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Abstract 

This document reports all the activities related to the design and prototyping of a virtualized 
5G Radio Access Network (RAN)-Core infrastructure, as part of the SliceNet end-to-end 
slicing-friendly infrastructure. A slice-friendly RAN-Core infrastructure leverages two open 
source ecosystems, namely, the OpenAirInterface (OAI) and Mosaic5G. OAI is an open-
source, software-based, standard-compliant LTE ecosystem for prototyping 5G Mobile 
Networks. Building on top of OAI, Mosaic5G serves as an open-source lightweight 5G service 
delivery platform. In order to provide a virtualized infrastructure deployment that covers the 
SliceNet use cases, different methods for deploying a virtualised 5G infrastructure are 
highlighted via several examples for the deployment of OAI-based 5G services.  
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Executive Summary 

The SliceNet RAN-Core infrastructure described in this document relies on two open-source 
ecosystems, namely OpenAirInterface (OAI) and Mosaic5G. OAI wireless technology platform 
is a flexible platform to enable an open 4G-5G ecosystem. The platform currently provides a 
standard-compliant implementation of a subset of the 4G-5G systems spanning the full 
protocol stack of 3GPP standards in both E-UTRAN and EPC. Founded on top of OAI, 
Mosaic5G is an ecosystem of open-source platforms and use cases for 4G-5G research and 
development (R&D), with the purpose of building a lightweight 5G service delivery platform 
across reusable software components. Mosaic5G leverages on software-defined networking 
(SDN), network function virtualization (NFV) and multi-access edge computing (MEC) 
technology enablers to realize the service-oriented 5G vision. JOX, one of its main 
components, is an event-driven orchestrator for the virtualized network that natively 
supports Network Slicing. Together with a flexible and programmable platform for Software-
Defined Radio Access Networks and a Core network controller for Software-Defined Mobile 
Networks, JOX provides the possibility to achieve seamless control and configuration of 
physical and virtual resources for both the Core and the RAN segments. In order to achieve a 
slice-friendly RAN-Core infrastructure, a wide range of research has been carried out to 
cover different methods for deploying a virtualized 5G infrastructure from the access to the 
core network.  

Specifically, the current deliverable reports the following achievements: 

 A 5G RAN-Core slicing-friendly infrastructure that could be extended to cover 
different SliceNet use cases. 

 The design of a programmable Data and Control Plane and its prototype through 
OpenFlow and an SDN controller, as a part of OAI-CN and OAI-RAN implementation. 

 Various methods for deploying a virtualized 5G infrastructure. 

 Finally, different virtualized RAN-Core infrastructures, which have been prototyped 
and tested with experimental empirical results, to achieve slicing-friendly 
infrastructure.  
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Definitions 

5G Core segment Core Network consists of the entities that provide support for the 
network features and telecommunication services. 5G core segment 
primarily refers to the Evolved Packet Core (EPC) - the core network for 
LTE, and the Next Generation Core Network (NGCN) in the 5G System 
architecture. 

5G RAN segment RAN segment consists of the entities that manage the resources of the 
access network and provides the user with a mechanism to access the 
network. It may comprise different types of accesses, e.g. 4G and 5G 
NR-radio accesses. The RAN consists of a set of eNBs (in LTE) or gNBs 
(in 5G system) connected to the Core. 
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1 Introduction 

In the 5G era, Network Slicing becomes a key concept, as it allows multiple logical networks 
to be created on top of a common shared physical infrastructure. According to 5G PPP [1], 
Network Slicing is an end-to-end concept covering all network segments including RAN and 
Core among the others.  

To realize slice-friendly virtualized 5G RAN-CORE infrastructure, we will leverage the existing 
platforms including OpenAirInterface and Mosaic-5G. OpenAirInterface (OAI) [2] is an open 
source project, which is developed for the purpose of softwarizing mobile network functions 
from the access network to the evolved packet core (EPC) of the mobile network. OAI is 
generally divided into two parts: the EPC software that is known as OAI-CN; and the access-
network software that goes under the name of OAI-RAN. OAI currently provides a standard-
compliant implementation of a subset of Release 14 LTE for all the major components of the 
core network, i.e. the Home Subscriber Server (HSS), the Mobility Management Entity 
(MME), the Serving Gateway (SGW or S-GW) and the Packet Data Network (PDN) Gateway 
(PGW or P-GW), as well as the access-network, i.e. the eNB, that can deployed on standard 
Linux-based computing equipment either as a monolithic BS or a disaggregated BS with a 
Baseband Unit (BBU) and the Remote Radio Unit (RRU),.   

Mosaic-5G is a complementary open source project with respect to OpenAirInterface pfor 
the purpose of building agile 5G service platform. Mosaic5G has three main platforms: 
FlexRAN enabling monitoring, control,  programmability in the RAN domain, LL-MEC that 
acts as a controller for edge and core domains providing a subset of features as specified by 
ETSI MEC, and JoX which is an event-driven juju-based service orchestrator core with plugins 
to interact with different network domains. 

1.1 Objectives 

Virtualised 5G RAN-Core Infrastructure regards the establishment of slice-friendly cross-
domain physical and virtual infrastructure layers, to provide an execution foundation for the 
upper layers in the SliceNet architecture. Within this context, SliceNet will contribute a 
virtualised 5G RAN-Core segment, to benefit from the advantages of the emerging 5G slicing 
paradigm, oriented towards the support of challenging use cases by verticals.  

The following specific objectives are identified, based on the description of the work: 

 Establish a 5G infrastructure including both the RAN and the Core segments; 

 Describes various methods for deploying a virtualised 5G infrastructure together with 
several examples for the deployment of OAI-based 5G services; 

 Design and prototype a virtualised 5G infrastructure supporting network slicing 
including both the RAN and the Core segments.  

1.2 Approach and Methodology  

The functionalities of a slicing/slice-friendly 5G RAN infrastructure should be offered for 
virtualised infrastructures, re-using existing mechanisms and tools (e.g., with respect to 
SDN), to achieve seamless control and configuration of physical and virtual resources. 
Network Slicing for the LTE network is composed mainly of two egalitarian parts: i) first, a 
slice of the core network resources and services, i.e. a grouping of physical and virtual 
resources bundled together with the EPC services; ii) and second, a slice of the eNB 
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resources and services, sharing techniques for sharing of the eNB resources (i.e, Resource 
Blocks (RBs)) in frequency, time, and space dimensions.  

SliceNet has defined three representative vertical use cases, namely, Smart-Grid, eHealth 
and Smart City [3]. Each use case has different requirements regarding network 
infrastructure, e.g. the eHealth and Smart-Grid use cases require a Mobile/Multi-access Edge 
Computing (MEC) platform while the Smart-City use case does not. Additionally, the use 
cases require the deployment of a variety of different physical infrastructures including RAN 
(4G, 5GNR - New Radio) and Core (EPC, Next Generation Core Network - NGCN). As a result, 
in this document we try to highlight different methods for deploying a virtualized 5G 
infrastructure via several examples for the deployment of OAI-based 5G services. In order to 
provide an infrastructure deployment that covers the SliceNet use cases, we consider a        
C-RAN (Centralized, or Cloud Radio Access Network) architecture (with fronthaul network) in 
the context of this document. 

1.3 Document Structure 

The remainder of this document is organised as follows: Section 2 presents the 
OpenAirInterface and Mosaic5G platforms, as the foundation of the SliceNet RAN-CN 
infrastructure. Section 3 describes in details different methods for deploying a virtualized 
slicing-friendly RAN-CN infrastructure ranging from an automated deployment method to 
manual deployment through Linux utility. Moreover, Section 3 provides a number of 
examples regarding the deployment of OAI-based 5G services to support the SliceNet use 
cases. Section 4 describes a deployment example for SliceNet infrastructure covering the 
RAN, the MEC and the Core segments. Finally, Section 5 serves as a conclusion to this 
document.  
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2 OpenAirInterface and Mosaic5G Platforms 

2.1 An Overview of OpenAirInterface 

OpenAirInterfaceTM (OAI) [2][4] wireless technology platform is a flexible platform to enable 
an open 4G-5G ecosystem. The platform offers an open-source software-based 
implementation of a subset of the 4G-5G systems spanning the full protocol stack of 3GPP 
standard in both E-UTRAN and EPC. It can be used to build and customize a base station (e.g. 
OAI eNB or gNB), a user equipment (OAI UE) and a core network (OAI EPC) in a PC. In a 4G 
compatible scenario, the OAI eNB can be connected either to a commercial UE or OAI UE to 
test different configurations and network setups and monitor the network and mobile 
device in real-time. In addition, OAI UE can be connected to an eNB test equipment (e.g. 
CMW500) as well as a commercial eNB (e.g. Amarisoft, IP.Access, etc.). 

OAI is based on a PC hosted software radio frontend architecture. With OAI, the transceiver 
functionality is realized via a software radio front end connected to a host computer for 
processing. OAI is written in standard C for several real-time Linux variants optimized for 
Intel x86 and ARM processors and released as free software under the OAI License Model. 
OAI provides a rich development environment with a range of built-in tools such as highly 
realistic emulation modes, soft monitoring and debugging tools, protocol analyzer, 
performance profiler, and configurable logging system for all layers and channels. 

2.1.1 Software Platforms   

Currently, the OAI platform includes a full software implementation of 4th generation 
mobile cellular systems compliant with 3GPP LTE standards in C under real-time Linux 
optimized for x86. At the Physical layer, it provides the following features: 

 LTE release 10 compliant, with a subset of release 14; 

 Frequency Division Duplex (FDD) and Time Division Duplexing (TDD) configurations in 
5, 10, and 20 MHz bandwidth; 

 Transmission mode: 1 (Single-Input Single-Output - SISO), and 2, 4, 5, and 6 (Multiple-
Input and Multiple-Output - MIMO 2×2); 

 Channel Quality Indicator (CQI)/Precoding Matrix Indicator (PMI) reporting; 

 All downlink (DL) channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, 
PDSCH, PMCH; 

 All uplink (UL) channels are supported: PRACH, PUSCH, PUCCH, SRS, DRS; 

 Hybrid Automatic Repeat Request (HARQ) support (UL and DL); 

 Highly optimized base band processing (including turbo decoder). With AVX2 
optimization, a full software solution would fit with an average of 1x86 core per eNB 
instance (64QAM in downlink, 16QAM in uplink, 20MHz, SISO). 

For the E-UTRAN protocol stack, it provides: 

 LTE release 10 compliant and a subset of release 14 features; 

 Implements the Medium Access Control (MAC), Radio Link Control (RLC), Packet Data 
Convergence Protocol (PDCP), Radio Resource Control (RRC), S1 Application Protocol 
(S1AP), X2 Application Protocol (X2AP), Generic Tunneling Protocol (GTP) layers; 

 Protocol service for all Rel10 Channels and eMBMS (MCH, MCCH, MTCH); 

 Full reconfigurable Channel-aware proportional fair scheduling; 
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 Fully reconfigurable protocol stack; 

 Integrity check and encryption using the Advance Encryption Standard  (AES) and 
Snow3G algorithms; 

 Support of RRC measurement with measurement gap; 

 Standard S1AP and GTP-U interfaces to the Core Network; 

 IPv4 and IPv6 support. 

Evolved packet core network features: 

 Mobility Management Entity (MME), Serving Gateway (SGW), PDN Gateway (PGW), 
and Home Subscriber Server (HSS) implementations. OAI reuses standards compliant 
stacks of GTPv1u and GTPv2c application protocols from the open-source software 
implementation of EPC called nwEPC1 ; 

 Non-Access Stratum  (NAS) integrity and encryption using the AES and Snow3G 
algorithms; 

 UE procedures handling: attach, authentication, service access, default and dedicated 
radio bearer establishment; 

 Transparent access to the IP network (neither external SGW nor PGW are necessary). 
Configurable access point name, IP range, Domain Name System (DNS) and E-UTRAN 
Radio Access Bearer (E-RAB) quality of service (QoS); 

 IPv4 and IPv6 support. 

 

Figure 1. OpenAirInterface software stack 

Figure 1 shows a schematic of the implemented LTE protocol stack in OAI. OAI platform can 
be used in several different configurations involving commercial components to varying 
degrees: 

 Commercial UE ↔ Commercial eNB + OAI EPC 

 Commercial UE ↔ OAI eNB + Commercial EPC 

 Commercial UE ↔ OAI eNB + OAI EPC 

 OAI UE ↔ OAI eNB + OAI EPC 

 OAI UE ↔ OAI eNB + Commercial EPC 

 OAI UE ↔ Commercial eNB + Commercial EPC 

                                                      
1
 nwEPC – EPC SAE Gateway, https://sourceforge.net/projects/nwepc/ 
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2.1.2 Hardware Platforms   

OAI is designed to be agnostic to the hardware radio frequency (RF) platforms. It can be 
interfaced with 3rd party Software-Defined Radio (SDR) RF platforms without significant 
effort. At present, OAI officially supports the following hardware platforms. 

 EURECOM EXMIMO2: This board, developed by Eurecom, features four high-quality 
RF chipsets from Lime Micro Systems (LMS6002), which are LTE-grade MIMO RF 
front-ends for small cell eNBs. It supports stand-alone operation at low-power levels 
(maximum 0 dBm transmit power per channel without any power amplifier) simply 
by connecting an antenna to the board. RF equipment can be configured for both 
TDD and FDD operation with channel bandwidths up to 20 MHz covering a very large 
part of the available RF spectrum (250 MHz-3.8 GHz) and a subset of LTE MIMO 
transmission modes2. 

 USRP X-series/B-Series: This is the Ettus USRP B-series and X-series products that are 
supported by OAI via Ettus UHD Driver (USB3 and Ethernet)3, 4. 

 LIMESDR: This is the Lime Micro Systems SDR board that is supported by OAI via the 
Lime USB3 driver5, 6. 

 BladeRF: This is a Nuand SDR board that is also supported by OAI via the bladeRF 
USB3 driver7. 

2.2 An Overview of Mosaic5G 

Mosaic-5G.io [5] is an ecosystem of open-source platforms and use cases for 5G system 
research and development leveraging software-defined networking (SDN), network function 
virtualization (NFV), and multi-access edge computing (MEC) technology enablers to realize 
the service-oriented 5G vision. With Mosaic-5G, network services can be provisioned on 
demand and deployed over a virtualised infrastructure, allowing the transition from 
nowadays vertical dedicated networks to shared and customizable horizontal networks.  

Mosaic-5G.io currently provides five main platforms8: 

 JOX is an event-driven juju-based service orchestrator core with plugins architecture 
to interface with different network domain. 

 FlexRAN is a flexible and programmable platform for Software-Defined Radio Access 
Networks. 

 LL-MEC is an ETSI-aligned Multi-access edge computing platform that also acts as 
Core network controller for Software-Defined Mobile Networks. 

 OpenAirInterface RAN (OAI-RAN) is a 3GPPP compatible implementation of a subset 
of features of RAN release 14 with support of FlexRAN.  

 OpenAirInterface CN (OAI-CN) is a 3GPPP compatible implementation of a subset of 
features of CN release 12 with support of LL-MEC.  

                                                      
2
 https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirExpressMimo2  

3
 http://www.ettus.com/product/details/UB210-KIT. 

4
 https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/HowToConnectCOTSUEwithOAIeNBNew  

5
 https://myriadrf.org/projects/limesdr/  

6
 https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/how-to-setup-oai-with-lmsdr  

7
 https://www.nuand.com`/  

8
 https://gitlab.eurecom.fr/mosaic5g/mosaic5g  

https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirExpressMimo2
http://www.ettus.com/product/details/UB210-KIT
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/HowToConnectCOTSUEwithOAIeNBNew
https://myriadrf.org/projects/limesdr/
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/how-to-setup-oai-with-lmsdr
https://gitlab.eurecom.fr/mosaic5g/mosaic5g
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In addition, Mosaic-5G includes a constellation of platform packages, software development 
kits (SDKs), network control applications and data sets under the Store repository. It allows 
to develop and bundle plug-and-play network applications tailored to a particular use case, 
and compose and customize a network service delivery platform across reusable 
applications.  

 

Figure 2. Mosaic-5G.io ecosystem 

In the following, we briefly present the three main platforms, namely JOX, FlexRAN, and LL-
MEC. 

2.2.1 JOX in a Nutshell 

JOX is a Juju-based orchestrator for the virtualized network that natively supports network 
slicing. Using JOX, each network slice can be independently optimized with specific 
configurations on its resources, network functions and service chains. JOX operates on top of 
the Juju virtual network function management (VNFM) with a plugins architecture to 
interface with FlexRAN, LL-MEC and virtual infrastructure management (VIM).  

The JOX architecture, as shown in Figure 3, includes two main components: (a) JOX core that 
includes JSlice and Jcloud controller to control slice and cloud resources respectively, and (b) 
JOX plugging framework that enables different plugins for RAN, CN, MEC, and VIM to enable 
fast reactions like event handling and monitoring. Furthermore, it exposes the northbound 
REST API to enable several basic operations such as create, (re-)configuration, on each JSlice, 
connected to a JCloud. 

 

Figure 3. JOX architecture 
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As illustrated in Figure 4, JOX can orchestrates the deployment of the standard LTE chain, 
i.e., eNB, MME, S/PGW, MySQL, HSS as well as FlexRAN and LL-MEC for a new JSlice, in 
different environments ranging from physical machine, container or virtual machine. Service 
dependencies may exist when deploying chains, for instance, the relationship between 
MySQL and HSS cannot be built until HSS is installed and configured. JOX orchestrates the 
service deployment and automatically handle dependencies and conflicts through Juju 
without any actions. 

MySQL

HSS MME

SP-GW

FlexRAN

eNB

LL-MEC

RRU

 

Figure 4. An example of a standard LTE chain with Domain Controllers  

2.2.2 FlexRAN in a Nutshell 

FlexRAN platform is the first open-source software-defined RAN platform and is designed 
with flexibility supporting separate control and user plane operations. Moreover, it can 
either centralize RAN domain control logics among multiple base stations or delegate control 
decisions in a distributed manner. Hence, FlexRAN provides modulated control functions, 
separated controller/agent control framework and well-defined APIs for “on-the-fly” control 
reconfiguration. 

Two key elements resides in FlexRAN architecture: (a) Real-time controller (RTC) that 
enables coordinated control over multiple RANs, reveals network graph primitives and 
provision SDKs for control application, and (b) RAN runtime that acts as a local agent 
controlled by RTC, virtualizes underlying RAN radio resources, pipelines RAN service function 
chain and provides SDKs enabling distributed control application. Practically, the developed 
As shown in Figure 5, FlexRAN protocol between RAN runtime and real-time controller can 
provide several characteristics: provide statistics, enable reconfiguration, trigger event and 
delegate control. 
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Figure 5. FlexRAN protocol 

FlexRAN enables the slice-specific resource abstraction and scheduling to fulfil service 
requirements, such as throughput (Mbps), latency (millisecond), and reliability (packet drop). 
For instance, three different slice services (video, eHealth, IoT) can independently apply their 
customized radio resource management (RRM) control logics as shown in Figure 6. 

 

Figure 6. Different slice services in FlexRAN. 

2.2.3 LL-MEC in a Nutshell  

LL-MEC platform leverages SDN principle to separate user plane processing from its control 
logics at the edge and core networks. With OpenFlow, the user plane is abstracted for the 
purposes of monitoring, analysis and control. The OpenFlow protocol is applied over the 
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Open Virtual Switch (OVS) to enable user plane programmability. Further, SDKs are provided 
to enable a flexible MEC application development environment. 

 

Figure 7. LL-MEC Platform [9] 

LL-MEC platform is aligned with the ETSI MEC Mp1 and Mp2 reference interfaces. The Mp1 
interface enables low-latency or elastic MEC applications through Core API, REST API and 
message bus, while Mp2 can instruct user plane how to route traffic among applications, 
networks, services, etc.  Within LL-MEC, two services are provided: (a) Edge packet service 
(EPS) (equivalent to traffic rule control) that manages the static and dynamic traffic rules and 
handles multiple OpenFlow libraries and OVS, and (b) Radio network information service 
(RNIS) that exposes real-time RAN information (e.g., user and radio bearer statistics) and 
delegates the control decision over the user plane. 

LL-MEC enables versatile applications, such as radio-aware video content optimization. It 
aims to adjust video quality based on the real-time per-user wireless channel quality to 
reduce the video stalling and utilize all available radio resources. For instance, a user with 
poor channel condition only receives a 240p video, while another one can enjoy 4k video 
streaming when it is close to the base station. 



Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913 

© SliceNet consortium 2018 Page 27 of (76)  

3 Virtualised Slicing-Friendly 5G Infrastructure 

This section highlights different tools for deploying a virtualized 5G infrastructure. Figure 8 
shows the mapping of the deployment tools to ETSI NFV reference architecture [6]. 

 

Figure 8. Mapping the deployment tools to ETSI NFV architecture [6] 

A Virtual Infrastructure Management (VIM), according to the ETSI NFV management and 
orchestration (MANO) specification [7], is a virtual infrastructure manager that provides the 
Infrastructure-as-a-Service (IaaS) by assembling different NFV Infrastructures (NFVIs), each 
with different technologies/vendors, and abstracting them into compute, storage and 
network nodes/resources. Existing solutions for VIM include OpenStack [8], VMware 
vSphere, CloudStack, Google Kubernetes VIM, etc. As mentioned in D3.1 [9], SliceNet 
proposes to use OpenStack VIM as NFVI management. OpenStack is an open-source 
software service framework, which provides service provisioning and virtualization. 
OpenStack architecture is modular and pluggable, thus allows using the most appropriate 
modules according to the need. As an OpenStack module, Heat provides orchestration of 
services, however, is limited to OpenStack-based platform.  

In ETSI NFV architecture, a VNFM is responsible for the lifecycle management of Virtual 
Network Functions (VNFs). VNFM takes care of deploying, monitoring, scaling and removing 
VNFs on a VIM. Juju [10], which is one of the main VNFM for ETSI Open Source MANO 
(OSM)[11], is mainly adopted as a VNFM in SliceNet.  

An NFV Orchestrator (NFVO) is responsible for the Network Slice (NS) lifecycle management 
together with the VNF lifecycle (supported by the VNFM) and the NFVI resources (supported 
by the VIM). Based on a preliminary investigation, SliceNet proposes three solutions to 
explore Juju-based orchestrator (JOX) [12], Open Baton [13], and OSM [11] as an NFVO. In 
the context of this document, we will mainly focus on JOX while briefly introducing Open 
Baton and OSM.  
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Regarding NFVI, OpenStack, which is fundamental to the VIM, provides different key 
components for NFVI management including: (i) OpenStack Compute (Nova) for managing 
virtual or bare metal servers; (ii) OpenStack Block Storage (Cinder) for virtual storage; and 
(iii) OpenStack Networking (Neutron) providing virtual networking [14]. In more detail, Nova 
supports a wide variety of compute technologies such as Kernel-based Virtual Machine 
(KVM), Xen, Linux Container (LXC), Hyper-V, VMware, XenServer, OpenStack Ironic and 
PowerVM, which provides the flexibility in choosing a hypervisor(s). Neutron provides 
networking functionality between interface devices (e.g. vNICs) managed by other 
OpenStack services and supports advanced network services. Interestingly, Neutron has also 
enabled adoption of control and management technologies for software-defined networking 
(SDN) [14]. These SDN services may interact with other Neutron’s components through REST 
APIs. For instance, OpenStack can work with several SDN controllers such as OpenDaylight 
(ODL) [15], ONOS [16], etc.  

Finally, Metal as a service (MaaS) [17], which is responsible for hardware resource 
management, provides an easy way to set up the hardware on which to deploy any service 
that needs to scale up and down dynamically.  

In this section, we introduce the deployment tools together with several examples on how 
to use these tools for the deployment of OAI-based 5G services. Again, we remind the reader 
that the infrastructure itself is for C-RAN deployment.  

3.1 Automated Deployment of 5G Virtualised Infrastructure through Juju 

 

Figure 9. Juju - Open Source Generic VNFM [18] 

Juju is a generic VNFM in the ETSI NFV architecture, which can be used to quickly and 
efficiently deploy, configure, scale, integrate and perform operational tasks in a wide 
selection of public clouds such as Amazon Web Services (AWS), Azure, Google Compute 
Engine (GCE), and Rackspace, as well as in private clouds like OpenStack and VSphere, along 
with bare metal servers (MaaS) and containers. Juju models services, their relationships and 
scale regardless of the underlying infrastructure. In more detail, Juju defines a service as a 
group of units, which is an approach that allows to easily scale in or out services, simply by 
adding or removing units. In its essence, Juju takes care of installation, configuration and 
communication among services, yet without taking the actual decisions for a particular 
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service. Instead, it delegates service-specific decisions to a set of scripts called “Charms” that 
implement the service behavior. Charms contain all necessary instructions for deploying and 
configuring a service by orchestrating the entire lifecycle of the service: a Charm defines how 
the service should be fetched, installed and run, how configuration files should be filled up 
and how to react to events.  

A collection of Charms that link services together is called a “Bundle”. A Bundle allows to 
deploy whole chunks of app infrastructure in one go. According to [19], a Charm corresponds 
to a service definition and a collection of Charms and Bundles corresponds to the NS 
catalogue according to ETSI. In addition, the process of uploading and deploying Charms into 
Juju corresponds to the NS onboarding and instantiation process, respectively. A global 
Charm catalogue containing all available Charms and Bundles that can be found in the Juju 
store [20]. 

eNB RRUSP-GW

MME

HSSMySQL

 

Figure 10. An example of a Bundle from the Juju Store 

Using OAI C-RAN as an example, Figure 10 shows the OAI C-RAN bundle from the Juju store9. 
This Bundle defines a service template for a 5G C-RAN deployment with functional split 
based on OAI. It consists of the following Charms: MySQL, OAI-HSS, OAI-MME, OAI-SPGW, 
OAI-eNB and OAI-RRU. More details on how to create a Bundle/Charm, as well as on the 
structure and organization of a Charm will be provided in subsection 3.1.4.1.1.  

In what follows next, we explain in more detail the notion of a Charm along with that of a 
Juju controller and model. 

3.1.1 Juju Charms 

Juju is a service modelling tool based on a concept of Charms to handle deployment and 
management of various cloud-based applications. Conceptually, Charms are composed of 
metadata, configuration data and hooks with some extra support files in order to download, 
configure, install, scale and maintain a service. This abstraction allows a very rapid 
deployment and maintenance of services, even without a detailed knowledge about the 

                                                      
9
 https://jujucharms.com/u/navid-nikaein/oai-5g-cran/ 

https://jujucharms.com/u/navid-nikaein/oai-5g-cran/
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internals of the service itself. One important remark is that a Charm does not contain the 
code of a service itself, but merely the scripts, which can download the code from upstream 
sources.  

 

Figure 11. Structure of a Charm (EPC Charm10 as an example) 

Specifically, the Charm is made up of (i) a “metadata.yaml” file describing in general the 
Charm with basic declarative information, defining the set of relations that the service can 
participate to as well as which services the Charm offers to other Charms; and (ii) a 
“config.yaml” with the specified options exposed to the user for service configuration and a 
set of hooks that are invoked by the Juju agent in order to trigger events in a Charm. Juju 
manages the service lifecycle with hooks (or scripts) implemented inside Charms. Currently, 
there are five unit hooks, namely: install, config-changed, start, upgrade-charm and stop. 
These hooks are invoked during the lifecycle of a service, as specified in the Charm’s 
configuration file. Besides this, there are four relation hooks for each interface that a Charm 
supports, named after the interfaces: (i) ifaceName-relation-joined, (ii) ifaceName-relation-
changed, (iii) ifaceName-relation-departed and (iv) ifaceName-relation-broken to handle 
cases where the interface is connected to the service, or disconnected, or the configuration 
or settings of that interface are changed. 

Generally, Charms are mostly used to model more complex deployments, potentially 
including many different applications and connections. As a result, a Bundle allows installing 
an entire working deployment easily and quickly as a Charm. The bundle consists of three 
main sections: 

 Target machines specifications and constraints; 

 Charms declaration and configuration; 

 Charms relations. 

Specifically, the first section of the Bundle defines a set of machines, which are required to 
deploy the services included in the Bundle. This information is passed to a cloud provider 

                                                      
10

 https://jujucharms.com/u/navid-nikaein/oai-epc/trusty/22 

https://jujucharms.com/u/navid-nikaein/oai-epc/trusty/22
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(MaaS, OpenStack, AWS, GCE, etc.), which in turn provisions the machines using this 
specification and gives them back to Juju for further deployment of services on top of them. 
The user is able to define several constraints such as the number of Central Processing 
Unit (CPU) cores, Random-Access Memory (RAM) size, availability zones or tags to offer a 
hint to the cloud provider about the user’s preferences about the machines that match their 
interest. 

The second section declares all the Charms that the Bundle needs along with configuration 
options. These options can be set to default values, which allows the Charm to operate 
correctly. Then, a user can change the value of each option via Juju. Juju then requests a 
machine from the cloud provider and places a single Charm unit on top of it. The placement 
of Charm units can also be specified.  

The third and last section of the Bundle specifies the relationships between Charms. Each 
Charm provides some capabilities while it also consumes some others. This is the modelling 
part of Juju. Using the GUI, a user can simply perform drag and drop actions on the Charms 
to connect them. One thing to remember is that Bundle defines connections between the 
Charms, not the Charms units. 

It is important to note that a Charm unit is a single instance of an application deployed by a 
Charm. Most of the Charms can deploy multiple units of the application. This is the basic 
scalability feature of Juju. At this point, we remind the reader that service scalability 
depends on the number of units. For example, let us assume that an application is using the 
database heavily, thus we need to add a database replica to ease the load on the original 
one. To do so, the user can add one or multiple units of MySQL11 via Juju. Juju will 
automatically request additional machines from the cloud provider, install MySQL on them, 
and configure the replication and load balancing details between the instances. 

 Juju add-unit -n5 mysql  #add 5 units of MySQL12 

3.1.2 Clouds 

As mentioned earlier, Juju can use a number of public clouds (including AWS, Azure, GCE, 
and Rackspace) to deploy workloads, as well as private clouds (e.g. OpenStack, vSphere, 
MaaS) which you configure. Additionally, Juju can work directly with physical, virtual and 
container machines. It makes Juju independent of substrate, which is very important both 
for production and for the development cycle [19]. 

3.1.3 Controllers and Models 

For management, Juju creates a special node, which is called the “Juju Controller”, during 
bootstrap/installation stage. This controller hosts the database, manages all the machines in 
the running models and responds to all events that are triggered throughout the system. It 
also manages the scale-out, configuration and placement of all models/applications, user 
account and identification, access and sharing.  

In order to facilitate the management of a group of applications and resources to 
accommodate different workloads or use cases, Juju introduces the notion of “model”.  A 
model is associated with a specified controller. One typical example for model is using 

                                                      
11

 https://jujucharms.com/mysql/ 
12

 If you need to place more than one unit on a machine, use the “--to” option 
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different models to deploy different regions. Model then can be replicated while keeping the 
same configuration of machines that Juju creates within this model, the application that get 
deployed on those machines and their relationships. Additionally, models can be added 
easily at any time.  

3.1.4 Technical Use Cases 

This section explains the deployment of OAI 5G C-RAN as a typical example of how to use 
Juju/JOX to deploy virtualized 5G infrastructure. 

C-RAN Deployment - a High Level Overview 

 

Figure 12. C-RAN architecture and components. 

In recent years, C-RAN (Centralized, or Cloud Radio Access Network) with centralized 
processing in Baseband Units (BBUs) and Remote Radio Units (RRUs) using CPRI (Common 
Public Radio Interface)13 has been more and more deployed thanks to its significant 
advantages including network deployment, reduced operating costs, as well as improved 
network performance [21]. However, due to high bandwidth requirements, CPRI requires 
expensive fronthaul to carry Radio Frequency (RF) samples from BBU to RRU, resulting in 
rising costs. In [21], the authors argued that to meet the requirement in terms of capacity, 
density and other performance aspects (e.g., service delay, user bandwidth) of 5G, fronthaul 
interfaces need to provide low delay and high-bandwidth transmission services by means of 
restructuring of functions between the BBU and RRUs. As a result, the new C-RAN 
architecture has been proposed by splitting different parts of radio stack between different 
network elements (BBU and RRU) [21] [22]. Also, a new BBU and RRU interface based on 
packet transmission technology, namely Next Generation Fronthaul Interface (NGFI), has 
been defined [21] [22].  

In NGFI architecture, some BBU functions are shifted to RRU. Accordingly, BBU is redefined 
as the Radio Cloud Center (RCC) while RRU becomes the Radio Remote System (RRS). The 
Radio Aggregation Unit (RAU) allows interfacing RCC with several RRUs. RCC connects with 
RRS via the NGFI interface. Regarding different NGFI interfaces, the authors in [23] show the 
potential designs of NGFI split-points for LTE network proposed by China Mobile [21]. Among 
them, we just highlight:  

 IF4p5 split-point: IF4p5 corresponds to the split-point at the input (TX) and output 
(RX) of the OFDM symbol generator (i.e. frequency-domain signals) [22]. According to 
[22], IF4 is “Resource mapping and IFFT” and “FFT and Resource de-mapping”. 
Therefore, IF4p5 is simply compressed transmitted or received resource elements in 
the usable channel band. 

                                                      
13

 CPRI, http:/www.cpri.info 
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 IF5 split-point (Baseband/RF divisions): In this solution, RRU only implements RF-
related functions.    

The current version of OAI supports both split-points, however, we use the IF4P5 split-point 
as an interface between BBU/RRC and RRU in our deployment scenario.  

Figure 12 shows the high-level architecture of the C-RAN deployment which consists of core 
network part (including HSS, MME, SGW, and PGW) and RAN part (BBU/eNB and RRU). In 
our deployment scenario, OAI-CN is used to deploy the functionality of an EPC while OAI-
RAN for the BBU and RRU functionality. 

3.1.4.1 Deploy of slice-friendly LTE Service Chain with Juju 

MySQL

HSS MME

SP-GW

FlexRAN

eNB

LL-MEC

RRU

 

Figure 13. Slice-Friendly virtualized 5G C-RAN and CORE Slice deployed by JuJu 

This section explains the deployment of OAI 5G C-RAN as an example of how to use Juju to 
deploy a virtualized 5G infrastructure. Figure 13 shows the OAI Bundle from Juju Charms 
store regarding its components and their relations. This Bundle makes use of the following 
Charms: MySQL, OAI-HSS, OAI-MME, OAI-SPGW, OAI-eNB, OAI-RRU, FLEXRAN, and LL-MEC14 
to create a slice-friendly 5G C-RAN slice.  

In the following, we will describe the details structure of a Charm by taking OAI-MME as 
an example. 

3.1.4.1.1 Structure of a Charm (OAI-MME) 

As mentioned earlier, a Charm is a set of files that typically consists of instructions for 
deploying and configuring a service. Basically, the following files are included in a Charm: 

 a metadata.yaml file describing the Charm with basic declarative information, 
defining to which relations the service can participate in and which services the 
Charm offers to other Charms; 

 a config.yaml specifying the options that are exposed to the user for the service 
configuration; 

 Hooks which are invoked by the Juju agent to trigger events in a Charm.  

                                                      
14

 https://jujucharms.com/u/navid-nikaein/ 
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Metadata.yaml 

This file defines the features of the service Charm and the kind of relations it can participate 
in. The name field represents the Charm name, which is used to form the Charm Uniform 
Resource Locator (URL) of the online Charm store. The summary and description are to 
describe the Charm and its features. The tag is used to sort the Charm in the store. The 
“provides” and “requires” subfields list the service relations the Charm may participate in 
and they are complementary, so a service that provides an interface can only have that 
specific relation established with a service that requires the same interface, and vice versa.  

name: oai-mme 
summary: Evolved Packet Core Network (EPC) based on OpenairInterface 
maintainers:  
  - Navid Nikaein <navid.nikaein@eurecom.fr> 
  - Andrea Bordone Molini <bordone@eurecom.fr> 
description: | 
   This Charms allows you to design, deploy, provision, and dispose your 4G-5G 
OpenAirInterface EPC out of the box on any cloud infrastructure. 
tags: 
  - Telecom 
  - 4G-5G 
  - EPC 
  - Core Network 
  - OpenAirInterface 
  - Eurecom 
subordinate: false 
provides: 
  mme: 
    interface: S1-C 
requires: 
  hss: 
    interface: S6a-hss 
  spgw: 
    interface: S11 

The interface names can be whatever and using the same interface name in another Charm 
allows the two to exchange information through juju infrastructure (juju state server). 
Specifically, OAI-MME Charm provides a service named “MME” through the S1-C interface. 
The name recalls the virtual interface name between the MME and the eNB/BBU in the LTE 
architecture, but here the purpose is simply to point out what Charm should be related to 
OAI-MME Charm and towards which interface. In fact, OAI-eNB (and OAI-BBU) Charm will 
require the OAI-MME Charm and it will use the same interface name, which represents the 
protocol conventionally followed by the service units to exchange information. 

OAI-MME Charm will work together with OAI-HSS Charm that provides the “hss” service, 
therefore the OAI-MME Charm will require this service on the same interface (S6a-hss). 
Actually, this kind of information will be exchanged through interfaces, once the Charms are 
deployed, is defined by a set of files (relation hooks) in the Charms themselves and it 
happens a layer above the deployed software and it is necessary to provide to the services 
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encapsulated by the Charms the condition to properly run and coexist. With the same 
reason, OAI-MME Charm requires OAI-SPGW Charm.  

For more information regarding Charm metadata, please refer to [24]. 

Config.yaml 

options: 
   branch: 
     default: "develop" 
     description: | 
       branch indicates which installation you want to do. If you want a stable installation, 
change this option to "master".  
     type: string 
   revision:  
     default: "head"    
     description: get a specific revision from the openair-cn git repository.  
     type: string 
   kernel:  
     default: "generic" 
     description: set the default kernel, generic or low latency.  
     type: string 
   realm: 
     default: "openair4G.eur" 
     description: | 
       Diameter realm of the MME. HSS and EPC have to have the same. NO empty value. 
     type: string 
   eth: 
     default: "eth0" 
     description: | 
       This is the S1-C interface name. 
     type: string 
   maxenb: 
     default: "10" 
     description: Maximum number of eNB that can connect to MME. Max Value is 10. 
     type: string 
   maxue: 
     default: "10" 
     description: | 
       For debug purpose, used to restrict the number of served UEs the MME can handle. Max 
Value is 50. 
     type: string 
   relative_capacity: 
     default: "10" 
     description: | 
       Even though this parameter is not used by the MME for controlling the MME load 
balancing within a pool (at least for now), the parameter has to be forwarded to the eNB 
during association procedure. Values going from 0 to 255. 
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     type: string 
   mme_statistic_timer: 
     default: "10" 
     description: | 
       Displayed statistic (stdout) period. You can access the stdout: cat /srv/mme.out on the 
machine where this Charm is deployed. 
     type: string  
   emergency_attach_supported: 
     default: "no" 
     description: This will attach the unauthenticated UEs (not supported). 
     type: string 
   authenticated_imsi_supported: 
     default: "no" 
     description:  
     type: string    
   verbosity: 
     default: "none" 
     description: sets the asn1 log level verbosity. Valid values are "none", "info", or "annoying" 
     type: string 
   gummei_tai_mcc: 
     default: "208" 
     description: TAI=MCC.MNC:TAC. MCC is the Mobile Country Code. Must be three digits. 
     type: string  
   gummei_tai_mnc: 
     default: "95" 
     description: TAI=MCC.MNC:TAC. MNC is the Mobile Network Code. Must be two or three 
digits. 
     type: string 

The optional config.yaml file defines how the software can be configured by the user. The 
objective is to expose to the user the options that he/she would be willing to tweak when 
deploying the service or when it is running.  

The Charm should operate correctly with no explicit configuration settings. In fact, there is a 
default value associated to each option. Moreover, Juju allows providing a config.yaml file 
with the desired values for the options at the deployment time. Another option is that the 
user can reconfigure the software by using Juju tool when the service is running. In our case, 
this file allows the user to have partial control on the way the MME is built and the way the 
MME will behave once it is running. In a typical deployment scenario when OAI-MME is 
installed as a standard-alone application in a physical or a virtual machine, these options can 
be put in a configuration file and then to be parsed to the OAI-MME.  

In the following, we highlight several options that allow the user to choose how to configure 
the OAI-MME: 

 branch: specify the “git branch” from where the source code must be fetched; 

 realm: use “realm” to assign to the MME element used to talk over the diameter 
protocol; 

 maxenb: define the maximum number of eNBs that the MME can support; 
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 maxue:  define the maximum number of UEs that the MME can handle; 

 gummei_tai_mcc, gummei_tai_mnc: define the Public Land Mobile Network (PLMN), 
Mobile Network Code (MNC) and Mobile Country Code (MCC) to assign to the 
deployed mobile network. 

Charm’s Hooks 

Hooks are a series of files that are called during the lifecycle of the service encapsulated 
within the Charm. A service unit’s direct action is entirely defined by its Charm’s hooks that 
will be invoked by Juju at particular times. Based on triggered events, Juju will fire up a 
specific hook to apply the change on the machine. Hooks may be written in any language. 
They run non-concurrently to inform the Charm that something happened, and they give a 
chance for the Charm to react to events in arbitrary ways.  

The set of common unit hooks with predefined names are: 

 install 

 start 

 stop 

 config-changed 

 upgrade-charm 

 update-status 

In the context of OAI-MME, the defined relation hooks are strictly related to which services 
the Charm needs or exposes. When services are related, Juju decides which hooks to call 
within each Charm based on the local relation name. Specifically, OAI-MME requires 
relations called “hss”, “spgw” and provides a relation called “mme” so the following relation 
hooks have been defined to manage the relations’ lifecycles: 

 hss-relation-broken 

 hss-relation-changed 

 hss-relation-departed 

 hss-relation-joined 

 mme-relation-broken 

 mme-relation-changed 

 mme-relation-departed 

 mme-relation-joined 

 spgw-relation-changed 

 spgw-relation-departed 

It is not mandatory to use all units or relation hooks, so at the time Juju would call them, it 
may simply skip the execution of some of them. 

3.1.4.1.2 Juju Charm Deployment 

After preparing the machines by either leveraging on a cloud infrastructure or manually 
installing/creating the machines, we can use a simple Juju command to deploy the Bundle as 
following: 

$juju deploy oai-5g-cran-slice.yaml 

In our case, we deployed OAI C-RAN bundle on top of a private MaaS-cloud.   
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Scaling 

As mentioned earlier, Juju not only makes it simple to deploy services, but also crucially 
makes it easy to manage them too. Its dynamic configuration ability, which allows the 
operator to re-configure services on the fly, add, remove, or change relationships between 
services, and scale in or out and up or down with ease [25]. Such scaling capabilities are 
crucial to achieve scalable network slices.   

Spinning up another unit of a certain service allows having the chance of distributing the 
load over the different service instances. In general, a load balancer will be needed in front 
of the service units in order to actually distribute the incoming requests to the different 
instances. However, in our scenario the OAI software components themselves will operate 
the load balancing. In fact, the eNB is in charge of choosing the MME where to forward the 
signalling messages coming from a UE. In LTE, the scalability can be operated either for the 
MME or for the SPGW in different ways. For example, the following commands will add a 
new OAI-MME instance and link MME with other services.   

$juju deploy oai-mme oai-mme_1 
$juju add-relation oai-mme_1 hss 
$juju add-relation oai-spgw oai-mme_1 
$juju add-relation oai-enb oai-mme_1 

Additionally, a network operator might want to scale up a particular service deployed inside 
the environment that means it might increase manually the computational power of the 
virtual machine where that OAI-MME service is deployed. Alternatively, we can also use 
another more powerful machine from the group of machines added to the manual 
environment, by re-deploying that service through Juju. The following commands will 
replace an MME instance by a new one with a different computational power.  

$juju remove-service oai-mme_1 
$juju deploy --constraints “cpu-cores=4 ram=4G” oai-mme oai-mme_1 
$juju add-relation oai-mme_1 hss 
$juju add-relation oai-spgw oai-mme_1 
$juju add-relation oai-enb oai-mme_1 

3.1.4.2 Deploy LTE Service Chain for Network Slicing with JOX 

As mentioned in the previous section, Juju can be used to deploy a virtualized 5G 
infrastructure in an automated way. However, in this approach, Juju, as a VNFM, is mainly 
responsible for VNF lifecycle management (e.g., instantiation, update, query, scaling, and 
termination). As a result, it lacks the functionalities at the network service-level regarding 
lifecycle management, global resource management, and policy management. It is where an 
NFVO comes into play, especially to achieve slicing-friendly infrastructure. Generally, an 
NFVO, with a complete overview of the system, is responsible for [7]:  

 maintaining a global view of system; 

 on-boarding of application packages; 

 NS lifecycle management (including instantiation, scale-out/in, performance 
measurements, event correlation, termination); 

 global resource management, validation and authorization of NFVI resource 
requests; 



Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913 

© SliceNet consortium 2018 Page 39 of (76)  

 policy management for NS instances. 

SliceNet proposes JOX - a Juju-based orchestrator, as an NFVO not only for deploying 
virtualized 5G infrastructure but also for MEC platform and its application (as specified in 
D3.1 [9]). One of the main reasons is that JOX is created as a 5G orchestration targeting 
network slicing. As a result, JOX inherently supports lifecycle management of network slices 
and orchestration for the mobile network. Specifically, it supports basic operations defined 
by 3GPP in TR 28.801 [26] to manage the lifecycle (preparation, instantiation, configuration, 
activation, runtime and decommissioning phase) of a Network Slice Instance (NSI), where all 
phase related API methods are exposed via the Northbound API. Besides, JOX also supports 
orchestration for the Mobile Network where it exploits RAN and CN specific plugins to 
efficiently orchestrate the network resources and services. Furthermore, JOX also supports 
the optimisation of the operational environment, for example, running a slice-specific logic 
or global optimisation on all slices applications on top of the Northbound API. 

Using JOX, each network slice can be independently optimized with specific configurations 
on its resources, network functions and service chains. Inside the JOX core, a set of services 
is used to operate and control each network slice, while at the same time support the 
necessary interplay between resource and service orchestration, VNFM and VIMs as these 
are defined in the ETSI MANO architecture [7]. From the implementation perspective, JOX is 
tightly integrated with the Juju VNFM framework provided by Canonical [27]. The Juju 
system is also one of the main VNFM for ETSI OSM [11] [28]. 

The core JOX characteristics are summarized as follows: 

 slice-specific lifecycle management and a powerful northbound API; 

 core services facilitate the optimization of the orchestration procedures; 

 JOX Plugin Framework where each plugin element interacts with the corresponding 
agent via a message bus, for example, RAN specific plugins in order to control the 
physical or virtualized LTE eNB; 

 slice descriptors are coupled with the service configuration; 

 network slice logic can be easily introduced as an application for slice optimization. 

In the following paragraphs, we will highlight the architecture, components and the 
implementation of JOX as well as an example of how to use JOX for orchestrating LTE eNB 
resources.  
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Figure 14. JOX main components and properties 

Figure 14 presents the main components of JOX including JOX Network Slices (JSlices) and 
JOX Clouds (JClouds). In JOX, a slice is represented by a JSlice object that is defined as a set of 
models (called JModels) together with a policy specification. This policy may be global for all 
the slice models, while every model is deployed over a specific cloud infrastructure that is 
controlled by a single VIM (e.g. RAN-VIM). Every JModel is a Bundle of:  

 resources: include all physical (e.g. servers, spectrum) and virtual resources (e.g., 
virtual machines (VMs)); 

 services: include physical or virtual network functions (PNFs and VNFs) such as eNB 
and vMME and virtualized network applications (VNAs) (e.g. monitoring); 

 service chains: describe the relationship between PNFs/VNFs/VNAs (e.g. between 
eNB and vMME);  

 policy: a JModel-specific policy. 

Every JCloud object hosts all the underlying cloud resources and interacts with the physical 
infrastructure and the cloud control mechanisms through two channels: (1) the VNFM for a 
set of basic functionalities, and (2) directly with the VIM for fine-grain monitoring and 
control. Although VNFM is able to interact with the VIM, it is the direct communication 
between the orchestrator and the VIM that can offer the maximum level of control of the 
underlying physical and virtual infrastructure. 

JOX is a single VNFM - multi VIM orchestrator. The VNFM is Canonical’s Juju, which interacts 
with Charms that act as structured NFV element managers driven by Juju. A Charm 
encapsulates a VNF as a service and contains all the necessary hooks (i.e., scripts and 
primitives) to manage the life cycle of the VNF and its relationships within service chains. It 
contains all the logic required to deploy, configure, integrate, scale, and expose the service 
to the outside world, that are available to JOX through a rich Juju API. We highlight that a 
rich set of OAI-based 4G and a subset of 5G VNFs (for MEC, RAN and CN) are already 
available as Juju Charms in the Juju store (an online VNF catalogue [27]). 

Juju supports a number of VIMs and a variety of the clouds including both public clouds and 
private ones such as AWS, Azure, GCE, Rackspace, MaaS and LXC. With JOX, the underlying 
cloud resources are extended with physical or virtual RAN and CN elements and a set of 
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resources that also include, for example, radio spectrum and resource blocks. Note that 
while JOX exploits all the services exposed by Juju regarding the resource management of 
the infrastructure, the API between Juju and VIMs is restricted to a basic set of 
functionalities (e.g., deploy VMs with specific requirements). In order to retrieve/analyze the 
real-time performance and trigger custom events, JOX exploits direct communication with 
the VIMs through a plugin framework. 

 

Figure 15. JOX architecture 

The architecture of JOX is depicted in Figure 15. JOX exposes a northbound REST API. Using 
the exposed methods one can create a JSlice, connect to a JCloud and adjust all the models, 
resources, services and service relationships. In more detail, JOX is aligned with the 
recommendations of the basic operations that are defined by 3GPP in TR 28.801. According 
to this, the NSI lifecycle phases are preparation, instantiation, configuration, activation, 
runtime control and decommissioning. Through the API methods related to these phases are 
exposed. A set of core services is used in support of slice-specific lifecycle management, data 
handling, monitoring and template management. Specifically, JOX Slices Controller (JSC) is 
responsible to host and control all the instantiated JSlices. This is the place where global 
optimizations can be performed. JOX Clouds Controller (JCC) is responsible to host and 
control all the instantiated JClouds. JCC offers services to the JSC. JOX enables network slice 
lifecycle management and allows to orchestrate each network slice independently. JOX 
exploits RAN and CN specific plugins to efficiently orchestrate the edge network resources 
and services e.g. orchestrating a new slice across multiple eNBs, partitioning the radio 
resources and deploying a dedicated CN for this newly generated slice. It is important to 
note that the core of JOX framework is technology-agnostic, and is able to support 4G/5G 
technologies through the plugin architecture. With the same principle, it can be easily 
integrated with different VIMs via the plugin framework. 

Network Slice Definition, Control and Management 

In JOX, a network slice is represented by a JSlice. To define a JSlice, the NSI owner defines a 
set of resources, requirements and services, service relationships and the corresponding 
configurations. Currently, JOX provides a simple JSlice definition since standard templates 
definitions is currently an open research issue. 
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Figure 16. JOX JSlice definition in JSON representation 

Figure 16 depicts an empty network slice (without any resources or services), which can be 
created as a POST message to JOX. In the future, template descriptions will be aligned with 
the work delivered in OASIS TOSCA [29] and the modelling work in the Internet Engineering 
Task Force (IETF) [30]. For every model, we utilize different namespaces for resources, 
services and the bindings to services. This way a resource (e.g. a VM) is described using a 
JSlice-JModel specific name. For example, the container identifier for the specific model is 
“k2” while the container is hosted in machine “cF45” that can be a physical machine or a 
container or a KVM virtual machine. Besides the information related to “where to deploy” 
the service, the configuration of the service is passed together with its definition; otherwise 
default configuration is loaded. This flexibility is enabled by the Juju framework, which 
triggers the corresponding Juju Charm hooks (e.g. config-changed and relation-changed). In 
this phase, a negotiation routine with the VIM can also be executed. Such negotiation 
procedures were described in [31]. While a logical definition of services and networks are 
initially requested by the slice, the VIM supports the requested capabilities, SLA and QoS 
levels based on its current state and the book-keeping information maintained by the top-
level orchestrator.  

JOX also supports the modification of the runtime state of a network slice in two modes: 
auto and manual. In the former, the network slice controller detects a performance 
degradation that leads to a SLA violation. In such case, specific actions need to be performed 
through interactions with the plugin framework, for example, increase in memory and CPU 
power to support the current workload, or increase the radio resources of a particular slice 
to increase its data rate. In the manual mode, the network slice owner is able to adjust the 
parameters and configurations of the network slice and the corresponding sub-elements 
through the northbound APIs. In both cases, a set of monitoring services is exploited at the 
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level of network slice (e.g., slice is healthy), the VNF, and the cloud infrastructure. These are 
used to either trigger the necessary action sets or facilitate the decision maker procedures. 

The ability to monitor and adjust the network slice behavior and characteristics in runtime is 
an extremely powerful feature of JOX since it allows network slice logic to be easily 
introduced. In the current version of JOX, this is achieved through direct interactions with 
KVM, LXD hypervisors and the plugin framework for the RAN. Automatic events creation will 
be supported in future release. 

Building LTE VNF Chains for Network Slicing with JOX 

JOX exploits a rich set of functions to enable network slicing through Juju VNFM and Charms. 
Each Charm encapsulates every underlying LTE network module as a VNF, leveraging the OAI 
platform [32]15. Figure 17 shows an example of using JOX to deploy two network slices with 
different end-to-end logical networks. In slice A, the OAI eNB and EPC are deployed in a 
single VM. In slice B, a cloud-RAN chain using disaggregated RAN is deployed over different 
VMs. For every slice, the OAI solution can be chained using Juju relationship hooks and 
appropriate VNFs. For example, different functional splits can be exploited between the RRU 
and the BBU VNFs16. In this case, JOX orchestrates the deployment of standard LTE chain 
(eNB, MME, SPGW, MySQL, and HSS) for a new JSlice17. With the support of Juju VNFM, JOX 
has the ability to fully automate the deployment of a LTE network service chain in different 
execution environments ranging from a physical machine to a container or a VM. 

 

Figure 17. Network slicing in JOX 

Throughout this use case, OAI service chains were deployed as a real-time LTE platform. Two 
virtualization environments (LXC and KVM) were considered as the targets to deploy the LTE 
services. For the sake of simplicity, the testbed is deployed in a physical machine. The 
physical server infrastructure was based on commodity Linux-based machines, equipped 
with 6-cores i7-3930K CPU at 3.2GHz and 16GB of RAM. Based on JOX, during the 
deployment for all the VNFs, all the kernel dependencies were automatically satisfied 

                                                      
15

 OAI charms can be found at jujucharms.com/q/oai 
16

 Example can be found at jujucharms.com/u/navid-nikaein/oai-5g-cran/ 
17

 Example of this service chain can be found at jujucharms.com/u/navid-nikaein/oai-nfv-4g/ 
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(because of the scripting inside the Charms installation hooks). In Juju, a common lifecycle 
for a service has the following order (1) initialization: where the target environment is 
instantiated, such as LXC, KVM, or physical machine; (2) installation: where the service is 
installed on the environment; (3) configuration: where the service is reconfigured; (4) start 
and stop: where the service is started or stopped depending on whether the service 
relationships are met, and (5) relationship: where the service chain is built and dependencies 
are met. In our setup during installation, the Juju Charms were available from Juju remote 
repositories. Moreover, when chains are deployed, service dependencies may exist. For 
instance, the relationship between MySQL and HSS cannot be built until the HSS is installed 
and configured. This is the same between MME and SPGW/HSS, and between eNB and 
MME. This imposes time delays that cannot be avoided, due to the way the relation hooks 
operate in Juju. On the other hand, JOX orchestrates the service deployment and 
automatically handles dependencies and conflicts through Juju, without requiring any other 
action to be taken. 

As a preliminary result, Figure 18 shows the deployment time of the LTE service chain. We 
observe that the installation delay dominates in most of the service lifecycle, because the 
services chains are deployed and built from source. The installation time can be reduced 
drastically when deploying the service from a local package or an image. 

 

Figure 18. Deployment time of VNF chains 
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3.2 Automated Deployment of 5G Virtualised Infrastructure through 
OpenStack and Heat 

 

Figure 19. OpenStack service overview [14] 

Figure 19 shows the logical architecture of OpenStack which mainly consists of [14]: 

 The OpenStack Compute (Nova): Nova is the heart of OpenStack which provides 
power massively scalable, on demand, self-service access to compute resources by 
provisioning and managing large networks of virtual machines. The Compute service 
facilitates this management through an abstraction layer that interfaces with 
supported hypervisors including KVM, LXC, Hyper-V, Docker, bare metal, etc.; 

 The OpenStack Block Storage service (Cinder) provides block storage resources for 
compute instances; 

 The OpenStack Networking service (Neutron, previously called Quantum): Neutron 
provides “networking as a service” between interface devices managed by other 
OpenStack services including DNS, Dynamic Host Configuration Protocol (DHCP), load 
balancing, firewall, etc.;  

 The OpenStack Image service (Glance) provides discovering, registering and 
retrieving service for disk and server images; 

 The OpenStack Identity service (Keystone): Keystone is a shared service  that 
provides API client authentication, service discovery, and distributed multi-tenant 
authorization  throughout the entire cloud infrastructure; 

 The OpenStack Dashboard (Horizon) provides a web-based interface to OpenStack 
services; 

 RabbitMQ is a message queue service, which coordinates operations and status 
information among OpenStack services. 

3.2.1 Comparison of OpenStack Deployment Tools 

Regarding OpenStack deployment, in order to avoid potential errors and to reduce the effort 
needed for re-deployment and management, an automated deployment tool should be 
used. Based on a preliminary investigation, there are several possible solutions for 
automated OpenStack installation relying on different tools such as Mirantis Fuel [33], 
Ubuntu Autopilot [34], OpenStack-Ansible [35] as well as the combination of Canonical’s 
MAAS [36] and Juju. A brief comparison between these tools is shown in Table 1. The first 
approach, i.e. a combination of Juju and MAAS, supports heterogeneous hypervisors along 
with containers. It is proved to be very flexible regarding the architecture layout, while 
remaining simple to use without extensive knowledge about OpenStack internals. The only 
problem with Juju is that many tasks must be done manually such as service placement, 
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monitoring and cluster maintenance. These issues are resolved in Autopilot, but this is a 
commercial product with an expansion beyond the number of ten servers being possibly 
quite costly. On the other hand, Mirantis Fuel is very stable, easy to use. However, it lacks 
support for a lightweight visualization using containers and heterogeneous hypervisors. 
Lastly, OpenStack-Ansible seems to be a very flexible solution, but with a much stepper 
learning curve than the other tools. It is a perfect tool for a big deployment where a team of 
system administrators can work on fine tuning of every OpenStack component. For small or 
proof of concept (PoC) deployments, OpenStack-Ansible requires a lot more configuration 
and tuning compared to other tools. As a result, in the context of SliceNet, we opted Juju 
and MAAS as the OpenStack deployment tool.   

For more information regarding the comparison of OpenStack deployment tools, please 
refer to [37]. 

Table 1. A summary comparison of OpenStack deployment tools 

 Juju and 
MAAS 

Autopilot Mirantis Fuel OpenStack 
Ansible 

Bare metal provisioning Yes Yes Yes No 

Ease of service scaling Easy Easy Easy Moderate 

Ease of cluster size scaling Easy Easy Easy Moderate 

Ease of deployment 
customization 

Easy Hard Hard Moderate 

OS Maintenance tools No Yes Yes No 

OS Monitoring tools No Yes Yes No 

GUI Yes Yes Yes No 

LXD hypervisor support Yes Yes No No 

VMware hypervisor support  Yes Yes Yes Yes 

KVM hypervisor support Yes Yes Yes Yes 

Heterogeneous hypervisors Yes Yes No Yes 

Supported operating 
systems 

Ubuntu/ 
CentOS 

Ubuntu Ubuntu/CentOS Ubuntu/ 
CentOS/ 

openSUSE 

Network auto configuration No Yes Yes No 

Cost per server per year  Free Not free* Free Free 

Commercial support 
available 

No  Yes Yes No 

*) First 10 servers are free 



Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913 

© SliceNet consortium 2018 Page 47 of (76)  

3.2.2 Deployment of OAI-based 5G Services 

3.2.2.1 Juju/OpenStack 

This section explains C-RAN deployment as an example of OAI-based 5G services deployment 
on top of OpenStack which is in turn deployed by using the combination of Juju and MAAS. 
The idea is that MAAS will be used to manage the hardware resources and provision the 
servers that, later, will be used to deploy OpenStack services automatically by Juju. Finally, 
the OAI services are implemented on top of OpenStack, which will be served as a cloud 
provider.  

The high-level architecture of the C-RAN deployment, which consists of EPC part (including 
HSS, MME and SGW/PGW) and RAN part (BBU and RRU), is described in Figure 20. All the 
network entities (MME, HSS, SGW/PGW, BBU, and RRU) will be deployed in a virtualized 
environment on top of OpenStack. The radio card will be connected to the RRU via the 
interface USB-3.0 which then allows a real UE to be attached to the deployed mobile 
network via this wireless interface. This testbed uses OAI-CN to deploy the EPC functionality 
while OAI-RAN for the BBU and RRU functionality.  

From a practical point of view, different network entities have different requirements in 
terms of latency, power and kernel support. RRU is a network element that interfaces 
directly with RF equipment (for example, commodity lab RF SDR platforms such as USRP 
B200/B210) via USB3.0 for over-the-air (OTA) experiments, its performance should be close 
to bare metal speeds. In addition, USB-Passthrough is needed to pass USB devices to the 
OpenStack instance that will be used to deploy the functionality of a RRU. On the other 
hand, BBU typically requires much more power in comparison to RRU. Thus, the OpenStack 
instances for the EPC entities and BBU can be deployed using such a high-power hardware 
(HW)/CPU platform while a Personal Computer (PC) or a low-power platform can be used to 
host RRUs. Additionally, BBU needs a low latency kernel while SGW/PGW needs a special 
kernel module to support GTP as required to deploy OAI software stack [4]. As a result, 
different types of hypervisor may be needed for different types of VM or container. For 
instance, both KVM and LXC can be used to deploy EPC and BBU while LXC should be used 
for the deployment of RRU as described in Figure 20. Therefore, two possibilities are 
considered as follows:  

 Using LXC to deploy all network entities: In this case, the host machine needs to be 
installed with the kernel supporting GTP for SGW/PGW; 

 Defining two different zones: one zone for KVM and another for LXC (e.g., using the 
notion of availability zone in MAAS). EPC entities as well as BBU could be deployed on 
either KVM or LXC zone while RRU on LXC zone. In this case, MAAS has to deal with 
tag to deploy the instances in the corresponding zone.  
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Figure 20. C-RAN deployment on top of OpenStack 

For instance, we adopted the first alternative. This means that LXC is used to deploy all 
network entities including EPC (HSS, MME, SGW/PGW), BBU as well as RRU. Accordingly, the 
testbed consists of two workstations (namely Xenial1 and Xenial2), two PCs (namely 
Neptune and Venus), one Laptop (namely Sud) and one switch as shown in Figure 21. 
Mapping to the C-RAN high-level architecture, the two workstations will host the OpenStack 
instances to deploy EPC and BBU functionality (as well as OpenStack services) while the two 
PCs will be used to deploy RRUs. The laptop will be responsible for MAAS/Juju controller 
deployment. All devices are interconnected using a central Ethernet switch using 1GbE 
interfaces18. The laptop is also connected to the external network and acts as a gateway for 
the internal one. Here are the specifications for the hardware used to set up the testbed: 

 Two Workstations (Xenial1 and Xenial2):  
o 10 CPU cores, 64GB of RAM, 296GB of Hard disk drive  (HDD) 
o Interfaces: two Gigabit Ethernet (GbE), two  small form-factor pluggable (SFP+),  

and one iDRAC;    

 Two PCs (Neptune and Venus):  
o CPU cores, 32GB of RAM, 500GB of HDD 
o Interface: 1GbE 

 One Laptop (Sud):  
o CPU cores, 8GB of RAM, 500GB of HDD 
o Interface: two GbE  

 One Cisco 2960X Ethernet switch:  
o Interfaces: 24 x 1GbE, two SFP+ 

                                                      
18

 Xenial1 and Xenial2 servers will be interconnected using 10GbE interfaces in the future. 



Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913 

© SliceNet consortium 2018 Page 49 of (76)  

 

Figure 21. C-RAN testbed 

Figure 22 shows the real image of the testbed deployed at Eurecom.  

 

 

Figure 22. Image of the C-RAN testbed 

Network Planning 

In the context of SliceNet, network isolation is a useful feature to support network slicing. 
OpenStack introduces the notion of tenant networks for connectivity within projects by 
relying on different types of network isolation and overlay technologies such as Virtual Local 
Area Network (VLAN), Virtual Extensible LAN (VxLAN) and Generic Routing Encapsulation 
(GRE). For our testbed, VLAN is used. Again, for the sake of simplicity, only one internal 
network is defined for the moment. As a result, the following IP networks can be 
distinguished (see also Table 2): 

 External Network - Eurecom managed network, used for the Internet access. 

Cisco Switch 

2 x Workstations 
(Xenial1, Xenial2) 

2x PCs (Neptune, 
Venus) 

Laptop (Sud) 

RF card 
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 Internal Network - Network managed by MAAS, used for management, server 
provisioning and OpenStack traffic (including Neutron). DNS and DHCP provided by 
MAAS. 

 Public  Network - Network used for publicly routable floating IPs. For the moment, 
this network is not necessary.  

Table 2. Parameters of the C-RAN testbed networks  

Name CIDR Gateway DNS DHCP 

External 
network 

192.168.12.0/24 192.168.12.100 192.168.12.100  

Internal 
network 

10.123.0.0/24 10.123.0.1 10.123.0.1 10.123.0.2 - 
10.123.0.20 

Public network - - - - 

It is noted that the addresses reserved for DHCP are used by MAAS to bootstrap the physical 
servers. 

C-RAN Deployment 

To deploy C-RAN testbed, several steps need to be executed. First, the physical machines 
need to be interconnected as described in Figure 21. The laptop, acting as a gateway for 
Internet connection, needs to be configured to allow the OpenStack instances connect to 
Internet via this computer and setup interfaces for MAAS internal network. After MAAS 
installation, a virtual machine, which will be served as a Juju controller, is created and 
commissioned by MAAS. The next step is to deploy Juju controller to the previously created 
virtual machine. After powering the physical servers up, they will be detected, and then will 
be commissioned by MAAS. At the end of this step, they are ready for the deployment of the 
OpenStack services. The machines commissioned by MAAS can be seen from MAAS’ GUI as 
shown in Figure 23.  

 

Figure 23. Machines commissioned in MAAS 

The deployment of OpenStack services is then orchestrated by Juju using machines 
provisioned by MAAS. In this case, Juju first creates a new model for OpenStack-related 
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services and then deploys them using a corresponding bundle file (bundle.yaml). The bundle 
file defines all the required OpenStack services, their configuration, placement and 
interaction between them. For the moment, several OpenStack services are needed 
including the OpenStack Dashboard (Horizon), the OpenStack Identity service (Keystone), the 
OpenStack Image service (Glance), the OpenStack Compute (Nova), the OpenStack 
Networking service (Neutron), RabbitMQ, MySQL, and OVS. Specifically, Table 3 shows the 
placement of OpenStack-related services. From a practical standpoint, the following steps 
are executed to deploy OpenStack services. 

Step 1: Switch off all of the physical machines where we wish to deploy OpenStack services 
(including Xenial 1, Xenial2, Venus and Neptune). 

Step 2: Create a new Juju model. 

$juju add-model os 

Step 3: Verify that Juju controller is working.  

$juju status 

Step 4: To deploy OpenStack, launch the following command: 

$juju deploy bundle.yaml 

It takes approximately 30 minutes to deploy OpenStack services. We can observe the 
progress of the deployment using the following command: 

$watch -c juju status --color "${@:1}" 

Step 5: When Juju reports that all services are deployed and ready, execute the following 
command to find out the IP address of Horizon interface:  

$juju status | grep openstack-dashboard 

Step 6: Go to http://<openstack_dashboard_IP>/horizon and login to Horizon to manage 
OpenStack services. 

Table 3. Placement of OpenStack and other services at the machines of the testbed 

Xenial 1 Xenial 2 Neptune Venus 

Horizon (LXD) Nova-compute-
KVM/LXD 

Nova-Compute-LXD Nova-Compute-LXD 

MySQL (LXD) OVS OVS OVS 

RabbitMQ    

Keystone (LXD)    

Glance (LXD)    

Nova-cloud-controller    

Neutron-API    

Neutron-Gateway    
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After the setup of OpenStack services, several configuration steps are required in order to 
obtain a minimal working cloud environment e.g., configure internal/external network and 
subnet, configure availability zones, import images into OpenStack Glance and setup Secure 
Shell (SSH) connections for the OpenStack instances. For more information regarding 
OpenStack configuration, please refer to [51]. 

Passthrough Radio Card to a Virtual Instance 

As mentioned earlier, the RF card will be connected to RRU via USB 3.0, which allows user to 
connect to the deployed mobile network via a wireless interface. However, in a virtualized 
environment managed by OpenStack, it is not straightforward. In other words, USB devices 
are not automatically attached to an OpenStack instance. USB-passthrough is therefore 
needed to pass USB devices into an instance. Based on a preliminary investment, there is 
three possible solutions for USB-passthrough including (i) implementation of USB-
passthrough feature into OpenStack; (ii) out-of-band USB-passthrough using Juju; and (iii) 
USB controller passthrough using PCI-passthrough [51].  

As an example, we use the third solution for USB-passthrough since this solution only 
depends on the possibility to support passthrough under KVM/LXD (independence from 
Juju/OpenStack). In this solution, the script to attach USB cards to an instance can be 
executed as a standalone script. It can also be executed automatically as a Juju action.  
Basically, this script will detect the instance where the RF will be connected to and attach 
the card to this instance accordingly.  

By using OpenStack, we created several instances for setting up the testbed as shown in 
Figure 24. For the first deployment, we could have to install the functionalities of all the 
network entities by following the instruction from OAI-RAN [2] and OAI-CN [4]. However, we 
then can use these instances to create the corresponding images which allow to deploy a 
new instance for RRC, RRU, EPC components or even a new C-RAN testbed easily and quickly 
in OpenStack environment.  

 

Figure 24. C-RAN instances in OpenStack environment 

Finally, we have a fully functional mobile network. We then use a commercial off-the-shelf 
(COTS) UE to verify the functionality of the deployed mobile network. As expected, the UE 
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can successfully attach to the deployed mobile network and establish a PDN connection to 
the Internet (as can be seen in Figure 25). Figure 26 shows the MME log with the information 
related to the connected eNB and the connected UE.  

 

Figure 25. UE connected to the deployed network – OpenAirInterface 

 

Figure 26. UE connected to the deployed network 

3.2.2.2 Heat 

Heat [52] is OpenStack's main orchestration component, which is capable of launching 
deployments of complex cloud applications described in text files (called templates). The 
following is a simple Heat template (Heat Orchestration Template, or HOT) describing a 
typical OAI-based LTE deployment with four main components – HSS, MME, S/P GW, and 
eNB.  

heat_template_version: 2015-05-23 
description: LTEaaS 
parameters: 
   key_name:  
      type: string 
      description: Name of a KeyPair to enable SSH access to the instance 
      default : cloudkey 
 
resources: 
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   HSS:  
      type: OS::Nova::Server 
      properties:  
         image: hss-1 
         flavor: HSS.med 
         key_name: cloudkey 
         networks: [{ network: PUBLIC_NETWORK }] 
         user_data: | 
            #!/bin/bash 
            MY_IP=`ip addr show dev eth0 | awk -F'[ /]*' '/inet /{print $3}'` 
            sed -i 's/MY_IP/'$MY_IP'/g' /etc/hosts 
            hostname hss-1 
            run_hss 
 
SPGW:  
      type: OS::Nova::Server 
      properties:  
         image: epc-3 
         flavor: EPC.med 
         key_name: cloudkey 
         networks: [ {network: PUBLIC_NETWORK } ] 
         user_data: 
            str_replace:  
               template: | 
                  #!/bin/bash 
                  MY_IP=`ip addr show dev eth0 | awk -F'[ /]*' '/inet /{print $3}'` 
                  sed -i 's#MY_IP_S1#'$MY_IP'/24#g' spgw.conf 
                  sed -i 's#MY_IP#'$MY_IP'/24#g' spgw.conf 
                  run_spgw 
 
   MME:  
      type: OS::Nova::Server 
      properties:  
         image: epc-3 
         flavor: EPC.med 
         key_name: cloudkey 
         networks: [ {network: PUBLIC_NETWORK } ] 
         user_data: 
            str_replace:  
               template: | 
                  #!/bin/bash 
                  MY_IP=`ip addr show dev eth0 | awk -F'[ /]*' '/inet /{print $3}'` 
                  sed -i 's/MY_IP/'$MY_IP'/g' /etc/hosts 
                  sed -i 's/HSS_IP/'$HSS_IP'/g' /etc/hosts 
                 sed -i 's#MY_IP_S11#'$SPGW_IP'/24#g' mme.conf 
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                  sed -i 's#MY_IP_S1#'$MY_IP'/24#g' mme.conf 
                  sed -i 's#MY_IP#'$MY_IP'/24#g' mme.conf 
                  hostname mme-1 
                  run_mme 
               params: 
                  $HSS_IP: { get_attr: [HSS, first_address] } 
                  $SPGW_IP: { get_attr: [SPGW, first_address] } 
 
   ENB: 
      type: OS::Nova::Server 
      properties: 
         flavor: eNB.med 
         image: enb-usrp 
         key_name: cloudkey 
         networks: [{ network: PUBLIC_NETWORK }] 
         user_data: 
            str_replace: 
               template: | 
                  #!/bin/bash -v 
                  MY_IP=`ip addr show dev eth0 | awk -F'[ /]*' '/inet /{print $3}'`/24 
                  sed -i 's#MY_IP_ADDRESS_REPLACE#'$MY_IP'#g' enb.conf 
                  sed -i 's#MME_IP_ADDRESS_REPLACE#$MME_IP#g' enb.conf 
                  ./lte-softmodem -O enb.conf  
 
               params: 
                  $MME_IP: { get_attr: [MME, first_address] } 

A Heat template typically contains several sections: 

 heat_template_version is used to specify the version of the template syntax that is 
used.  

 description is used to provide a description of what the template does. 

 parameters provides input parameters which allow users to customize a template 
during deployment. 

 resources is the most important section in a template. It defines compute instances 
together with the information related to which flavour, image, public key and 
network to use for these instances. In this example, three instances are defined: HSS, 
EPC, and eNB. 

Please refer to [53] for more information regarding HOT syntax. 

3.2.3 Deployment of OAI-based vEPC Services 

In order to satisfy all the needs of the operators to come up with an NFV architecture that 
will meet all the requirements for virtualizing the mobile packet core, it is imperative that we 
will first present first the requirements of the mobile services and applications that will be 
running on the top of the mobile packet core. 
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Figure 27. Evolved Packet Core Network components 

The user equipment connects to the network over the uU interface to the eNB. The 
connection terminates on the PDN Gateway. The MME, HSS and SGW are other important 
components in establishing the connection and providing subscriber service and make up 
the evolved packet core. 

 

Figure 28. OSI layers and protocols used on the control plane between the UE and MME of 
an LTE network 

The process of attaching an UE to an LTE network has to take place in five phases involving 
six of the functional nodes from the network. The five phases are the following: 

 UE Identity acquisition, in this phase the UE identifies itself to the network by 
communicating its International Mobile Subscriber Identity (IMSI) identifier, another 
identifier used, based on the network implementation, is the Globally Unique 
Temporary Identifier (GUTI). IMSI is a unique ID that globally identifies a mobile 
subscriber. It is composed of two parts, namely PLMN ID and Mobile Subscription 
Identification Number (MSIN). A PLMN ID is an ID that globally identifies a mobile 
operator (is a combination of MCC and MNC). MSIN is a unique ID that identifies a 
mobile subscriber within a mobile operator. In contrary, GUTI comes as a security 
improve of the IMSI identification in the radio link connection of the mobile 
subscriber. Unlike IMSI, a GUTI is not permanent, but changed into a new value 
whenever generated. When the process of initial attach for an UE to an LTE network 
takes place, it sends its IMSI to the network for authentication to be identified. Once 
connection is established, the MME delivers a GUTI value through Attachment Accept 
message to the UE. This value is then can be used as its ID instead of IMSI when it 
reattaches to the network. 

 Authentication, in this phase the mutual authentication is realized by the EPS-AKA 
method. This method supposes that all the keys that are needed for various security 
mechanism are derived from an intermediate key which is viewed as the local master 
key for the subscriber in contrast to the permanent master key. Inside the network 
side, the local master key is stored in the MME and the permanent master key is 
stored in the AuC. This approach provides the following advantages: 
o It enables cryptographic key separation. 
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o The system is improved by providing key freshness and it is possible to renew the 
keys used in security mechanism. 

 Non-Access Stratum Security Setup 

 Localization Update, in this phase the MME informs the HSS that it manages the UE 
and recovers the services to which the UE has subscription. 

 EPS Session Establishment, in this phase the bearer is realized based on the QCI. 

All the above detailed phases can be identified in the Figure 29. 

 

Figure 29. The UE attachment phases 

In an NFV architecture, two models need to be taken into account: 

 SGW, PGW, MME and HSS collocated in the same data center; 

 MME + SGSN (WCDMA) located in the regional data centers and PGW or SGW + HSS 
+ IP services located in the core or the national data center. 

In the second case where one or more components may be distributed, the underlying 
infrastructure design including OpenStack will be impacted. This is referred to as Distributed 
NFV. If only some 3GPP functions are placed in the regions/ edge of the network, we may 
choose to deploy on compute nodes in that region as long as the latency is below the latency 
threshold of OpenStack and application control plane. Those compute nodes may be 
integrated with storage and deployed as Hyper Converged Infrastructure. In some cases, a 
smaller deployment of OpenStack may be used in these regions. This raises a lot of design 
questions regarding the shared identity infrastructure (referring to the OpenStack identity 
Service (Keystone)) and image service (referring to the OpenStack Image Service (Glance)). 

Virtual Private Clouds may be deployed in many different ways: 

 Dedicated Private Cloud for VPC; 

 Collocated with other VNFs in operators private cloud; 

 Hosted in public clouds (IaaS, Platform as a Service (PaaS) or Virtual Network 
Function as a Servic (VNFaaS)); 

 Hosted in vendors private cloud and offered as a service. 

VNF vendors tend to bundle combinations of the above services based on functional 
requirements of operators. These combinations could lead to varying deployment models all 
the way from the number of VMs to High Availability (HA), scale, traffic mix, and throughput 
requirements. 
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Depending on the type of services being deployed, the VNFs may be deployed in one of the 
following ways: 

 Lightweight deployment using an All-in-One OpenStack deployment that typically 
runs on a single server: 
o If multiple functions are required, multiple servers are deployed, each running 

the VNF. This deployment scenario can be observed in Figure 30. 

 

Figure 30. Lightweight  All-in-One OpenStack Virtual Private Cloud deployment for vEPC 

o Runs on blade or rack-mount servers; 
o Suitable for cloud deployment on private, public or hybrid-clouds; 

 Running on pre-bundled, fixed configuration blade-servers over KVM hypervisor; 

 Full HA OpenStack Platform deployment comprising of multiple servers. 

The Internet facing interface of the EPC network is referred as SGi in 3GPP specifications. As 
a packet leaves the gateway (PGW), it has no longer a context about the subscriber. It is a 
pure IP packet. IP services such as DPI, Parental Control, Video Optimization, Web 
Optimization, URL filtering/enrichment, Firewall and NAT are applied to the IP packets as 
they leave the mobile network towards the Internet. Since these services reside on the SGi 
interface, they are commonly referred to as GI-LAN services. Such services are typically 
deployed in some combinations and form a logical chain. 

In most of the mobile networks, there is some variation of GI-LAN service, but restricted to 
APN granularity, rather than subscriber level. This is because traditional GI-LAN service 
requires physical connections to form the chain. In today’s solutions, SDN is used to create 
logical chains between GI-LAN elements. In this case, the actual application runs in a virtual 
environment typically on top of an OpenStack environment, rather than purpose-specific 
appliances. This approach offers a huge advantage because applications can scale based on 
demand and conversely shrink. A typical example of this would be when people return from 
work and turn on their TV or Over-The-Top (OTT) video, this creates a surge in traffic and 
creates a demand on GI-LAN elements. 

If we analyze the situation from the infrastructure point of view, GI-LAN will closely resemble 
the vEPC VNF, it will have the same requirements of orchestrations, VNF lifecycle 
management, performance and security. Alongside those common requirements as 
mentioned earlier, GI-LAN will require metering capability to determine the resource usage, 
to be able to grow and shrink upon demand. This requirement is aiming at the future 
capability of growing and shrinking automatically. Another requirement for the GI-LAN is 
regarding the compatibility of the OpenStack with the Service Function Chaining that will 
have to support. Service Function Chaining encapsulation can leverage Network Service 
Header or Multi-Protocol Label Switching (MPLS). 
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vEPC components such as SGW and PGW may be placed either centrally at the core data 
center or regionally to serve the local cell sites or exit points. In LTE, the SGW selection is 
typically based on the network topology as well as the location of the UE (Tracking Area 
Code, TAC). The subscriber connection terminates on the PGW and the decision of which 
PGW to assign to the subscriber depends on the subscription context including the 
information related to the Access Point Name (APN), among the others. vEPC enables mobile 
network operators and enablers  to use a virtual infrastructure to host voice and data 
services, rather than using an infrastructure built with physical functions only. 

Network slicing or network multi-tenancy, being a capability also enabled by vEPC, pose a 
prerequisite for providing multiple services simultaneously. By using the vEPC approach, the 
mobile network operators (MNOs) can reduce OPEX and CAPEX, while speeding up delivery 
and enabling on-demand scalability. 

In a vEPC, most of the above-mentioned functions may be virtualized, including PGW, SGW, 
MME, PCRF, FW, Router, DPI, Switches and LB. This case is typically for the operators who 
are building a new mobile packet core or upgrading and adopt virtualization approach. 

The approach to deploy vEPC is based on NFV technology, where vEPC is seen as a NFV use 
case. However, within a general Virtual Packet Core (VPC) case, the MNOs may have more 
specific use cases depending on what services they provide. 

The vEPC solution is based on a NFV-SDN Architecture, all entities (MME, HSS, PGW, SGW 
and PCF) being implemented in this case with support of VMs (or containers), instantiated 
through a Controller node (OpenStack deployment). The VMs are then instantiated and 
managed from Cloud, based on the ETSI MANO approach with resources for the VNF given 
by the NFVI. This approach is straightforward in order to implement the functions of a classic 
EPC, so each NE can be implemented as a single or multiple VMs, as a multi-tenancy 
implementation. 

 

Figure 31. vEPC solution is based on a NFV-SDN Architecture 

OpenAirInterface (OAI) as is presented in [2] is an open source Rel-10/Rel-14 3GPP 
compliant reference implementation of EPC and E-UTRAN that runs on general purpose 
computing platform. The software is capable of interface with commodity lab RF SDR 
platforms for OTA experiments with commercial devices. The potential of OAI can be 
exploited within the R&D SliceNet scope for open vEPC core network, integrated into a 
scenario combining the virtualized RAN and Core Infrastructure, which will be then applied 
to the SliceNet use-cases and integrated within the SliceNet architecture. 
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In the context of OPNFV project, OAI offers the potential to test OPNFV infrastructure within 
the framework of Functest project [39], offering several open source 3GPP 4G/5G VNFs, for 
example, EPC (HSS, MME, S/PGW), BBU, OAISIM (OAI Simulator for 3GPP RAN), RRU, and UE. 
The communication between the different VNFs within OAI can happen over standard IP 
Communication interface thus avoiding the need of special purpose servers/RF equipment 
for testing OAI. 

The current plan for OAI is to integrate OAI EPC as a VNF within OPNFV Functest as a part of 
Danube, the fourth OPNFV release, as described in [40].  

OAI community is working in disaggregating OAI EPC into HSS, MME, SGW, and PGW. All the 
different EPC components will run in their own virtual environments and be chained 
together with service orchestrator to provide EPC functionality. 

 

Figure 32. OAI as VNF within OPNFV [38] 

OAI can provide several interesting use cases around 4G/5G cellular deployment within 
OPNFV. The OAI community is also working towards creating SDN interfaces which can be 
leveraged for more complex test cases involving SDN controllers such as ODL and ONOS M-
CORD19. 

OAI integration in the KVM4NFV project [41] shows that the RAN virtualization may make 
higher demand on computing capability and the hypervisors are not designed or targeted for 
the specific Telco NFVI requirements, mainly due to the performance features. The Pharos 
project [42] is developing an OPNFV lab infrastructure integrating OAI as VNF, managed by 
Juju which opens up interesting possibilities for further integration and testing within the 
Pharos test labs.  

The OAI Community also aims to work closely with ETSI NFV/ETSI MEC ISG, for example in 
terms of providing PoCs demonstrating key concepts of these work groups.  

In the future, OAI continues to work in close collaboration with OPNFV communities for joint 
demonstration and for working towards an end-to-end ETSI NFV platform based on open 
source tools. OAI is also working to develop its core software for future 3GPP releases 
towards 5G. Furthermore, OAI testing within OPNFV Pharos Labs using OPNFV Functest 
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 Mobile CORD, https://wiki.opencord.org/display/CORD/Mobile+CORD 
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provides valuable feedback to the OAI community. OAI integration with OPNFV in 
conjunction with other open source projects has the potential to create an end-to-end 
reference platform built on open source software that can be potentially used by 
3GPP/ETSI/NGMN for PoC and demonstration. 

3.2.4 Deployment of Athonet-based vEPC Services 

Athonet [54] provides a complete software-based mobile packet core solution (EPC) which 
also includes a HSS, Voice-over-LTE (IMS for VoLTE), and LTE Broadcast (eMBMS). The 
industry's most efficient mobile core solution that can be deployed in fully virtualised 
environments (NFV), enterprise data centres or on standard off-the-shelf servers. It can be 
used in highly distributed deployments in Tier 1 Mobile Operators and OTE has deployed it in 
its labAthonet vEPC architecture. 

Athonet’s LTE mobile core complies with the default 3GPP interfaces as shown in the figure 
below.  

 

Figure 33. Athonet vEPC architecture [52] 

The EPC, which contains the core network nodes MME, SGW (S-GW), PGW (P-GW), HSS, 
PCRF, connects externally via the following 3GPP compliant interfaces: 

 S1: connects EPC to access nodes 

 S5/S8: connects SGW and PGW 

 S6a: connects MME and HSS for the authentication of user access and profiling 

 Gx: connects PCRF and PGW and enables the PCRF to prioritize certain type of data 

 Rx: connects the PCRF to external AF (application function such as IMS)  

 Gx: connects PCRF and PGW and enables the PCRF to prioritize certain type of data 
traffic  
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 Gy: for online charging 

 Bx: FTP(S) based interface which allows billing systems 

 Cx: Diameter interface 

 SGi: connects the PGW to Intranet and Internet 

MME 

The MME supports the following features: 

 S1-MME: it is the interface to connect the MME to eNBs 

 S6a: Diameter interface for authorization of the users 

SGW 

The SGW follows 3GPP specifications Rel-12 and supports the following: 

 S1-U: GTPv1-U interface for connecting the SGW to the eNBs 

 S5/S8: GTPv2 interface to connect SGW and PGW 

 X2 handover 

 S1 Release procedure 

PGW 

The PGW follows 3GPP specifications Rel-12 and supports the following features:  

 SGi: connects the PGW to Intranet and Internet 

 S5/S8: GTP2v interface to connect SGW and PGW   

 Gx: connects PCRF and PGW and enables PCRF to prioritize traffic 

 VRF support 

PCRF 

The PCRF also follows Rel-12 and supports the features: 

 Rx: to connect PCRF to external application function 

 Create/delete bearers 

 Subscription repository 

 Policy based services 

HSS 

The HSS follows also 3GPP Rel-12 specifications and supports the following features: 

 S6a: Diameter interface for transfer transcription 

 USIM credentials 

 EPC user profile management 

3.2.4.1 QoS Settings 

The QoS settings can be done according to QCI, Gradual Bit Rate (GBR), Maximum Bit Rate 
(MBR) and Priority values. 

3.2.4.2 System Management 

Athonet has implemented Element Management System (EMS) for the core management 
system. It can manage system configuration and 3GPP nodes, user management and QoS 
profile management, detailed user activity and secure access. 
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Integration points are available for connecting the vEPC to third parties: 

 SNMP for KPI and performance monitoring 

 SNMP traps for alarm monitoring 

 RESTful API for user provisioning, profile assignment, activating and de-activating 
users 

Supported protocols, interfaces and standards 

 Architecture enhancements for non-3GPP access, according to 3GPP 23.402 

 Intra-domain connection of RAN nodes to multiple CN nodes according to 3GPP 
23.236 

 Network sharing according to 3GPP 23.251 

 Stream Control Transmission Protocol (SCTP) according to RFC 4960 

 User Datagram Protocol according to RFC 768 

 Internet Protocol according to RFC 791 

 Transmission Control Protocol according to RFC 793 

 Internet Protocol version 6 (IPv6) specification according to RFC 2460 

 GTP-U based interfaces according to 3GPP 29.060-29.281 

 QoS architecture according to 3GPP 23.107 

 Diameter interfaces according to 3GPP 29.230 

 S1-AP according to 3GPP 36.413 

 S1 data transport according to 3GPP 36.414 

 NAS-EPS according to 3GPP 24.301 

 Gy interface according to 3GPP 32.299 and RFC 4006 

 Bx interface according to 3GPP 32.251, 3GPP 32.297, 3GPP 32.298 

 Rx interface according to 3GPP 23.203 

 Gx interface according to according to 3GPP 29.212 

 Cx interface according to 3GPP 29.228-9 

3.3 Manual Deployment of 5G Virtualised Infrastructure through Linux 
Utility 

In this subsection, we deploy a simplified version of C-RAN (as shown in Figure 20) by relying 
on different Linux utilities such as LXC, LXD, KVM and Docker. In this case, instead of 
deploying HSS, MME, and SGW/PGW in separate entities, we install all the EPC 
functionalities on one container/virtual machine. 

3.3.1 LXC 

Linux Containers (LXC) [43] is an operating-system-level virtualization method for running 
multiple isolated Linux systems (containers) on a control host. Linux containers can offer an 
environment as close as possible to a standard Linux installation without the need for a 
separate kernel and all the hardware simulation.  

The following paragraph will briefly go through the main steps to install LXC and use LXC to 
deploy a C-RAN testbed based on OAI-RAN and OAI-CN.  

Step 1: LXC installation  

To install LXC and the required packages, execute the following command: 
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$sudo apt-get install lxc lxc-template bridge-utils 

Before creating the containers, we need to configure the network for the containers which 
then allow to set up different private networks (please refer to [44] for more information).   

Step 2: Creating a container 

To create a new container, we use “lxc-create” command. For example, the following 
command is to create a new container namely bbu_lxc based on Ubuntu 16.04 (64-bit). 

$sudo lxc-create -n bbu_lxc -t ubuntu  -- -r xenial -a amd64 

To deploy the C-RAN testbed, three containers are needed for deploying EPC, BBU and RRU. 

$sudo lxc-create -n oai-epc -t ubuntu  -- -r xenial -a amd64 
$sudo lxc-create -n oai-bbu -t ubuntu  -- -r xenial -a amd64 
$sudo lxc-create -n oai-rru -t ubuntu  -- -r xenial -a amd64 

Step 3: OAI installation 

After creating the containers, we start these containers and then use these containers to 
deploy OAI software. 

We first start the containers by using the following commands: 

$sudo lxc-start -n oai-epc 
$sudo lxc-start -n oai-bbu 
$sudo lxc-start -n oai-rru 

After that, we can see the list of deployed containers by using “lxc-ls” command: 

 

Figure 34. List of deployed LXC containers 

In order to deploy the BBU/RRU functionality, we login to oai-bbu/oai-rru container and 
follow the installation guide from [2].  

$sudo lxc-console -n oai-bbu 

For more details, we first get the OAI source code from OAI Git repository20.  

$git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git 
$cd openairinterface5g 
$git checkout develop 

We then build OAI as a BBU by using the following commands: 

$cd openairinterface5g 
$source oaienv 
$cd cmake_targets 
$./build_oai -I 
# install SW packages from internet 
$./cmake_targets/build_oai -c -x -t ETHERNET -w USRP --eNB 

                                                      
20

 https://gitlab.eurecom.fr/oai/openairinterface5g/ 

https://gitlab.eurecom.fr/oai/openairinterface5g.git
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Similarly, we install OAI-EPC on top of oai-epc container by following the installation guide 
from [4]. The BBU then needs to be configured to talk with the EPC and RRU. The same step 
should also be done for EPC and RRU.  Please refer to [2] [4] for more information on OAI 
installation. 

Step 4: USB-passthrough 

Similar to the C-RAN deployment on top of OpenStack, USB-passthrough needs to be done 
to allow the radio card to be attached to the oai-rru container. One possible solution is to 
modify the LXC configuration file of the corresponding container, for example, as following  

lxc.mount.entry = /dev/bus/usb/XXX dev/bus/usb/XXX  none bind,optional,create=dir 
# USB Dongle for weather station 
lxc.cgroup.devices.allow = c YYY:* rwm 

Where XXX is the bus ID where the USB device is attached and YYY is the character device ID.  

Step 5: Launch the testbed 

We first access to oai-cn container and launch the HSS, MME and SGW/PGW accordingly. 

$cd openair-cn/scripts 
$./run_hss 
$./run_mme 
$./run_spgw 

We then access to oai-rru and oai-bbu to launch RRU and BBU functionality. 

For example, the following commands are to launch BBU: 

$cd openairinterface5g/cmake_targets/lte_build_oai/build/ 
$sudo ./lte-softmodem -O 
/home/ubuntu/openair5g/openairinterface5g/targets/PROJECTS/GENERIC-LTE- 
EPC/CONF/rrc.band7.tm1.usrpb210.conf 

After this step, a fully functional mobile network is deployed. We can see from MME that the 
deployed BBU (eNB) has been connected to the core network, however, without any 
connected UE. 

 

Figure 35. MME log without any connected UE 

The deployed network then hosts a COTS UE (see Figure 36 and Figure 37). Again, we can 
clearly see that the UE is attached to OpenAirInterface network.  
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Figure 36. MME log with a connected UE 

 

Figure 37. UE connected to the deployed network using LXC (OpenAirInterface) 

3.3.2 LXD 

LXD [45] is a container hypervisor providing a REST API to manage LXC containers. In fact, 
LXD is building on top of LXC to provide a new, better user experience.  

Using LXD to deploy a C-RAN testbed, as LXC, similar steps are executed to install LXD, 
configure LXD environment, create LXC containers for EPC/BBU/RRU and install OAI software 
on these containers. From a technical standpoint, the following steps are executed. 

Step 1: Install LXD 

$sudo apt update 
$sudo apt install lxd 

Step 2: Setup LXD and configure LXD environment 

We first execute “sudo lxd init” command and then follow the instruction to provide 
additional information related to the network configuration.  

Step 3: Launch a container 

The following commands create three LXC containers for oai-epc, oai-bbu and oai-rru.   

$lxc launch ubuntu:16.04 oai-epc 
$lxc launch ubuntu:16.04 oai-bbu 
$lxc launch ubuntu:16.04 oai-rru 

We can check the active containers by using “lxc list” command. 

https://linuxcontainers.org/lxd
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Figure 38. List of active LXC containers (created by LXD) 

Again, OAI functionality is deployed on these LXC containers similar to that in the subsection 
3.3.1. 

Regarding USB-passthrough, LXD version 2.5 or higher is required. To achieve that, we install 
LXD version 2.5 from the source code21 and deploy this version to the host where we will 
attach the RF card via USB3.0 [51]. We then execute the following command from the 
selected host to attach the USB device to the oai-rru container. 

$sudo lxc config device add oai-rru 5G_card usb vendorid=2500 productid=0020 

Where “5G_card ” is the name of the RF card. The information regarding the vendorid and 
productid can be found by using “lsusb” command as follows: 

 

Figure 39. Vendor ID and product ID of the RF card 

Finally, we can launch all the entities in a similar way as mentioned in the previous section 
and attach a COTS UE to the deployed mobile network.  

3.3.3 KVM 

Unlike LXC, KVM (Kernel-based Virtual Machine) [46] virtualization requires a separate 
kernel instance and dedicated resources to run. KVM, categorized as full-virtualized type, 
abstracts hardware and operating system by emulation or pass-through hardware. KVM is a 
favourite hypervisor of the OpenStack project and is used in most OpenStack distributions. 
However, with the release of LXC 2.0 and LXD, LXC/LXD increasingly gains the support from 
OpenStack. In comparison with KVM, LXC allows to reduce the overhead, which in turn 
provide the capability to support a large number of containers and allow delivering bare 
metal performance. In our case, as mentioned earlier, LXC may be suitable for deploying RRU 
and eNB (in a typical LTE scenario) which need to perform as close as possible to bare-metal 
speeds. On the other hand, KVM may be more suitable when some kernel requirements are 
taken into account. It is worthy to note that for the moment how to attach the RF to a KVM 
instance via USB-passthrough is still an open issue. Both KVM and LXC/LXD are supported by 
OpenStack. 

Here are some quick steps to deploy OAI-based 5G services under KVM. 

Step 1: Install KVM 
                                                      
21

 https://github.com/lxc/lxd 
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$sudo apt-get install qemu-kvm libvirt-bin bridge-utils virtinst 

Step 2: After configuring networking (by relying on the bridged mechanism) and adding user 
to the libvirtd group, create a KVM instance by using the following commands: 

$sudo virt-install -n web_devel -r 512 --disk 
path=/var/lib/libvirt/images/web_devel.img,bus=virtio,size=4 -c  
ubuntu-16.04-i386.iso --network network=default,model=virtio  
--graphics vnc,listen=0.0.0.0 --noautoconsole -v 

Please refer to [47] for more information regarding KVM installation under Ubuntu.  

3.3.4 Docker  

Docker [48] similar to LXC is relied on the Linux kernel features such as cgroups, namespaces 
and apparmor to create a virtualized isolated environment. As a result, the performance of 
both LXC and Docker is very similar. Docker typically acts as an application container which 
packages the application and all its dependencies in a virtual container that can run on any 
Linux server that supports the container runtime environment. In other words, Docker 
containers typically run only a single process per container.  

Here are some basic steps to install Docker (Community Edition - CE) e.g., using the Docker 
repository [49]. 

Step 1: Setup the Docker repository  

$sudo apt-get update 
$sudo apt-get install apt-transport-https ca-certificates curl   software-properties-common 
$curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - 
$sudo add-apt-repository \ 
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ 
   $(lsb_release -cs) \ 
   Stable" 

Step 2: install Docker CE 

To install the latest version of Docker, launch the following commands: 

$sudo apt-get update 
$sudo apt-get install docker-ce 

To install a specific version of Docker CE, list the available versions in the repo, then select 
and install: 

$apt-cache madison docker-ce 
$sudo apt-get install docker-ce=<VERSION> 

Step 3: Verify that Docker CE is installed correctly by running the hello-world image. 

$sudo docker run hello-world 

Step 4: Deploy OAI functionalities (EPC, eNB/BBU, RRU) as follows: 

We first create a network from which static IP addresses are used to assign to the 
containers.  

$sudo docker network create --driver=bridge --subnet=172.19.0.0/24 --gateway=172.19.0.1 
oainet 
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$sudo docker run --ip=172.19.0.11 --net=oainet  -t -i --privileged --rm --name="oai5g_enb" -v 
/dev/bus/usb:/dev/bus/usb  ubuntu:14.04 

The above command will open a shell inside Docker container, which then allows you to 
install OAI eNB/BBU as mentioned in the previous section.  

Similarly, a container for RRU is created with the following command: 

$sudo docker run  --ip=172.19.0.12 --net=oainet -t -i --privileged --rm --name="oai5g_rru" -v 
/dev/bus/usb:/dev/bus/usb ubuntu:14.04 

It is noted that, for EPC, we need to load GTP module in the Docker container, the following 
command is used: 

$sudo docker run --ip=172.19.0.9 --net=oainet -t -i --rm -P --privileged --cap-add=ALL   -v  
/dev:/dev  -v  /lib/modules:/lib/modules  -h "yang" --name="oai_epc" ubuntu:14.04  
/bin/bash 

3.4 Other Automated Deployment Tools 

A part from the above-mentioned automated deployment tools, Open Baton and Open 
Source MANO (OSM) are also potential candidate for the virtualized 5G infrastructure 
deployment.  

3.4.1 Open Baton 

Open Baton [13] is an open source platform, which provides a standard aligned 
implementation of the ETSI NFV MANO specification. The architecture of Open Baton is 
presented in Figure 40. Open Baton is easily extensible. It integrates with OpenStack as main 
VIM implementation. Additionally, it provides a plugin mechanism for supporting additional 
VIM types. For more details, beside the NFVO which is fully compliant with ETSI MANO, 
Open Baton supports [50]: (i) A generic VNFM, which can be easily extended for supporting 
different type of VNFs; (ii) An Autoscaling Engine (AE system) which can be used for 
automatic runtime scaling operation of VNFs; (iii) A Fault Management System (FM) for 
automatic management of faults occuring at the NFVI/VNF level; (iv) a Network Slicing 
Engine (NSE) to ensure a specific QoS for a Network Slice Instance (NSI) or Network Slice 
Subnet Instance (NSSI); (vi) A set of libraries  for integrating new network services e.g., for 
building your own VNFMs; and (vii) A dashboard for easily managing all the VNFs.   
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Figure 40. Open Baton architecture [50] 

3.4.2 OSM  

 

Figure 41. OSM mapping to ETSI NFV MANO [28] 

Open Source MANO (OSM) [11][28] is an ETSI-hosted project to develop an Open Source 
NFV management and orchestration (MANO) software stack aligned with ETSI NFV which is 
to  enhances interoperability with other components (VNFs, VIMs and SDN controllers), and 
create a plug-in framework to make platform easy to extend and maintain. OSM is published 
under Apache v2 license, integrates existing open source modules from Telefonica’s 
OpenMANO project, Canonical’s Juju Charms and Rift.io orchestrator. 
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Figure 41 shows the approximate mapping of scope between the OSM components and the 
ETSI NFV MANO logical view. OSM scope covers both design-time and run-time aspects to 
deliver a production-quality MANO stack. For more information regarding OSM, please refer 
to [11] [28]. 
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4 A Deployment Example for the SliceNet Slicing-Friendly 
Infrastructure  

Figure 42 shows a deployment example for the SliceNet Infrastructure which is based on the 
OAI, Mosaic-5G FlexRAN and LL-MEC platforms. This infrastructure offers the following 
features: 

 A RAN runtime slicing system, which enables the dynamic creation of slices with QoS 
support, while providing functional and resource isolation among different slices 
(e.g., verticals); 

 LL-MEC platform leverages the SDN principle to separate user plane processing from 
its control logics at the edge and core networks to enable user plane programmability 
as per slice requirements; 

 Dedicated core networks on per slice basis enabling isolation among different slice.    

 

Figure 42. Deployment Example of a SliceNet RAN-Core Slicing-Friendly Infrastructure 
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5 Conclusions 

The main objective of this document is to present the activities related to the design and 
prototyping of a virtualized 5G RAN-Core infrastructure to achieve an end-to-end slicing-
friendly infrastructure. The proposed SliceNet RAN-Core infrastructure leverages OAI and 
Mosaic5G open-source platforms to provide a flexible platform for the dynamic control and 
allocation of radio and core network resources (including radio spectrum and resource 
blocks) and services in response to the needs of the deployed services. The design, 
implementation and validation of a prototype for integrated network programmability for 
the  RAN and core network is presented with different flavours.  

 In addition, the current document serves as an in-depth analysis of the different tools for 
deploying a virtualized 5G infrastructure from the access to the core network in a holistic 
manner. Lastly, several technical use cases have been prototyped with empirical results in 
order to validate the essential technical approaches proposed to enable a slicing-friendly 
RAN-Core infrastructure. 
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