emulated nodes running Ubuntu Linux.

2 5GinFIRE website: https://5ginfire.eu (last Access on June 2018)

https://5ginfire.eu/

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 83 of (120)

3.8 Resources reservation

For the initial versions of the 5GinFIRE platform there will be not any specific automated resource
reservation mechanism. We do not expect this to be a barrier since most experimentation
deployments will be elastically deployed to cloud infrastructures. Nevertheless, the experiments will
be validated and scheduled if there is a limited resource capability and as the work continues, we will
revisit the issue.

3.9 Integration and deployment strategy

3.9.1 Integration

All components developed within the project will be integrated at the API level. For the portal and
public repository to OSM the OSM API will be used.

From OSM to testbed VIMs (Visualized Infrastructure Managers) the standardized ETSI VIM interface
will be used.

The following VIMs will be currently deployed to our testbeds:

Table 4: Testbed VIM version

Testbed VIM version

5GUK Test Network The VIM version provided is OpenStack Pike
which has interoperability with ETSI MANO
architecture framework. This VIM includes
some MEC nodes with NOVA deployed
outdoor at Millennium Square Bristol.

ITAv The VIM version provided currently is based
on OpenStack (Pyke) for the duration of the
project. This deployment will support
development tasks and provide an
environment for testing before code
contributions to external projects.

5TONIC 5TONIC deploys two independent VIMs Each
of them is based on OpenStack Ocata. In both
VIMs, the OpenStack networking service was
installed to support layer-3 services, and the
ML2 plug-in of OpenStack was configured to
use Linux bridges.

Besides the initial 3 testbeds, the 1st Open Call has added 3 new testbeds: eHealth testbed, NITOS
testbed and Iris testbed.

These testbeds have been integrated using the same mechanisms already in place. Further
information can be found in “D5.1 Testbed Integration and EVI Deployment Guidelines”.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 84 of (120)

3.9.2 Deployment

For the deployment of the platform it was decided that the 5GinFIRE portal would be hosted by UoP
which has also the development effort.

OSM is deployed at 5TONIC. OSM release TWO has been used for the deployment of the 5GinFIRE
MANO platform, although given the deadlines established for this deliverable, this document makes
reference to OSM Release FOUR (the essential features of OSM are maintained in the new version,
which does not change the analysis and conclusions presented in this document).

3.10 Experimentation Support components and services

For 5GinFIRE operations to support end-users, we need to install some support tools, like wikis and
ticket systems. After analysis, the following tools have been selected and deployed:

 Helpdesk / Ticketing: Bugzilla

 Wiki: MediaWiki

3.10.1 Helpdesk

Tool choice

Projects that will result from 5GinFIRE OpenCalls should be able to request assistance in case
something is not working as it should be or to perform new requests. As the goal of 5GinFIRE
platform is to host operational 5G use cases, it is highly important to track a request/incident all
along until its resolution. In order to do so, solutions like mailing lists are easy to setup but they are
not efficient in terms of tracking.

The best approach is to use a ticket tracking tool. For the 5GinFIRE platform operation purposes, the
ticket tracking tool used is Bugzilla, which provides an issues management approach for software
development rather than for IT helpdesk. Nevertheless, this fits pretty well with the kind of Requests
/ Problem Reports handled within the 5GinFire community for exchanges between testbeds,
experimenters and VxF developers.

Users will be able to submit requests / incidents and they will be escalated according to their nature
to the right team. Check section to get the details of the process flow.

5GinFIRE platform support

An operational platform requires a support service in order to operate properly. Usually the support
is composed of several layers or stratums that range from general issues/request troubleshooting, to
specialized troubleshooting. Based on the existing roles, the following layers could be adopted:

 Layer 1: Handled by the 5GinFIRE Support group which is in charge of receiving the initial
request and either resolve the issue or address it to appropriate group on the upper layers.

 Layer 2: Requests addressed to this layer will be managed by the Testbed Operator if it deals
with an issue / request about the testbed execution environment or by the 5Tonic Operator
if it is an issue for instance about VNF deployment.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 85 of (120)

Figure 24: 5GinFIRE environment support organization

As defined in Tool choice a helpdesk tool will be available to help with the issue management and
tracking. A basic support process flow is required in order to grant the proper management on the
request.

Figure 25: Support basic process flow

The previous figure provides the support basic process flow which can be described as follows:

 A user opens a ticket for a new request / incident. The ticket is created, and its status is

new.

 The ticket will be evaluated by the 5GinFIRE Support team (layer 1 support) and affected

to the appropriate team. The ticket status will become affected.

 Once a solution is identified and applied, the ticket will be solved.

 If the solution satisfies the user’s expectations, the ticket becomes closed. Other ways it

will come back on status affected.

While the ticket is open, it is possible to:

 Request complementary information to the user to better qualify the ticket.

 To close the ticket because there is not a feasible solution or because the demand is

simply out of scope.

As many other tools proposed for the 5GinFire project, the ticketing system requires personal
credentials to access the helpdesk tool.

When it is about deploying a use case or maintaining one, all requests coming from OpenCall’s users
should be performed via the helpdesk. Some of requests like account creation or new site
interconnection are supposed to be addressed by mail.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 86 of (120)

3.10.2 Wiki

Tool choice

Users of 5GinFIRE and projects that will result from 5GinFIRE OpenCalls should be able to read public
documentation of tools usage. This is done usually through Wikis.

For 5GinFIRE we adopted the Wiki.js (https://wiki.js.org), a free, open-source, lightweight and
powerful wiki app built on NodeJS, Git and Markdown. A powerful feature for selecting Wiki.js, is the
seamless integration with GitHub, where all our source code is publicly available.

As many other tools proposed for the 5GinFire project, the Wiki system requires personal credentials
to access the tool and contribute documentation. All 5GinFIRE developers and VIM owners have an
account and can contribute content. However, for reading documentation it is not necessary to sign
in into the system.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 87 of (120)

4 5GinFIRE Use Cases

4.1 Introduction

In the project we automate the process of combining infrastructures (e.g. NFV, ITS and IoT) to make
the experimentation environment readily available for experimenters around the world.

To define the architecture requirements, we consider a specific set of use cases that represent the
basis set of interactions between vehicles, IoT, and emergency services, which can be provided
through virtual network functions in a shared infrastructure.

In order to account for a diverse set of requirements satisfied by 5GinFIRE environment, we also
investigate another type of vertical as an EVI candidate. This will be the Smart Cities use case which
encompasses a set of sensors for both monitoring and actuating in a city, through municipality
development with a large set of public policies and investigating how the corresponding
infrastructures could be integrated in the overall 5GinFIRE concept. These use cases will drive the
5GinFIRE architecture, some of them already deployed in the first phase of the 5GinFIRE (e.g.
automotive use case) and some using specific inputs from the open calls (e.g. smart cities use case).

In this section we will provide detailed requirements of the Automotive EVI and of the Smart City use
cases and will identify scenarios and most promising VxF components of the automotive industry and
the smart cities IoT environment to experiment our architecture.

We would like to highlight that all the internal scenarios identified under the Automotive and Smart
City EVIs are, above all, technical and reference use cases, designed to demonstrate the technologies
and the functionalities of the 5GinFIRE environment, and should not be treated as business use
cases. With respect to the Automotive domain, besides validating the functionalities of the 5GinFIRE
environment, these use cases tend to identify the major components that will enable the inter-
vehicular communication, and between vehicles and infrastructure, therefore assessing the
capabilities of the Automotive environment before hosting future experimentations.

4.2 Use Cases

4.2.1 Automotive Domain

4.2.1.1 Overview

One of the project’s use cases makes use of both ITS, IoT, and that can be made available through
SDN/NFV: assisted overtaking vehicle.

The objective of the assisted overtaking is to gather all needed information in real-time to a vehicle
to make a decision of overtaking or not the front vehicle, while the visibility of the road from the
vehicle is not sufficient to take a decision. Important information is used to take the decision, such
as: video images from the road ahead, vehicles ahead, obstacles, road conditions, crosswalk, turns,
people and bicycles in the road, and even traffic signs such as stops and traffic lights.

Each vehicle has access to its own information such as velocity, GPS, camera and internal sensors.
This information is used by the embedded computer of the car to take local decisions, and it can also
be advertised to the other vehicles. Each vehicle also has access to information from the street and
surroundings through video cameras on the other vehicles and sensors (people, bicycles, crossing
roads and traffic lights, vehicles in the road, bad conditions in the road). This information can be sent
and disseminated through vehicles (through DSRC or future 5G device-to-device (D2D) technology),
or to a WiFi, DSRC or cellular station (or a future 5G station) in the street, and then be disseminated
to the vehicles in the area.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 88 of (120)

With all this information, each vehicle can access its own information and the one gathered through
other vehicles. Vehicles use this information to provide assisted driving: vehicles can take individual
decisions according to its information and the one coming from other vehicles: cameras and sensors.

To design and implement such a scenario, several enabling capabilities and infrastructure are
provided. We consider the following interactions to gather and provide information:

• Sensors to the edge-cloud: send sensors information to be processed in the edge

together with the vehicles and people information;

• Cameras and sensors to the vehicles: send information to the vehicle, such as real-time

video images, strong brakes, malfunctions;

• Vehicles to and from the edge-cloud: send information about each vehicle and its

sensors to the edge-cloud;

• Vehicles to vehicles: send information about each vehicle cameras and its sensors to

other vehicles;

• Edge-cloud to vehicles: send information about the overall environment in the

surrounding after fast processing, so that the vehicle can take decisions on the safe over-

taking.

The next figure depicts some of these interactions and the elements involved in the road area.

Figure 26: Interactions between sensors, vehicles and access points/road side units

There are several service components required in the architecture to implement this use case, as
represented in the following figure.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 89 of (120)

Figure 27: 5GINFIRE architecture in the ITS and IoT infrastructure

The ITS and IoT infrastructures provide the verticals specific of each physical infrastructure.
Information and processing run in edge computing systems, which are composed by access points
(APs), ENodeBs, and servers, providing virtual functions through SDN and NFV. The core path is de-
structured through SDN and NFV to enable flexibility, providing accommodation of new information
and functions in an autonomous approach. The several running experiments in the vertical
infrastructure will be provided through experimental vertical instances, being deployed to both ITS
and IoT, and open to build new instances.

This architecture supports the right functions at the right time, in the edge network and in embedded
routers in the car:

• Interaction between car components and the information from the outside to take local

decisions.

• Network and communications: V2V, V2I (through edge cloud).

• Video cameras and sensors integration: connected to access points or road side units,

which can be stored in the mobile edge computing cloud in the street.

• Configuration, management, deployment tools to serve the actual experimental needs.

4.2.1.2 Use Cases

4.2.1.2.1 Sensing-based Automotive Testbed for assisted driving

The concrete scenario for assisted driving is presented in Figure 28. Each vehicle contains an On-
Board Unit (OBU) that provides the communication between vehicles and between each vehicle and
the infrastructure. The architecture of each OBU is described in section 4.3 (Testbed). The OBU in the

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 90 of (120)

car receives a large set of information from the road-side units, related to vehicles traffic, traffic
signs, road conditions, which is disseminated in a specific area. The OBU also connects to an Android
device, smartphone, through WiFi, providing visual information to the driver. The visual screen
provides visual information about the main actors in car-assisted driving:

• Vehicle status;

• Road/Highway status and traffic signs;

• Environment status;

• Traffic status.

The visual screen will be implemented in a smartphone and presents traffic/road/environment
information in a visual way. This information will be used by the OBU to take decisions on driving,
and more specifically on overtaking, and the decision will be presented in the visual screen.

Figure 28: Sensing-based automotive scenario for assisted driving.

Each OBU in the vehicle contains a GPS that provides its location. This information is sent between
vehicles in beacons that are exchanged in the IEEE 802.11p interface. The vehicles can also exchange
information related to the road sensors, traffic signals and environment sensors. This information is
collected from the OBU in the vehicle and visually presented in the visual screen. The information is
also used by the OBU to determine the obstacles, the road conditions, the positions of the other
vehicles, and the restrictions of the roads.

The traffic signaling status integrates the road/highway status, such as restrictions on velocity, traffic
signs such as stops, traffic lights or traffic signs that advises for road constructions. We consider 3
types of traffic signals (TrafSig):

• FixedStatic TrafSig: e.g. a STOP signal.

• FixedDyn TrafSig: e.g. a traffic light.

• Mobile TrafSig: e.g. a “working” traffic signal.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 91 of (120)

These signals are emulated using ESP8266 devices, as depicted in Figure 29, with the possibility to
evolve to a real solution with integration with traffic signs (e.g. Siemens systems in traffic lights
integration).

Figure 29: Emulation of traffic signal devices.

The information from these traffic signals is sent to the vehicle through the road side units, or
through communication with the OBUs. In the case of fixed and static traffic signals, and even in the
case of mobile traffic signals with static information, they send their information to the road side
units through WiFi. The fixed static traffic signals can even be uploaded to the edge cloud and be
integrated in the area maps that will be downloaded to the smartphone, and also sent to the OBU in
the vehicle. The dynamic traffic signals need to interact directly with the vehicle through WiFi, so the
vehicle is able to know the current and real-time status of the traffic light.

The data collection unit (DCU) contains several real sensors of temperature, humidity, carbon
monoxide, wind and pluviometry, and they will provide relevant information related to the risk of
driving in those atmospheric and environment conditions. This information will be sent to road side
units through WiFi, and the RSU will then update the maps with these conditions, and the OBU in the
vehicles. The OBU will also consider this information to assist the velocity and how careful the driver
shall be to minimize the risks.

As an overview, the following interconnections will be provided:

• RSUs (with IEEE 802.11p and WiFi) that gather the information from other cars, the

environment sensors and the traffic signalling sensors;

• OBUs (with IEEE 802.11p, WiFi and 4G) in each car that gather information from other

cars, from the RSUs, and from dynamic traffic signals;

• DCUs (with WiFi and LoRa) which contain the information of the environment sensors;

• WiFi hotspots that gather the information from sensors and traffic signs;

• Ethernet backhaul and Internet access to interconnect the road side units, some DCUs

and WiFi hotspots;

For the specific use case it is important to be able to define experiments, start the log with the
important information to get the experiment running details, and get all the decisions information to
analyse the experiment. To provide this approach, through the OBUs several types of information are
available:

• Location logging: GPS location, heading, and speed;

• Traffic logging: traffic collected or sent through the OBU: vehicle users’ traffic,

RSUs/OBUs traffic load, including their mean packet size and mean packets rate;

• Networks logging: network to which a specific OBU is connected, through which

technology and the number of hops, connections characteristics, such as the signal

quality/signal strength, number of visible 802.11p neighbours;

• Sensors and traffic signs information logging;

• Logging of information related to decisions on assisted-driving.

• In terms of configuration, several configuration modules will be made available:

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 92 of (120)

• Define the sampling time of the extracted information (logging information);

• Define a specific server to receive the provided information (logging information);

• Define an experiment and configure the previous logging modules.

In this use case the 5G network will be required to be able to get and process all the received
information and take the over-taking decision with a very small delay. The VxF will then be the
sensing-based over-taking decision module, which can be implemented in the edge of the network
connected to the road side units.

4.2.1.2.2 Video-camera-based Automotive Testbed for Assisted driving

The concrete scenario for video-camera-based assisted driving is presented in Figure 30. Each vehicle
contains an On-Board Unit (OBU) that provides the communication between vehicles and between
each vehicle and the infrastructure. The OBU also connects to an Android device, smartphone,
through WiFi, that provides visual information for the driver.

The vehicle contains a video camera of its front side. The video is streamed from the front vehicle to
the rear vehicle through vehicle to vehicle communications, using IEEE 802.11p communication. The
OBU in the car receives the video stream and sends it to the visual screen in the car, so that the
driver can have real-time access to the visual information of the vehicle. This information can be
used by the driver to take decisions on driving, and more specifically, on overtaking situations.

Figure 30: Scenario for video-camera-based assisted driving.

Both rear and front vehicles may belong to different brands and have no agreement between them,
both in terms of communication (vehicle to vehicle) and in terms of joint services. This means that
the transmission of the video streaming from the camera in the front vehicle to the visual screen in
the rear vehicle may need a 3rd party agreement to agree on the service to be established between
the vehicles. Moreover, the video quality to be chosen in the camera will depend on the capabilities

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 93 of (120)

of the video screen. Therefore, a transcoding system may be needed to adapt the video capabilities
between both vehicles.

Both 3rd party service and video transcoding will need a 5G network approach: they will need a VxF
to be available in the edge or even in the vehicle that will provide its capabilities with very low delay,
such that it will not interfere in the driving process. In this use case we consider that both
approaches are possible.

When the vehicles are in range, the video streaming can be transmitted between them. However,
before this happens, an application in the OBU sends a federation request to the 3rd party edge
service, with the information on the video capabilities and the identification of the rear vehicle. This
information can be sent from the OBU to the UGW, which is working as a VxF in the edge. The 3rd
party module contacts, again through the UGW, the OBU on the rear vehicle to provide the
agreements and understand the video capabilities. Then, it performs the agreement and instantiates
the transcoding function between the vehicles. The video streaming is activated and exchanged
through vehicle to vehicle IEEE 802.11p communication.

As an overview, the following interconnections are provided:

• OBUs (with IEEE 802.11p) in each car that transmit the video streaming information;

• RSUs (UGW) (with cellular or 5G) that receive the request for federation and transcoding,

and send the decision to the OBUs in the vehicles;

• RSUs (UGW) (through wired network) that contact the VxF for federation and

transcoding;

• Ethernet/fiber backbone and Internet access to interconnect the road side units.

For the specific use case it is important to be able to define experiments, start the log with the
important information to get the experiment running details, and get all the decisions information to
analyse the experiment. Through the OBUs several types of information are available:

• Location logging: GPS location, heading, and speed;

• Logging of traffic from video streaming;

• Logging of traffic to and from the RSUs/Unifier Gw;

• Logging of information related to decisions on assisted-driving.

• In terms of configuration, several configuration modules will be made available:

• Define the sampling time of the extracted information (logging information);

• Define a specific server to receive the provided information (logging information);

• Define an experiment and configure the previous logging modules.

In this use case the 5G network will be required to be able to get and process very fast the federation
and transcoding, so that the overtaking decision is performed with a very small delay. The VxF is the
video transcoding, which can be implemented in the edge of the network connected to the road side
units.

4.2.2 Smart Cities Domain

The 5G networks foresee the deployment of a network specific to different scenarios of use. These
different scenarios are related to specific usage domain are called verticals. Examples of these
vertical markets are energy, manufacturing, health care, agriculture, city and automotive. The focus
is to design a network that is driven by the requirements of each vertical market in opposition to the
previous network generations where the focus was to offer connectivity to support voice and data at
increasing data rates.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 94 of (120)

From the network point of view, it must support different requirements that are posed, sometimes,
by the same vertical. In the context of cities, also mentioned as Smart Cities when considering the
junction of cyber physical systems based on the Internet of Things (IoT), an application with several
full definition cameras that are monitoring the city will require a high throughput from the network.
An application to control the flight of UAV that is monitoring the traffic in the city on a specific point
will require an ultra-reliable and low latency from the network. A massive number of sensors that are
monitoring different parameters of the city, such as air conditions, will require low power
consumption and will send small chunks of data to the network.

This subsection will explore the Smart City vertical of the 5G by presenting the 5GINFIRE context
where an experimenter will use real time data provided by the city and a network core, hosted in the
5GINFIRE based cloud. The experimenter will be able to work with different scenarios of a 5G
oriented system. To present this, initially an overview of a sample use case scenario of city
monitoring application will be described. In the sequence, common actors and stakeholders of the
city environment that will interact with the 5GINFIRE testbed will be presented and a common set of
network related Vertical Function of Verticals (VxF) of a Smart City Experimental Vertical Instance
(EVI) will be described.

4.2.2.1 Overview

Smart City is a term with a broad definition and there are several initiatives around the world related
to this area [94].

In the context of this document the focus is the use of Internet of Things (IoT) based systems that
may help to enable the vision of a Smart City in the urban environment [96]. In this area, several uses
cases, in different domains of applications can be described such as traffic, security, environmental
monitoring, and parking among others.

Fixed sensors, such ones deployed at a street light, and mobile sensors, such as citizens’
smartphones, can provide information that could enable the monitoring of the traffic in the city and
real time information from this gathered data could be consumed by citizens, logistics companies
and the public sector to help a better moving in the city. In the same way, the historical analysis of
this data could help the public sector to plan and execute interventions in the city to evolve the
traffic management.

Cameras deployed in the city can be used to improve security and safety of citizens if the data is
consumed by different and specialized systems most often in a city Command and Control Center.
Different sensors deployed in the city can provide information about noise, air pollution such as
Carbon Dioxide (CO2) levels and water condition. This information can also enable different services
and applications that might improve help to improve the daily life in the city and give conditions to
city planners to act to improve the living in different places.

Parking sensors deployed along streets or inside parking areas can provide real time data of parking
spots available enabling citizens to quickly find the best place to stop their car saving time and
avoiding a search inside car that consumes time, fuel and produces more traffic and pollution.

The use cases above are small examples of how sensors deployed in a city can enable services and
applications that may improve the life in the city.

In general, these systems share some common building blocks: sensors, gateways, compute
resources, communication links between sensors and gateways and transport links between
gateways and computing resources [96]. Different technologies are employed currently to support
the communication links. Some are used in a small area such as Bluetooth Low Energy (BLE) and IEEE
802.11 (WIFI) and other in a wide area such as Low Power Wide Area (LPWA) and 3GPP based
current mobile telecommunication networks (2G, 3G and 4G).

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 95 of (120)

The next mobile telecommunication network, envisioned as 5G, will play an important role in the IoT
area because it will focus on a broad range of scenarios with each their requirements [95].

5GINFIRE aims to help this area by providing the conditions to experiment IoT based scenarios in the
smart cites vertical supported by 5G based systems. This support will be done by putting together the
actors, the resources and the technology in a cloud-based environment.

Two different approaches will be used: one based on Virtual Sensors (VSensor) and the other using
real sensors. The two approaches are depicted in Figure 31.

The first approach will be based on reusing current open data provided by sensors already deployed
in several FIRE and FIWARE based testbeds. VSensors will be hosted by the 5GINFIRE infrastructure
and will be connected to the data provided by the real sensors. This approach will allow an
experimenter to create a Smart City EVI based on a set of data stored in the VSensors. This data was
previously gathered from the real sensors.

To support the experimentation of 5G oriented systems in the Smart City vertical the 5GINFIRE core
architecture will have to support two different types of integrations, as presented in Figure 31. One is
based on a 5GINFRE edge cloud that will be deployed in the cities where 5GINFIRE project partners
are located and where they interact with the local stakeholders such as the municipality, citizens,
fixed and mobile operators. The other integration will with other infrastructures data provide data
the city. At this moment, this last integration will occur with FIRE and FIWARE based infrastructures.

Figure 32 presents the main components that will be required to be present in the 5GINFIRE
architecture. Our requirements analysis indicates that there two main types of Smart City based
infrastructures: some based on FED4FIRE and other are based on FIWARE compliant components
that offers interfaces using CKAN based APIs or Next Generation Services Interface (NSGI). The
5GINFIRE middleware must have integration components to each one of these types of
infrastructures. The information obtained using these integrations will be consumed by the VSensors
Framework. This framework will provide the services that will enable the cycle of life of the
experiment that will be executed by the experimenter.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 96 of (120)

Figure 31: 5GINFIRE architecture in the Smart City and IoT infrastructure

The Real Sensors framework will handle the data obtained in the 5GINFIRE Edge Cloud and will
provide the services that will enable the experiments in the same way. Both frameworks will have to
support the same services.

Smart City applications based on the IoT have a Sensor Layer where different devices connect to a
gateway. The gateway interconnects these sensors with the infrastructure and has different roles
such as protocol translations. The Gateway will be a VxF that will be available in the edge in both
scenarios that considers the virtual and real sensors. Considering a FIWARE based backend, the
gateway will translate protocols such as Message Queue Telemetry Transport (MQTT) and
Constrained Application Protocol (CoAP) to Next Generation Service Interface (NGSI). This type of
gateway if called by IoT Agent at the FIWARE platform but the VxF will have some additional roles
such as being managed by the 5GINFIRE infrastructure.

Other functions are envisaged to be VxFs that can be deployed in the Smart City such as a Load
Balancer that can be able to balance traffic from multiple sensors considering the network
conditions. A router responsible to IPv6 and IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) conversion [96] in both directions is also a candidate to be a VxF in scenarios using
6LoWPAN in accesses networks.

In some scenarios, according to the requirements of the solution a Firewall can be a VxF deployed in
the Smart City.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 97 of (120)

By using the capabilities NFV and SDN different VxF can be foreseen on IoT based Smart City
applications. The VxF can be responsible to other functions related to the infrastructure services
[124] such as device management including fault and monitoring management among others.

Figure 32: 5GINFIRE IoT Integration Components

The second approach will be based on using real data from sensors using a 5G based access network
that will provide this data to 5GINFIRE to edge cloud deployed in the cities where project partners
are located: Aveiro and Bristol in Europe and São Paulo and Uberlândia in Brazil. At these locations,
some real sensors are already deployed. For example: in Aveiro, Portugal, there are sensors that
provides information such as temperature, humidity, pressure, lighting, CO, NO2, H2, NH3, CH4; in
Uberlândia, Brazil, there is information about urban buses positions and sewers sensors information
at a district in the city called Granja Marileusa.

4.2.2.2 Network and Service Functions/Modules

In this part we will list the requirements needed by an environmental use case on smart cities and
then on the core network. For each of them, we will describe any network and service functional
requirements. This listing is going to be carry out in a broader approach for the purposes to not only
target an environmental use case but as much of use cases that can be hosted on smart cities.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 98 of (120)

Figure 33: Networks and Service requirement for smart cities

For the Smart city testbeds:

As described by the Figure 33, a smart city can be simply be seen as a connected city that have
various access network which allow sensors or endpoints to record data and allow applications to
access them or be reached by user entities.

 Sensors / Endpoints / User Entities:

Sensors: it is a connected object providing useful applicative data like temperature, air analysis, ...

Endpoints: it can be seen as a “modem” providing the connectivity to the access network, term used
in the non-3GPP technologies like LoRa or Sigfox.

User Entities (UE): it is a smartphone, tablet or any device identified and to a 3GPP radio access
network

In general, a smart city testbed shall provide a subset of each category, but it could also be
completed during open calls with Sensor providers (bringing and testing their sensors) and Apps
providers (using the sensors already available in the smart cities, developing and testing their
application).

But for the environmental use case, sensors collecting environmental data should be made available
(by the smart city testbed or by sensors providers). Those sensors might imply physical endpoints
depending on the type of sensors that will be used.

 Access Networks:

Use cases require various types of access networks, according to the usage itself or the type of
technology deployed by the city. Smart cities will need to equip the geographical area with a
representative set of sensors with a large coverage in order to receive sufficient amount of data that
can be then exploitable by applications. The access network shall include the front hauling network
(like fibber between LTE EnodeB but for LoRa gateways it could be ADSL or even 3G).

 Access Network Types:

 Various wired or wireless access networks may be used, with following suggestion:

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 99 of (120)

 LoRa or NB-IoT may be used for the environmental use case, but also for some telemetering

use cases. In such a case, where sensors need to be placed in isolated areas, we prime

wireless and powerless technology like Lora or NB-IoT.

 Wifi or LTE (or LTE advanced) can be used for the environmental use case, but also tele

maintenance use cases. They are ideal for services that may require bidirectional streams

with real time constraints (conversational service) and may rely on various technologies

(VoLTE, VoWiFi, WebRTC, …).

 LTE-M or fiber can be used for the environmental use case, but also for CCTV and security

use cases. They can provide high resolution for video sensor (a camera), a high bandwidth

and very low latency connection.

Applications/VxFs near to the data:

Having computing near to the data sources can have several benefits compared to the traditional
cloud-based computing paradigm. By distributing computing tasks near to their data source, it
offloads networks traffic data on central datacenter as well as their computing tasks. But also, it
shortens application/VxF processing time and this can be particularly true when data provider (in
here sensors) are working in a send/receive mode. For all of those reasons, it can be very interesting
for a developer to put some of the applications/VxFs computing tasks on the edge rather than letting
them in a central cloud.

So, in conclusion for some applications/VxFs, the data will be better to be processed at the edge for
shorter response time, more efficient processing and smaller network pressure. For some other, it
won't be necessary, but still the capacity to put computation processing at the edge will still need to
be considered.

For the Core Network(s):

NFVi:

For a testbed that is targeting a 5G NFV-Based architecture, a NFVi (NFV cloud infrastructure) is
required to host the VNFs. The capacity of the NFVi shall be expressed in term of computing, storage
and networks with:

 Servers or CPU cores,

 VM flavours (CPU, RAM, Disk) which are available for booking

 Number of VMs supported by the NFVi

Catalogue:

A catalogue of VNFs provided by partners and that can be hosted on the NFVi is required with the
associated licences, packages, documentation, release notes and hosting requirements.

Orchestrator:

To complete one of our objectives which are to fit to ETSI’s reference architecture it is required to
deploy inside 5GinIFRE core network an orchestrator for VNFs including an SDN controller for
interconnection.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 100 of (120)

About the Interconnection:

Interconnection between the smart cities’ testbeds and central cloud hosting Core Network features
is required, through a secure link (site-to-site VPN for example) and with a determined Quality of
Service in term of bandwidth, latency, jitter, and so on. “Determined” does not mean “guaranteed”,
it is a way to qualify the type of application that could be experimented during open calls. Such an
interconnection shall be based on GEANT and NREN services.

4.2.2.3 Uses Cases

4.2.2.3.1 Smart City Safety

Given the critical importance of security in cities, innovations advances in wireless communication

system are increasingly improving the safety of city inhabitants. New services such as audio and

video monitoring of public areas and automated municipality rule infraction detection allow a

quicker response to threats and anomalies prevent reoccurrence. Based on this context UNIVBRIS

has been deployed a smart city safety use case, as a proof of concept, to help identifying suspicious

activities in the city. The basic components of this use case are listed below, and they are connected

together to the Internet through a WiFi Interface.

 Bike rider helmet
 Raspberry PI
 360-degree camera e audio

Figure 36: High level smart city safety architecture

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 101 of (120)

Figure 36 shows a high-level architecture of the smart city safety use case. The bike rider carries his

helmet, which has attached the Raspberry PI and the 360-degree camera. Along of his path video and

audio is capturing and send via WiFi to the Mobile Edge Computing (MEC) or Cloud to be processed.

Once the audio and video has been processed and any suspicious activity has been detected a

notification is generated and sent to the different security agents. This use case will serve as a

blueprint experiment that can be deployed on top of UNIVBRIS Smart City testbed. In particular, a

VNF video transcoder based on OpenCV (including face detection and recognition) and a VNF audio

transcoder have being developed. Both VNF will be available at 5GinFIRE public repository.

4.2.2.3.1.1. Smart City Safety Architecture

Many of today’s municipalities are becoming test beds for the smart city experimentation where
technological capabilities are addressing daily needs from parking, water treatment to city security.
University of Bristol is working to provide through 5GinFIRE platform a smart city safety use case that
has been deployed according to the architecture shown in Figure 37. Figure 37 shows the main
building blocks that make the smart city safety use case a reality. Note that only open-source
frameworks (OpenStack, OpenDayLight, etc.) are being used to deploy the use case.

Figure 37: The main building blocks of UNIVBRIS VIM and the Smart City Safety Architecture

The use case architecture is a physical and virtualized infrastructure that is being deployed as part of
5GinFIRE overall architecture. The cloud environment of the UNIBRIS consists of an OpenStack Pike
instance that operates on top of Ubuntu 16.04 Server operating system.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 102 of (120)

4.2.2.3.2 Smart City IoT

The main smart city features available at UNIVBRIS testbed for IoT experimentation are based on
FIWARE and include the following.

 Context Broker(CB): The CB element is the main feature of the platform, accommodating

multi-tenant users and the data from different IoT deployments. The operation of the CB

is initialized by creating credentials for the user, which are used for sending and

retrieving the data being generated from the IoT Devices. The implementation of FIWARE

requires a service id and a service path which are unique and must use within any IoT

data protocol. The CB implements a publish/subscribe philosophy able to accommodate

a large number of users, assuming the resources permit.

 IoT Agents: This element is responsible for the convergence of different IoT data

protocols. Including protocols such as HTTP, MQTT and CoAP, which are already enabled

on the platform. This component allows extendibility, providing an API that can be used

for developing new data handling agents.

 Database: The third component, used to store the user's data, is a NoSQL database

integrated with the CB component. The CB is able to isolate the data using the service id

and therefore store the information using the service id as a key. The database is mainly

used for historical data and analytics.

 ICT Admin Tool: This software is a front-end application for managing the FIWARE

platform. It is able to create users and register devices. Also, it will be used to provide

user information to partners in order to retrieve data

 Real Time Data Visualization Dashboard that contains:

a) Data Brokering: For the project purposes we have developed data brokering. The
SCP platform is able to retrieve heterogeneous data and then provide the data to
the authorized user. This is able through real time data collection as well as
historical data.

b) User Registration Through Web Service: Also, we have developed a web tool for
managing the FIWARE platform. This is a big contribution to the project since
there is not any open source similar application.

c) Real Time Data applications: Using the Context Broker of FIWARE we are able to
accommodate real time data applications. Out of the box there is the capability
of real time data visualization applications.

d) Historical Data applications: Also, another feature developed for the project is
historical data. We store the real time data within a database by tagging the data
for each user. Therefore, there is the capability to provide historical data to the
users upon request.

e) REST API Integration: All the novel software development can be accessed
through REST APIs. This accommodates straightforward integration with 3rd
party applications and systems.

The smart city IoT use case is composed of several sensors with WiFi and LTE connectivity

spread around Millennium Square at Bristol City. These are environmental sensors that

enable for instance to sense Carbon Dioxide CO2

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 103 of (120)

Ozone O3 and Nitric Dioxide NO2. This use case will be used also to demonstrate the

integration with FIESTA Project which is a FIRE testbed. To this end, a VNF IoT will be

designed and deployed at Bristol VIM to capture the sensors data, pre-processing these

data, send them to FIESTA platform for processing and received the outcome for

distribution.to the users. Figure 38 shows any example of sensors that will be used in the

use case.

Figure 38: Example of Smart City IoT sensors devices

30 Pycom Pysense

sensors 2 Smart Environment PRO

Sensors: WiFi and LTE

Carbon Dioxide CO2

Ozone O3

Nitric Dioxide NO2

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 104 of (120)

4.3 Testbeds in 5GinFIRE Use Cases

4.3.1 Automotive

The vehicular network used in the automotive testbed consists of On-Board Units (OBUs) in the
vehicles and roadside units (RSUs) connected to the Internet through optical-fiber through an
Ethernet interface. As shown in the Figure 34, the vehicles connect among each other via standard
IEEE 802.11p/ WAVE links and are connected to the RSUs and the Internet through IEEE 802.11p/
WAVE, IEEE 802.11g/ WiFi or cellular links.

Figure 34: Vehicular Network Architecture

IEEE 802.11p/ WAVE technology has been developed for vehicular dynamic environments: it is able
to provide a communication range of up to 900m in line-of-sight, which is very important to reach
vehicles in a road environment, and the connections can be established in 10-20msec, which are able
to use the very small opportunities of communication. Moreover, vehicles can operate in a mesh and
multi-hop topology, improving the communication range between the vehicles and the
infrastructure. DSRC/WAVE works on an unlicensed band that is free of cost and reserved for
intelligent transportation systems.

Cellular backhaul is available as a complement technology to the IEEE 802.11p when this is not
available. WiFi is available in the OBUs and RSUs so that users inside the vehicles and users in the
street near the RSUs, are able to connect to the Internet. Sensors installed in the vehicles and in the
street can send data to the cloud through the vehicular network (through RSUs and OBUs WiFi
hotspots).

Vehicles are also able to connect to the infrastructure through WiFi hotspots installed in the roads.
However, since the range of WiFi is 10 times lower than the one of IEEE 802.11p, and the time of
connections establishment is 100 times larger (in the order of seconds), they only connect through
WiFi hotspots when they are stopped or moving very slowly and near the WiFi hotspots.

Each vehicle is equipped with an OBU with multiple wireless interfaces, which enable the vehicles to
communicate both with other vehicles circulating inside the city and with RSUs that are integrated in
the city infrastructure. OBUs and RSUs have a similar hardware, except for the antennas, which have
higher gains in the RSUs. An example of an OBU is depicted in Figure 35.

IEEE 802.11p

Access Network
Cellular Access

Network

Internet

Ad-Hoc

Fixed Infrastructure

RSUs

Mobile Infrastructure

IEEE 802.11g/n

Access Points

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 105 of (120)

Figure 35: OBU

The OBU includes the following elements:

• Single-Board Computer (SBC)

• Dedicated Short Range Communication (DSRC) wireless interface (IEEE 802.11p)

• WiFi interface (IEEE 802.11a/b/g/n)

• 4G Interface

• GPS receiver

The SBC contains the processing unit and is responsible for coordinating the various interfaces and
access technologies. Moreover, it provides an in-vehicle WiFi hotspot for the users in the vehicles,
and the sensors installed in the street and in the vehicles.

A mini-PCI 802.11p compliant wireless interface is connected via one of the mini-PCI slots. A standard
802.11g/n wireless interface is connected to one of the USB ports of the mainboard to provide
communication between the OBU and other user devices. This interface can also be used to connect
the vehicles to any available WiFi hotspot. A cellular interface is available to be used when required
to control the OBU operations, and whenever no other connection type is available.

The GPS receiver is integrated with the IEEE 802.11p interface of the SBC to provide multi-channel
synchronization. Synchronization to Universal Time Coordination (UTC) is mandatory for DSRC
devices that switch between channels. The channel interval boundaries are derived from the GPS
signals.

The OBUs are running a tailored Linux distribution based on Buildroot. The kernel was customized to
include new features such as clock synchronization, as required by IEEE 802.11p. As Linux Wireless
does not provide support for the IEEE 802.11p / WAVE norm, the ath5k driver was modified to
accommodate that norm within the AR5414A-B2B Atheros chipset. The driver was further extended
to meet the requirements of IEEE 802.11p/WAVE. The WAVE Short Messaging Protocol enables the
exchange of short messages between nodes at the MAC layer, offering a fast way for vehicular nodes
to safety-critical information.

The RSUs have the same hardware as the OBUs, except for the cellular interface (which they do not
require) and the Ethernet interface (required to connect to a switch from the fiber infrastructure). In
Porto, some RSUs are connected in municipality buildings and other RSUs are connected in traffic
lights, which are then connected to a switch from the fiber infrastructure (see Figure 36). The RSUs in
traffic lights are powered through PoE (Power over Ethernet).

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 106 of (120)

Figure 36: RSUs mounted in the municipality building and in a traffic light

4.3.2 Smart Cities

Currently there several testbeds that focus Smart Cities based scenarios. The following FIRE related
project can be integrated with the 5GINFIRE infrastructure: ORGANICITY Project [104], EMBERS
Project [105], FESTIVAL [106], FIESTA-IoT [107], Smart Santander [108] and Community Lab (C-LAB)
[109]. Figure 37 gives an overall view of testbeds the type of integration that will be required. Using
the open data available from these projects several Smart City based use case can be experimented
inside the 5GINFIRE infrastructure using the VSensor approach.

ORGANICITY has open data available from CKAN instances [100] from the cities of Aarhus, London
and Santander. These data sets are FIWARE based CKAN instances and they can have data from a
broad range of different domains in these cities such as mobility, traffic flow, air quality,
environmental monitoring among others. Using the same FIWARE enabled CKAN instances, the
EMBERS project also has open data from cities such as Aarhus (real time and historic traffic and
pollution data), Grenoble (real time and historic simulated parking data) and Valencia (real time
traffic information).

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 107 of (120)

Figure 37: 5GINFIRE Testbeds for Smart Cities

The cities of Aveiro, Bristol, São Paulo and Uberlândia where 5GINFIRE project partners are located
can support 5G experiments, as indicated in the Figure 37. In this case, the experimentation will be
based on an Edge Cloud available in these locations, thus enabling the use of real sensors directly
integrated with the 5INFIRE cloud.

At Uberlândia, the UFU Future Internet Testbed [110] was built during the participation in the OFELIA
[111] and FIWARE [112] projects and within the association with the FIBRE project [113]. The
infrastructure is located at Santa Monica Campus in Uberlândia, Minas Gerais, and Brazil.

The FIWARE Lab consists of a cloud infrastructure with 92 cores, 528 GBytes of RAM and 8 TBytes of
disk storage. The FIWARE Laboratory has open data provided by the Municipality of Uberlândia, such
as public buses position. The testbed is connected with Granja Marileusa [114], a smart district
located in Uberlândia where different sensors are being deployed such as sewers information. All this
open data is available through FIWARE based CKAN instances.

The FIBRE island is an infrastructure with two 24-port DATACOM switches with OpenFlow support,
two experimental switches based on NetFPGA and four EDOBRA switches. The EDOBRA switches
were built on the OFELIA project and are based on a four-port wireless Gigabit router (TP-LINK) that
supports the OpenFlow protocol and contains ODTONE [115], An open source implementation of the
IEEE 802.21 protocol. The processing capacity is based on 36 cores, 96 GB of RAM and 7 TBytes of
storage. This infrastructure, built on the OFELIA project, is integrated into the FIBRE project and
allows the realization of different types of experiments using the network equipment described

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 108 of (120)

above in different network topologies. The experiments can also use resources and networks for the
other islands of Brazil using the FIBRENET [116] maintained by the National Research Network [117].
FIBRENET also allows connection to different infrastructures both in Europe and the United States.

The platform in Porto and Aveiro leverages static sensors for gathering environmental data. This
platform is composed of static data collection units (DCUs) that monitor a number of environmental
parameters (e.g. temperature, wind, luminosity, noise, pollutant emissions) and store the
measurements in a local database. A DCU is composed by a power supply, a processing unit
(Raspberry Pi), the sensors, and a control board to interface the processing unit and the sensors. The
sensors are of three classes: (i) meteorological: thermometer, hygrometer, wind vane, anemometer,
rain gauge; (ii) life quality: sonometer, lux meter, solar radiation; (iii) air quality: particulate matter
sampler, CO, NO2 and O3 gaseous meters. The wind vane, anemometer and rain gauge are mounted
in a dedicated structure for freedom of movement. The sonometer is mounted below the main
casing, to maximize exposure to road noise and ensure protection from rain. The remaining sensors
are enclosed in a separate vented shelter (to allow air flow) mounted on top of the main casing.

4.3.3 Additional Testbeds Required in 5GinFire

4.3.3.1 The 5TONIC laboratory

The global 5G Telefonica Open Innovation Laboratory (5TONIC) has been established in Madrid
(Spain) as a leading European hub for knowledge sharing and industry collaboration in the area of 5G
technologies. The laboratory provides an open research and innovation ecosystem for industry and
academia to promote joint project development, joint entrepreneurial ventures, discussion fora, and
provide a site for events and conferences, all in an international environment of the highest impact.
The laboratory also serves to evaluate and demonstrate the capabilities and interoperation of pre-
commercial 5G equipment, services and applications. Currently, the 5TONIC laboratory has ten
members: Telefonica, Institute IMDEA Networks, Ericsson, Intel, Commscope, Universitydad Carlos III
de Madrid, Cohere Technologies, InterDigital, Altran, and RedHat.

The 5TONIC laboratory includes a solid baseline of facilities and infrastructure and equipment to
support advanced experimentation in the 5G virtual network function area. The description of the
main infrastructure connected to 5TONIC that will be offered for experimentation in 5GinFIRE is
detailed in section 3.

4.3.3.2 5GUK Test Network

Description

In order to explore and validate the deployment of 5G in an architecture that combines existing
technologies and innovations, University of Bristol have deployed a rich testbed comprised of several
networking and computing technologies, interconnecting a significant area in the Bristol city centre.
This testbed aims to provide a managed platform for the development and testing of new solutions
delivering reliable and high-capacity services to several applications and vertical sectors here
referred to as 5GinFIRE.

The University of Bristol’s 5G testbed is a multi-site network connected through a 10km fibre with
several active switching nodes, that are depicted in Figure 40. The core network is located at the
High-Performance Network (HPN) laboratory at the University of Bristol and an extra edge computing
node is available in another central location, known as Watershed. As shown in Figure 38, the access
technologies are located in two different areas in the city centre: Millennium Square for outdoor
coverage and “We The Curious” science museum for indoor coverage.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 109 of (120)

Figure 38: Distribution of the testbed access technologies

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 110 of (120)

Figure 39: University of Bristol top level system architecture

A summary of the testbed constituent equipment and capabilities is:

 Multi-vendor software-defined networking (SDN) enabled packet switched network

o Corsa switch (Corsa DP2100)

o Edgecore switch (Edgecore AS4610 series & AS5712-54X)

 SDN enabled optical (Fibre) switched network

o Polatis Series 6000 Optical Circuit Switch

 Multi-vendor Wi-Fi

o SDN enabled Ruckus Wi-Fi (T710 and R720)

o Nokia Wi-Fi (AC400)

 Nokia 4G and 5G NR

o 4G EPC & LTE-A (Dual FDD licensed bands for 1800MHz and 2600MHz; with 15MHz

of T&D licence in 2600MHz band)

o 5G Core & 5G NR Massive MIMO (TDD band 42 at 3.5GHz; with 20MHz T&D licence)

The project expected availability after November 2018

Handset availability is beyond January 2019

 Self-organising multipoint-to-multipoint wireless mesh network

o CCS MetNet a 26GHz with 112MHz T&D licence providing 1.2Gbps throughput

 LiFi Access point

o pureLiFi LiFi access points supporting 43Mbps

 Cloud and NFV hosting

o Nokia Multi-access Edge Computing (MEC)

o Datacentre for Application/VNF hosting, built upon

 11x Dell PowerEdge T630 compute servers 700+ vCPU cores, 1TB+ RAM and

100TB of HDD storage.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 111 of (120)

 Advanced fibre optics FPGA convergence of all network technologies enabling considerable

flexibility, scalability and programmability of the front/back-haul, to provide experimentation

with -

o Elastic Bandwidth-Variable Transponders

o Programmable Optical White-box

o Bandwidth-Variable Wavelength Selective Switches (BV-WSS)

The available equipment is controlled using a rich software stack (showed in Figure 41.) that is
composed by:

 two different NFV orchestration and management solutions:

o Open Source MANO release THREE (opensource)

o NOKIA CloudBand (proprietary based on a version of OSM and OpenStack, providing

network slicing and virtualisation in rapid service creation) Available July 2018

 two cloud/edge computing solutions:

o Openstack Pike (opensource)

o Nokia MEC (proprietary)

 one SDN controller responsible for providing connectivity:

o NetOS (proprietary, based on the Open Daylight opensource)

 A content distribution

o InterDigital solution is shown for the optimisation of the content delivery

This solution is only available for the 5G Smart Tourism project

Figure 40: Software used for management and orchestration of the testbed resources

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 112 of (120)

Within any of our projects, the aforementioned structure will be used to support different verticals
demonstrators, such as entertainment, finance, manufacturing and automotive testing.

The diverse range of access technologies are interconnected in sharing the same underlying system
while being used by 5GinFIRE ecosystem to provide connectivity for the demonstrators, showcasing
seamless integration between heterogeneous network components, an important concept in 5G.
Additionally, the alternative and innovative technologies available, such as pureLiFi for fixed access,
can be used to demonstrate the principle of access-agnosticism, also important for the 5G vision.

The state-of-the-art radio access technologies deployed in Millennium Square will deliver high-
bandwidth, high-bitrate and high-reliability connections to the user equipment, therefore enabling
the usage of the network-intensive distributed applications developed by 5GinFIRE experimenters. In
particular, the availability of LTE-Advanced (LTE-A) and future installations of 5G access points (Nokia
5G NR) will be especially important in 5GinFIRE to demonstrate applications that require mobility
while keeping user experience continuity.

The SDN capabilities expressed by the NetOS controller, will facilitate network slicing through optical,
electrical and radio technologies via on-demand SSID creation, demonstrating another key concept in
the 5G architecture that will be explored by 5GinFIRE to provide a multi-tenant environment, where
the multiple demonstrators, or even final users, can coexist independently with different connectivity
specifications.

The high performance and edge computing capabilities will power resource-intensive applications
developed by 5GinFIRE experimenters. In these applications, hardware acceleration and GPU
processing will be used to deliver enhanced performance and enable low-latency/real-time user
interaction.

Finally, University of Bristol 5G testbed will deliver an automated and programmable environment,
that will be used by 5GinFIRE southbound interface to create fully integrated orchestration for both
application components and network services.

5GUK Test Network and 5GinFIRE Smart City Use Case

By deploying sensors to the local 5GUK network the data generated will flow to the FIWARE IoT stack
and arrive to the application layer. At this point the application will expose the data through a REST
API from the Context Broker (Orion) [102] and manage it accordingly. Finally, the network
provisioning and network management is done by an SDN controller this enhances the infrastructure
with more granular security, lower operating costs, cloud abstraction and guaranteed content
delivery. Figure 41 highlights the architecture of the IoT platform. Figure 42 is a general description
of the infrastructure.

Everything is deployed and ready for use once the sensors are connected and set to send data to the
IoT Agent (IDA). At the application layer the data coming from the sensors can either be used by an
open source application for example freeboard [120] or the developer can use the data and visualize
it through the individual application.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 113 of (120)

Figure 41: FIWARE IoT Platform

Figure 42: FIWARE IoT General Infrastructure

Sensor data will be transferred to a VM located on the UNIVBRIS infrastructure via the internet using
the VMs public IP and a specific port for the endpoint. The user will have access to the virtual
machine “agent” via two methods depending on the use case: An IPSEC site to site VPN can be
configured to the customers OpenStack project where the VM is hosted. 5GUK Test Network can
supply instructions for the VPN setup. The VPN is also provisioned by the SDN controller providing
dynamic capabilities to the network.

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 114 of (120)

5 Conclusion

This document has provided an update of the 5GinFIRE Experimental Infrastructure architecture that
has been deployed attending the proposed requirements. The main ones considered were to build
an Open 5G NFV based ecosystem, using Open Sources Software and the instantiation of a
softwarised architecture from vertical industry and conduct experiments as possible. We have since
validated that the proposed architecture fulfils requirements imposed by the testbeds and use cases.

Different software or components have been analysed for implementing the 5GinFIRE Infrastructure
and it was explained how they were chosen considering the minimum development or integration
time they needed as well as their stabilities and maturities.

We have presented the both the architecture and processes that drive the project in its day to day
operations together with experiments. We have described the actors, the processes and the tools
that support everything.

Moreover, 4 use cases have been described and in particular the one concerning the automotive EVI
and Smart City EVI where some promising VxFs were identified.

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 115 of (120)

References

[1] OpenDaylight, «Platform Overview, » Linux foundation. Available:
https://www.OpenDaylight.org/platform-overview.

[2] L. Foundation, «Release Archives, ». Available:
https://www.OpenDaylight.org/software/release-archives.

[3] SDxCentral, «Market Report | The Future of Network Virtualization and SDN Controllers, »
2016.

[4] L. Foundation, «OpenDaylight Features List, ». Available:
https://www.OpenDaylight.org/OpenDaylight-features-list.

[5] O. Foundation, «OVSDB Integration: Design, ». Available:
https://wiki.OpenDaylight.org/view/OVSDB_Integration:Design.

[6] Huawei, «Intent NBI for Software Defined Networking, ». Available: http://www-
file.huawei.com/~/media/CNBG/Downloads/Technical%20Topics/Fixed%20Network/Intent%2
0NBI%20for%20Software%20Defined%20Networking-whitepaper

[7] ETSI, «Network Functions Virtualisation (NFV); Architectural framework, ». Available:
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
.

[8] M.-P. Odini, «Open Source MANO, » IEEE, 07 2016. Available:
http://sdn.ieee.org/newsletter/july-2016/opensource-mano.

[9] «OpenVIM installation (Release One), » Open Source MANO. Available:
https://osm.etsi.org/wikipub/index.php/OpenVIM_installation_(Release_One).

[10] ONOS, «onos projects - downloads, » ONOS. Available:
https://wiki.onosproject.org/display/ONOS/Downloads.

[11] ONOS, «Introducing ONOS - a SDN network operating system for service providers, » ON.LAB,
11 2014. Available: http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-
final.pdf.

[12] ONOS, «ONOS Project - System components, » ONOS. Available:
https://wiki.onosproject.org/display/ONOS/System+Components.

[13] ONOS, «ONOS projects - Downloads,» ONOS. Available:
https://wiki.onosproject.org/display/ONOS/Downloads .

[14] Open Networking Foundation, «2016 SDN Controller Landscape - Is there a winner,» 2016.

[15] Bondkovskii, A. et al., 2016. Qualitative comparison of open-source SDN controllers. In NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management Symposium. NOMS 2016 - 2016
IEEE/IFIP Network Operations and Management Symposium. pp. 889-894.

[16] JUNIPER, 2013. Juniper Contrail Configuration API Model. Available at: http://configuration-
schema-documentation.s3-website-us-west-1.amazonaws.com/R3.2/ [Accessed March 20,
2017].

[17] JUNIPER, 2015. Juniper Networks Contrail - Technical Documentation. Available at:
http://www.juniper.net/techpubs/en_US/release-independent/contrail/information-
products/pathway-pages/index.html [Accessed March 20, 2017].

[18] Khondoker, R. et al., 2014. Feature-based comparison and selection of Software Defined
Networking (SDN) controllers. In 2014 World Congress on Computer Applications and

https://www.opendaylight.org/platform-overview
https://www.opendaylight.org/software/release-archives
https://www.opendaylight.org/OpenDaylight-features-list
https://wiki.opendaylight.org/view/OVSDB_Integration:Design
http://www-file.huawei.com/~/media/CNBG/Downloads/Technical%20Topics/Fixed%20Network/Intent%20NBI%20for%20Software%20Defined%20Networking-whitepaper
http://www-file.huawei.com/~/media/CNBG/Downloads/Technical%20Topics/Fixed%20Network/Intent%20NBI%20for%20Software%20Defined%20Networking-whitepaper
http://www-file.huawei.com/~/media/CNBG/Downloads/Technical%20Topics/Fixed%20Network/Intent%20NBI%20for%20Software%20Defined%20Networking-whitepaper
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
https://osm.etsi.org/wikipub/index.php/OpenVIM_installation_(Release_One)
https://wiki.onosproject.org/display/ONOS/Downloads
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
https://wiki.onosproject.org/display/ONOS/System+Components
https://wiki.onosproject.org/display/ONOS/Downloads
http://configuration-schema-documentation.s3-website-us-west-1.amazonaws.com/R3.2/
http://configuration-schema-documentation.s3-website-us-west-1.amazonaws.com/R3.2/
http://www.juniper.net/techpubs/en_US/release-independent/contrail/information-products/pathway-pages/index.html
http://www.juniper.net/techpubs/en_US/release-independent/contrail/information-products/pathway-pages/index.html

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 116 of (120)

Information Systems (WCCAIS). 2014 World Congress on Computer Applications and
Information Systems (WCCAIS). pp. 1-7.

[19] OpenContrail, 2013a. Contrail Controller License. GitHub. Available at:
https://github.com/Juniper/contrail-controller/blob/master/LICENSE [Accessed January 27,
2017].

[20] OpenContrail, 2013b. Contrail vRouter License. GitHub. Available at:
https://github.com/Juniper/contrail-vrouter/blob/master/LICENSE [Accessed January 27,
2017].

[21] OpenContrail, 2015. OpenContrail. Available at: http://www.opencontrail.org/ [Accessed
January 27, 2017].

[22] Singla, A. & Rijsman, B., 2015. OpenContrail Architecture Document. Available at:
http://www.opencontrail.org/opencontrail-architecture-documentation/ [Accessed January
27, 2017].

[23] Xie, J. et al., 2015. Control plane of software defined networks: A survey. Computer
Communications, 67, pp.1-10.

[24] Ryu SDN controller Official Website https://osrg.github.io/ryu/

[25] Ryu book Using OpenFlow 1.3RYU project team https://osrg.github.io/ryu-
book/en/Ryubook.pdf

[26] RYU OpenFlow Controller, Dean Pemberton NSRC, Andy Linton NSRC, Sam Russell -REANNZ
University of Oregon

[27] Comparison of Ryu and OpenDaylight Northbound APIs
https://blog.zhaw.ch/icclab/comparison-of-ryu-and-OpenDaylight-northbound-apis/

[28] OSGi Alliance https://www.osgi.org/developer/specifications/

[29] ETSI GS NFV 002 V1.2.1, “Network Functions Virtualisation (NFV); Architectural Framework”,
version 1.2.1, Dec. 2014.

[30] Adrian Hoban, Alfonso Tierno Sepulveda, Gerardo García de Blas, Kiran Kashalkar, Mark
Shuttleworth, Matt Harper, Rajesh Velandy, “OSM Release One, A Technical Overview”, Oct.
2016. OS TWO

[31] D. R. Lopez, “OpenMANO: The Dataplane Ready Open Source NFV MANO Stack,” in IETF
Meeting Proceedings, Dallas, Texas, USA, March 2015.

[32] ETSI GS NFV-PER 001 V1.1.2, “Network Functions Virtualisation (NFV); NFV Performance &
Portability Best Practices”, version 1.1.2, Dec. 2014.

[33] Intel Corporation, “Preboot Execution Environment (PXE) Specification”, versión 2.1, sep 2009.

[34] R. Droms, “Dynamic Host Configuration Protocol”, Internet Engineering Task Force, Request for
Comments 2131, March 1997.

[35] K. Sollins, The TFTP Protocol, Internet Engineering Task Force, Request for Comments 1350,
July 1992.

[36] Intel, Hewlett-Packard, NEC, Dell, “Intelligent Platform Management Interface Specification
Second Generation”, version 2.0, April 2015,
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-technical-resources.html

[37] [http://www.ict-fire.eu

[38] J. M. Marquez-Barja, N. Kaminski, F. Paisana, C. Tranoris, and L. A. DaSilva, "Virtualizing testbed
resources to enable remote experimentation in online telecommunications education," in IEEE

https://github.com/Juniper/contrail-controller/blob/master/LICENSE
https://github.com/Juniper/contrail-vrouter/blob/master/LICENSE
https://osrg.github.io/ryu/
https://osrg.github.io/ryu-book/en/Ryubook.pdf
https://osrg.github.io/ryu-book/en/Ryubook.pdf
https://blog.zhaw.ch/icclab/comparison-of-ryu-and-OpenDaylight-northbound-apis/
https://www.osgi.org/developer/specifications/
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-technical-resources.html
http://www.ict-fire.eu/

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 117 of (120)

Global Engineering Education Conference (EDUCON15), Mar. 2015, pp. 836-843. [Online].
Available: http://dx.doi.org/10.1109/educon.2015.7096069

[39] http://www.ict-fire.eu/projects

[40] http://www.fp7-ofelia.eu/

[41] https://openflow.stanford.edu/display/FOAM/Home

[42] T. Rakotoarivelo, M. Ott, G. Jourjon, I. Seskar, "OMF: a control and management framework for
networking testbeds", in ACM SIGOPS Operating Systems Review 43 (4), 54-59, Jan. 2010.
[Online]. Available: http://dx.doi.org/10.1145/1713254.1713267

[43] R. McGeer, M. Berman, C. Elliott, and R. Ricci, “The GENI Book”, Springer, 2016. ISBN 978-3-
319-33767-8. Available: http://doi.10.1007/978-3-319-33769-2.

[44] H. Mussman, “Extending GENI to Support Large-Scale Research and Service Experiments”, in
TRIDENTCOM, 2012. Available: http://groups.geni.net/geni/raw-
attachment/wiki/GEC13Agenda/WiMAXPlanning/020112b_ExtendingGENI_TridentCom2012.p
df

[45] M. A. Marotta, F. J. Carbone, J. J. C. de Santanna and L. M. R. Tarouco, “Through the Internet of
Things - A Management by Delegation Smart Object Aware System (MbDSAS)”. In 2013 IEEE
37th Annual Computer Software and Applications Conference (pp. 732-741). Kyoto,
Japan ,2013.

[46] “GENI Design Activities”, http://groups.geni.net/geni/wiki/GeniDesign , last accessed February
3rd 2014

[47] W. Van de Meerssche, et al., “Federation AM APIs”, https://fed4fire‐
testbeds.ilabt.iminds.be/asciidoc/federation‐am‐api.html

[48] “GENI Aggregate Manager API Version 3”, http://groups.geni.net/geni/wiki/GAPI_AM_API_V3 ,
last accessed February 3rd 2014

[49] D2.9 - Final federation architecture https://www.fed4fire.eu/wp-
content/uploads/2016/10/d2-9-final-federation-architecture.pdf

[50] Architecture for the Heterogeneous Federation of Future Internet Experimentation Facilities

[51] https://www.fed4fire.eu/fileadmin/dissemination_items/2013-07-
FutureNetworkSummit2013_FinalPaper_ref_168_published_IEEE_Xplore.pdf

[52] https://osm.etsi.org

[53] https://portal.etsi.org/TBSiteMap/OSM/ListofOSMMembers.aspx

[54] https://riftio.com

[55] https://github.com/nfvlabs/openmano

[56] https://jujucharms.com

[57] http://www.apache.org/licenses/LICENSE-2.0

[58] https://osm.etsi.org/wikipub/index.php/Main_Page

[59] https://www.riftio.com/rift-ware-orchestration-automation/

[60] https://www.sdxcentral.com/articles/news/surprising-whos-using-mano-code-
cloudify/2016/05/

[61] http://getcloudify.org/network-function-virtualization-vnf-nfv-orchestration-sdn-
platform.html

http://dx.doi.org/10.1109/educon.2015.7096069
http://www.ict-fire.eu/projects
http://www.fp7-ofelia.eu/
https://openflow.stanford.edu/display/FOAM/Home
http://dx.doi.org/10.1145/1713254.1713267
http://doi.10.1007/978-3-319-33769-2
http://groups.geni.net/geni/raw-attachment/wiki/GEC13Agenda/WiMAXPlanning/020112b_ExtendingGENI_TridentCom2012.pdf
http://groups.geni.net/geni/raw-attachment/wiki/GEC13Agenda/WiMAXPlanning/020112b_ExtendingGENI_TridentCom2012.pdf
http://groups.geni.net/geni/raw-attachment/wiki/GEC13Agenda/WiMAXPlanning/020112b_ExtendingGENI_TridentCom2012.pdf
http://groups.geni.net/geni/wiki/GeniDesign
https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/federation‐am‐api.html
https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/federation‐am‐api.html
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
https://www.fed4fire.eu/wp-content/uploads/2016/10/d2-9-final-federation-architecture.pdf
https://www.fed4fire.eu/wp-content/uploads/2016/10/d2-9-final-federation-architecture.pdf
https://www.fed4fire.eu/fileadmin/dissemination_items/2013-07-FutureNetworkSummit2013_FinalPaper_ref_168_published_IEEE_Xplore.pdf
https://www.fed4fire.eu/fileadmin/dissemination_items/2013-07-FutureNetworkSummit2013_FinalPaper_ref_168_published_IEEE_Xplore.pdf
https://osm.etsi.org/
https://portal.etsi.org/TBSiteMap/OSM/ListofOSMMembers.aspx
https://riftio.com/
https://github.com/nfvlabs/openmano
https://jujucharms.com/
http://www.apache.org/licenses/LICENSE-2.0
https://osm.etsi.org/wikipub/index.php/Main_Page
https://www.riftio.com/rift-ware-orchestration-automation/
https://www.sdxcentral.com/articles/news/surprising-whos-using-mano-code-cloudify/2016/05/
https://www.sdxcentral.com/articles/news/surprising-whos-using-mano-code-cloudify/2016/05/
http://getcloudify.org/network-function-virtualization-vnf-nfv-orchestration-sdn-platform.html
http://getcloudify.org/network-function-virtualization-vnf-nfv-orchestration-sdn-platform.html

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 118 of (120)

[62] http://getcloudify.org/cloud_orchestration_cloud_automation.html

[63] https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater

[64] http://www.ubuntu.com/cloud/juju

[65] https://osm.etsi.org/wikipub/images/d/d4/OSM%2816%29000018r1_MWC16_architecture_o
verview.pdf

[66] https://wiki.openstack.org/wiki/Murano

[67] https://www.mirantis.com/blog/open-source-mano-osm-to-work-on-nfv-orchestration/

[68] https://www.opnfv.org/

[69] https://www.linuxfoundation.org/

[70] https://www.opnfv.org/about/members

[71] https://www.ietf.org/

[72] https://www.mef.net/

[73] https://docs.opnfv.org/en/stable-fraser/release/overview.html

[74] https://www.opnfv.org/community/projects/pharos

[75] https://www.opnfv.org/software

[76] https://wiki.openstack.org/wiki/Ironic

[77] http://docs.openstack.org/developer/ironic/deploy/user-guide.html

[78] http://docs.openstack.org/developer/ironic/deploy/user-guide.htmlhttps://maas.io/

[79] https://docs.ubuntu.com/maas/2.1/en/

[80] https://docs.maas.io/2.4/en/https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca

[81] http://ariatosca.org/

[82] https://wiki.openstack.org/wiki/TOSCA-Parser

[83] http://openbaton.github.io/documentation/tosca-CSAR-onboarding/

[84] http://repo.riftio.com/releases/open.riftio.com/4.2.2/RIFTware4.2.2.0-ReleaseNotes.txt

[85] https://github.com/juju/juju-tosca

[86] http://murano-specs.readthedocs.io/en/latest/specs/mitaka/support-tosca-format.html

[87] https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/federation‐am‐api.html

[88] https://github.com/open‐multinet/federation‐am‐api

[89] https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/federation‐am‐
api.html#_basic_am_call_concepts

[90] https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/rspec.html

[91] http://www.protogeni.net/wiki/Flack

[92] http://trac.gpolab.bbn.com/gcf/wiki/Omni

[93] https://www.mediawiki.org/wiki/MediaWiki

http://getcloudify.org/cloud_orchestration_cloud_automation.html
https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater
http://www.ubuntu.com/cloud/juju
https://osm.etsi.org/wikipub/images/d/d4/OSM%2816%29000018r1_MWC16_architecture_overview.pdf
https://osm.etsi.org/wikipub/images/d/d4/OSM%2816%29000018r1_MWC16_architecture_overview.pdf
https://wiki.openstack.org/wiki/Murano
https://www.mirantis.com/blog/open-source-mano-osm-to-work-on-nfv-orchestration/
https://www.opnfv.org/
https://www.linuxfoundation.org/
https://www.opnfv.org/about/members
https://www.ietf.org/
https://www.mef.net/
https://www.opnfv.org/community/projects/pharos
https://www.opnfv.org/software
https://wiki.openstack.org/wiki/Ironic
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
https://maas.io/
https://docs.ubuntu.com/maas/2.1/en/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://ariatosca.org/
https://wiki.openstack.org/wiki/TOSCA-Parser
http://openbaton.github.io/documentation/tosca-CSAR-onboarding/
http://repo.riftio.com/releases/open.riftio.com/4.2.2/RIFTware4.2.2.0-ReleaseNotes.txt
https://github.com/juju/juju-tosca
http://murano-specs.readthedocs.io/en/latest/specs/mitaka/support-tosca-format.html
https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/federation‐am‐api.html
https://github.com/open‐multinet/federation‐am‐api
https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/federation‐am‐api.html#_basic_am_call_concepts
https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/federation‐am‐api.html#_basic_am_call_concepts
https://fed4fire‐testbeds.ilabt.iminds.be/asciidoc/rspec.html
http://www.protogeni.net/wiki/Flack
https://www.fed4fire.eu/%28http:/trac.gpolab.bbn.com/gcf/wiki/Omni
https://www.mediawiki.org/wiki/MediaWiki

Deliverable D2.2 Horizon 2020 - 732497 - 5GINFIRE

Page 119 of (120)

[94] Albino, Vito, Umberto Berardi, and Rosa Maria Dangelico. 2015. “Smart Cities: Definitions,
Dimensions, Performance, and Initiatives.” Journal of Urban Technology22 (1): 3 21.
doi:10.1080/10630732.2014.942092.

[95] Palattella, M. R., M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and L. Ladid. 2016.
“Internet of Things in the 5G Era: Enablers, Architecture, and Business Models.” IEEE Journal
on Selected Areas in Communications 34 (3): 510 27. doi:10.1109/JSAC.2016.2525418.

[96] Zanella, A., N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. 2014. “Internet of Things for Smart
Cities.” IEEE Internet of Things Journal1 (1): 22 32. doi:10.1109/JIOT.2014.2306328.

[97] Deloitte, « Smart Cities: How rapid advances in technology are reshaping our economy and
society» [En ligne]. Available:
https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/public-sector/deloitte-nl-ps-
smart-cities-report.pdf

[98] Nokia, « Ultra-broadband networks empower smart cities» [En ligne]. Available:
https://insight.nokia.com/ultra-broadband-networks-empower-smart-cities

[99] Huawei, « Enabling Smart Cities with Mobile Broadband,» [En ligne]. Available:
http://enterprise.huawei.com/ilink/enenterprise/download/HW_373080

[100] http://organicity.eu/wp-content/uploads/D2.3_OrganiCity-EaaS-facility-Basic.pdf

[101] Selbstfahrende Autos, Hersteller sollen unbegrenzt haften, Handelsblatt, 21st July 2016, p.13

[102] https://www.ncsc.gov/nittf/docs/CNSSI-4009_National_Information_Assurance.pdf

[103] Functional Safety brochure by the International Electrotechnical Commission (IEC) -
http://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf

[104] ORGANICITY Project (http://organicity.eu)

[105] EMBERS Project (http://embers.city/)

[106] FESTIVAL (http://www.festival-project.eu)

[107] FIESTA-IoT (http://fiesta-iot.eu)

[108] Smart Santander (https://www.fed4fire.eu/smart-santander/)

[109] Community Lab (C-LAB) (https://www.fed4fire.eu/community-lab/)

[110] UFU Future Internet Testbed (http://www.xipi.eu/Infrastructures/UFU-Future-Internet-
Testbed)

[111] OFELIA (http://www.fp7-ofelia.eu/)

[112] FIWARE (www.fiware.org)

[113] FIBRE project (http://fibre-ict.eu)

[114] Granja Marileusa (www.granjamarileusa.com.br)

[115] ODTONE (http://hng.av.it.pt/projects/odtone)

[116] FIBRENET (http://fibre.org.br/infrastructure/resources/)

[117] National Research Network (RNP - https://www.rnp.br/en)

[118] Ultralight 2.0 (https://github.com/telefonicaid/iotagent-ul)

[119] JSON (https://github.com/telefonicaid/iotagent-json)

[120] freeboard (https://freeboard.io/)

https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/public-sector/deloitte-nl-ps-smart-cities-report.pdf
https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/public-sector/deloitte-nl-ps-smart-cities-report.pdf
https://insight.nokia.com/ultra-broadband-networks-empower-smart-cities
http://organicity.eu/wp-content/uploads/D2.3_OrganiCity-EaaS-facility-Basic.pdf
https://www.ncsc.gov/nittf/docs/CNSSI-4009_National_Information_Assurance.pdf
http://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf
http://organicity.eu/
http://embers.city/
http://www.festival-project.eu/
http://fiesta-iot.eu/
https://www.fed4fire.eu/smart-santander/
https://www.fed4fire.eu/community-lab/
http://www.xipi.eu/Infrastructures/UFU-Future-Internet-Testbed
http://www.xipi.eu/Infrastructures/UFU-Future-Internet-Testbed
http://www.fp7-ofelia.eu/
http://www.fiware.org/
http://fibre-ict.eu/
http://www.granjamarileusa.com.br/
http://hng.av.it.pt/projects/odtone
http://fibre.org.br/infrastructure/resources/
https://www.rnp.br/en
https://github.com/telefonicaid/iotagent-ul
https://github.com/telefonicaid/iotagent-json
https://freeboard.io/

Horizon 2020 - 732497 - 5GINFIRE Deliverable D2.2

Page 120 of (120)

[121] Diogo Lopes, Susana Sargento, “Network Mobility for Vehicular Networks”, IEEE International
Symposium on Computer and Communications (ISCC), Madeira, Portugal, June 2014.

[122] SO REST API (March 1, 2017): https://osm.etsi.org/wikipub/images/2/24/Osm-r1-so-rest-api-
guide.pdf

[123] Francisco-Javier Ramón Salguero, Introducing Open Source Mano, Presentation at the OSM
Workshop, SDN World Congress 2016, The Hague (October 10th, 2016)

[124] Omnes, N., M. Bouillon, G. Fromentoux, and O. L. Grand. 2015. “A Programmable and
Virtualized Network IT Infrastructure for the Internet of Things: How Can NFV SDN Help for
Facing the Upcoming Challenges.” In 2015 18th International Conference on Intelligence in
Next Generation Networks, 64-69. doi:10.1109/ICIN.2015.7073808

[125] https://www.onap.org/

[126] Adrian Hoban et al., OSM Release FOUR Technical Overview, May 2018.

https://osm.etsi.org/wikipub/images/2/24/Osm-r1-so-rest-api-guide.pdf
https://osm.etsi.org/wikipub/images/2/24/Osm-r1-so-rest-api-guide.pdf
https://www.onap.org/

