

Deliverable 3.2

Design and Prototyping of SliceNet Virtualised 5G RAN-Core
Infrastructure

Editor: EURECOM

Deliverable nature: Report (R)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery date: 30/04/2018

Actual delivery date: 30/05/2018

Suggested readers: Infrastructure providers; Communication service providers,
Digital service providers; Network operators; Vertical industries

Version: 1.0

Total number of pages: 76

Keywords: 5G, RAN, Core, Infrastructure, OpenAirInterface, Mosaic5G,
Network Slicing, Virtualisation

Abstract

This document reports all the activities related to the design and prototyping of a virtualized
5G Radio Access Network (RAN)-Core infrastructure, as part of the SliceNet end-to-end
slicing-friendly infrastructure. A slice-friendly RAN-Core infrastructure leverages two open
source ecosystems, namely, the OpenAirInterface (OAI) and Mosaic5G. OAI is an open-
source, software-based, standard-compliant LTE ecosystem for prototyping 5G Mobile
Networks. Building on top of OAI, Mosaic5G serves as an open-source lightweight 5G service
delivery platform. In order to provide a virtualized infrastructure deployment that covers the
SliceNet use cases, different methods for deploying a virtualised 5G infrastructure are
highlighted via several examples for the deployment of OAI-based 5G services.

Ref. Ares(2018)2799852 - 30/05/2018

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 2 of (76) © SliceNet consortium 2018

Disclaimer

This document contains material, which is the copyright of certain SliceNet consortium
parties, and may not be reproduced or copied without permission.

In case of Public (PU):

All SliceNet consortium parties have agreed to full publication of this document.

In case of Restricted to Programme (PP):

All SliceNet consortium parties have agreed to make this document available on request to
other framework programme participants.

In case of Restricted to Group (RE):

All SliceNet consortium parties have agreed to full publication of this document. However
this document is written for being used by <organisation / other project / company etc.> as
<a contribution to standardisation / material for consideration in product development
etc.>.

In case of Consortium confidential (CO):

The information contained in this document is the proprietary confidential information of
the SliceNet consortium and may not be disclosed except in accordance with the consortium
agreement.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the SliceNet consortium as a whole, nor a certain part of the SliceNet consortium,
warrant that the information contained in this document is capable of use, nor that use of
the information is free from risk, accepting no liability for loss or damage suffered by any
person using this information.

The EC flag in this document is owned by the European Commission and the 5G PPP logo is
owned by the 5G PPP initiative. The use of the flag and the 5G PPP logo reflects that SliceNet
receives funding from the European Commission, integrated in its 5G PPP initiative. Apart
from this, the European Commission or the 5G PPP initiative have no responsibility for the
content.

The research leading to these results has received funding from the European Union Horizon
2020 Programme under grant agreement number H2020-ICT-2014-2/671672.

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 3 of (76)

Impressum

[Full project title] End-to-End Cognitive Network Slicing and Slice Management Framework in
Virtualised Multi-Domain, Multi-Tenant 5G Networks

[Short project title] SliceNet

[Number and title of work-package] WP3 – 5G Integrated Multi-Domain Slicing-Friendly
Infrastructure

[Number and title of task] T3.2 Virtualised 5G RAN - CN Infrastructure

[Document title] Design and Prototyping of SliceNet Virtualised 5G RAN-Core Infrastructure

[Editor: Name, company] Navid Nikaein, EURECOM

[Work-package leader: Name, company] Navid Nikaein, Eurecom

[Estimation of PM spent on the Deliverable]

Copyright notice @ 2018 Participants in SliceNet project

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 4 of (76) © SliceNet consortium 2018

Executive Summary

The SliceNet RAN-Core infrastructure described in this document relies on two open-source
ecosystems, namely OpenAirInterface (OAI) and Mosaic5G. OAI wireless technology platform
is a flexible platform to enable an open 4G-5G ecosystem. The platform currently provides a
standard-compliant implementation of a subset of the 4G-5G systems spanning the full
protocol stack of 3GPP standards in both E-UTRAN and EPC. Founded on top of OAI,
Mosaic5G is an ecosystem of open-source platforms and use cases for 4G-5G research and
development (R&D), with the purpose of building a lightweight 5G service delivery platform
across reusable software components. Mosaic5G leverages on software-defined networking
(SDN), network function virtualization (NFV) and multi-access edge computing (MEC)
technology enablers to realize the service-oriented 5G vision. JOX, one of its main
components, is an event-driven orchestrator for the virtualized network that natively
supports Network Slicing. Together with a flexible and programmable platform for Software-
Defined Radio Access Networks and a Core network controller for Software-Defined Mobile
Networks, JOX provides the possibility to achieve seamless control and configuration of
physical and virtual resources for both the Core and the RAN segments. In order to achieve a
slice-friendly RAN-Core infrastructure, a wide range of research has been carried out to
cover different methods for deploying a virtualized 5G infrastructure from the access to the
core network.

Specifically, the current deliverable reports the following achievements:

 A 5G RAN-Core slicing-friendly infrastructure that could be extended to cover
different SliceNet use cases.

 The design of a programmable Data and Control Plane and its prototype through
OpenFlow and an SDN controller, as a part of OAI-CN and OAI-RAN implementation.

 Various methods for deploying a virtualized 5G infrastructure.

 Finally, different virtualized RAN-Core infrastructures, which have been prototyped
and tested with experimental empirical results, to achieve slicing-friendly
infrastructure.

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 5 of (76)

List of Authors

Company Author Contribution

ECOM Navid Nikaein; Tien Thinh
Nguyen; Xenofon Vasilakos

OpenAirInterface and Mosaic5G platforms,
Virtualized Slicing-Friendly 5G Infrastructure
through Juju; Deployment of OAI-based 5G
Services; Manual Deployment of 5G Virtualized
Infrastructure through Linux Utility; Abstract;
Executive Summary; Introduction; Conclusion

ORO Marius Iordache; Elena-
Madalina Oproiu

Deployment of OAI-based vEPC Services

OTE Georgios Agapiou Deployment of Athonet-based vEPC Services

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 6 of (76) © SliceNet consortium 2018

Table of Contents

Executive Summary .. 4

List of Authors .. 5

Table of Contents ... 6

List of Figures .. 8

List of Tables ... 10

Abbreviations ... 11

Definitions .. 17

1 Introduction.. 18

1.1 Objectives .. 18

1.2 Approach and Methodology .. 18

1.3 Document Structure .. 19

2 OpenAirInterface and Mosaic5G Platforms ... 20

2.1 An Overview of OpenAirInterface ... 20

2.1.1 Software Platforms ... 20

2.1.2 Hardware Platforms ... 22

2.2 An Overview of Mosaic5G ... 22

2.2.1 JOX in a Nutshell ... 23

2.2.2 FlexRAN in a Nutshell ... 24

2.2.3 LL-MEC in a Nutshell ... 25

3 Virtualised Slicing-Friendly 5G Infrastructure .. 27

3.1 Automated Deployment of 5G Virtualised Infrastructure through Juju 28

3.1.1 Juju Charms .. 29

3.1.2 Clouds ... 31

3.1.3 Controllers and Models .. 31

3.1.4 Technical Use Cases.. 32

3.1.4.1 Deploy of slice-friendly LTE Service Chain with Juju 33

3.1.4.1.1 Structure of a Charm (OAI-MME) .. 33

3.1.4.1.2 Juju Charm Deployment .. 37

3.1.4.2 Deploy LTE Service Chain for Network Slicing with JOX 38

3.2 Automated Deployment of 5G Virtualised Infrastructure through OpenStack and
Heat 45

3.2.1 Comparison of OpenStack Deployment Tools ... 45

3.2.2 Deployment of OAI-based 5G Services .. 47

3.2.2.1 Juju/OpenStack ... 47

3.2.2.2 Heat ... 53

3.2.3 Deployment of OAI-based vEPC Services ... 55

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 7 of (76)

3.2.4 Deployment of Athonet-based vEPC Services .. 61

3.2.4.1 QoS Settings .. 62

3.2.4.2 System Management .. 62

3.3 Manual Deployment of 5G Virtualised Infrastructure through Linux Utility 63

3.3.1 LXC .. 63

3.3.2 LXD .. 66

3.3.3 KVM .. 67

3.3.4 Docker .. 68

3.4 Other Automated Deployment Tools .. 69

3.4.1 Open Baton .. 69

3.4.2 OSM .. 70

4 A Deployment Example for the SliceNet Slicing-Friendly Infrastructure 72

5 Conclusions... 73

References .. 74

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 8 of (76) © SliceNet consortium 2018

List of Figures

Figure 1. OpenAirInterface software stack .. 21

Figure 2. Mosaic-5G.io ecosystem ... 23

Figure 3. JOX architecture .. 23

Figure 4. An example of a standard LTE chain with Domain Controllers 24

Figure 5. FlexRAN protocol ... 25

Figure 6. Different slice services in FlexRAN. ... 25

Figure 7. LL-MEC Platform [9] .. 26

Figure 8. Mapping the deployment tools to ETSI NFV architecture [6] 27

Figure 9. Juju - Open Source Generic VNFM [18] ... 28

Figure 10. An example of a Bundle from the Juju Store .. 29

Figure 11. Structure of a Charm (EPC Charm as an example) .. 30

Figure 12. C-RAN architecture and components. .. 32

Figure 13. Slice-Friendly virtualized 5G C-RAN and CORE Slice deployed by JuJu 33

Figure 14. JOX main components and properties .. 40

Figure 15. JOX architecture .. 41

Figure 16. JOX JSlice definition in JSON representation .. 42

Figure 17. Network slicing in JOX ... 43

Figure 18. Deployment time of VNF chains ... 44

Figure 19. OpenStack service overview [14] .. 45

Figure 20. C-RAN deployment on top of OpenStack .. 48

Figure 21. C-RAN testbed ... 49

Figure 22. Image of the C-RAN testbed .. 49

Figure 23. Machines commissioned in MAAS .. 50

Figure 24. C-RAN instances in OpenStack environment .. 52

Figure 25. UE connected to the deployed network – OpenAirInterface 53

Figure 26. UE connected to the deployed network ... 53

Figure 27. Evolved Packet Core Network components .. 56

Figure 28. OSI layers and protocols used on the control plane between the UE and MME of
an LTE network ... 56

Figure 29. The UE attachment phases ... 57

Figure 30. Lightweight All-in-One OpenStack Virtual Private Cloud deployment for vEPC 58

Figure 31. vEPC solution is based on a NFV-SDN Architecture .. 59

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 9 of (76)

Figure 32. OAI as VNF within OPNFV [38] .. 60

Figure 33. Athonet vEPC architecture [52]... 61

Figure 34. List of deployed LXC containers .. 64

Figure 35. MME log without any connected UE .. 65

Figure 36. MME log with a connected UE .. 66

Figure 37. UE connected to the deployed network using LXC (OpenAirInterface) 66

Figure 38. List of active LXC containers (created by LXD) .. 67

Figure 39. Vendor ID and product ID of the RF card .. 67

Figure 40. Open Baton architecture [50] ... 70

Figure 41. OSM mapping to ETSI NFV MANO [28] ... 70

Figure 42. Deployment Example of a SliceNet RAN-Core Slicing-Friendly Infrastructure 72

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 10 of (76) © SliceNet consortium 2018

List of Tables

Table 1. A summary comparison of OpenStack deployment tools .. 46

Table 2. Parameters of the C-RAN testbed networks .. 50

Table 3. Placement of OpenStack and other services at the machines of the testbed 51

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 11 of (76)

Abbreviations

3G Third Generation (mobile/cellular networks)

3GPP 3rd Generation Partnership Project

4G Fourth Generation (mobile/cellular networks)

5G Fifth Generation (mobile/cellular networks)

5G PPP 5G Infrastructure Public Private Partnership

AE Autoscaling Engine

AES Advance Encryption Standard

API Application Program Interface

AWS Amazon Web Services

BBU Baseband Unit

CAPEX Capital Expenditure

CIDR Classless Inter-Domain Routing

CN Core Network

COTS Commercial Off-the-Shelf

CPRI Common Public Radio Interface

CPU Central Processing Unit

CQI Channel Quality Indicator

C-RAN Centralized / Cloud Radio Access Network

DBaaS Database as a Service

DHCP Dynamic Host Configuration Protocol

DL Downlink

DNS Domain Name System

DPI Deep Packet Inspection

DRS Discovery Reference Signal

eMBMS Evolved Multimedia Broadcast Multicast Services

EPC Evolved Packet Core

EPS Evolved Packet System

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 12 of (76) © SliceNet consortium 2018

ETSI European Telecommunications Standards Institute

E-RAB E-UTRAN Radio Access Bearer

E-UTRAN Evolved UMTS Terrestrial Radio Access Network

FDD Frequency Division Duplex

FTP File Transfer Protocol

FM Fault Management System

GBR Gradual Bit Rate

GCE Google Compute Engine

GRE Generic Routing Encapsulation

GTP Generic Tunneling Protocol

GUI Graphical User Interface

HARQ Hybrid Automatic Repeat Request

HDD Hard Disk Drive

HSS Home Subscriber Server

IaaS Infrastructure-as-a-Service

IETF Internet Engineering Task Force

IMSI International Mobile Subscriber Identity

IoT Internet of Things

IP Internet Protocol

ISG Industry Specification Group

JCC JOX Clouds Controller

JSC JOX Slices Controller

JSlices JOX Network Slices

JSON JavaScript Object Notation

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

LL-MEC Low-Latency Mobile/Multi-access Edge Computing

LTE Long-Term Evolution

LXC Linux Container

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 13 of (76)

MaaS Metal as a Service

MAC Medium Access Control

MANO Management and Orchestration

MBR Maximum Bit Rate

MCC Mobile Country Code

MCCH Multicast Control Channel

MCH Multicast Channel

MEC Mobile/Multi-access Edge Computing

MIMO Multiple-Input and Multiple-Output

MME Mobility Management Entity

MNC Mobile Network Code

MNO Mobile Network Operator

MPLS Multi-Protocol Label Switching

MTCH Multicast Traffic Channel

NAS Non-Access Stratum

NAT Network Address Translation

NFV Network Function Virtualization

NFVI NFV Infrastructure

NFVO NFV orchestrator

NGCN Next Generation Core Network

NGFI Next Generation Fronthaul Interface

NR New Radio

NS Network Slice

NSE Network Slicing Engine

NSI Network Slice Instance

NSSI Network Slice Subnet Instance

OAI OpenAirInterface

OPEX Operational Expenditure

OSM Open Source MANO

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 14 of (76) © SliceNet consortium 2018

OSI Open System Interconnection

OVS Open vSwitch

OTA Over-The-Air

OTT Over-The-Top

PaaS Platform as a Service

PBCH Physical Broadcast Channel

PC Personal Computer

PCF Policy and Charging Function

PCFICH Physical Control Format Indicator Channel

PCRF Policy and Charging Rules Function

PDCCH Physical Downlink Control Channel

PDCP Packet Data Convergence Protocol

PDSCH Physical Downlink Shared Channel

PHICH Physical Hybrid-ARQ Indicator Channel

PLMN Public Land Mobile Network

PMCH Physical Multicast Channel

PMI Precoding Matrix Indicator

PNF Physical Network Function

PGW/P-GW Packet Data Network Gateway

PoC Proof of Concept

PRACH Physical Random Access Channel

PSS Primary Synchronization Signals

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

QAM Quadrature Amplitude Modulation

QCI QoS Class Identifier

QoE Quality of Experience

QoS Quality of Service

RAM Random-Access Memory

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 15 of (76)

RAN Radio Access Network

RAU Radio Aggregation Unit

RB Resource Block

RCC Radio Cloud Center

REST Representational State Transfer

RF Radio Frequency

RLC Radio Link Control

RRC Radio Resource Control

RRM Radio Resource Management

RRS Radio Remote System

RRU Remote Radio Unit

R&D Research and Development

S1AP S1 Application Protocol

SDN Software Defined Networking

SDK Software Development Kit

SGW/S-GW Serving Gateway

SGSN Serving GPRS Support Node

SISO Single-Input Single-Output

SLICENET End-to-End Cognitive Network Slicing and Slice Management Framework in
Virtualised Multi-Domain, Multi-Tenant 5G Networks

SNMP Simple Network Management Protocol

SRS Sounding Reference Signal

SSH Secure Shell

SSS Secondary Synchronization Signals

TAC Tracking Area Code

TDD Time Division Duplexing

UE User Equipment

UL Uplink

URL Uniform Resource Locator

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 16 of (76) © SliceNet consortium 2018

vEPC Virtual Evolved Packet Core

VIM Virtual Infrastructure Management

VLAN Virtual Local Area Network

VM Virtual Machine

VNA Virtualized Network Application

VNF Virtual Network Function

VNFaaS Virtual Network Function as a Service

VNFM Virtual Network Function Manager

vNIC Virtual Network Interface Card

VoLTE Voice-over-LTE

 VPC Virtual Packet Core

VxLAN Virtual Extensible LAN

X2AP X2 Application Protocol

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 17 of (76)

Definitions

5G Core segment Core Network consists of the entities that provide support for the
network features and telecommunication services. 5G core segment
primarily refers to the Evolved Packet Core (EPC) - the core network for
LTE, and the Next Generation Core Network (NGCN) in the 5G System
architecture.

5G RAN segment RAN segment consists of the entities that manage the resources of the
access network and provides the user with a mechanism to access the
network. It may comprise different types of accesses, e.g. 4G and 5G
NR-radio accesses. The RAN consists of a set of eNBs (in LTE) or gNBs
(in 5G system) connected to the Core.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 18 of (76) © SliceNet consortium 2018

1 Introduction

In the 5G era, Network Slicing becomes a key concept, as it allows multiple logical networks
to be created on top of a common shared physical infrastructure. According to 5G PPP [1],
Network Slicing is an end-to-end concept covering all network segments including RAN and
Core among the others.

To realize slice-friendly virtualized 5G RAN-CORE infrastructure, we will leverage the existing
platforms including OpenAirInterface and Mosaic-5G. OpenAirInterface (OAI) [2] is an open
source project, which is developed for the purpose of softwarizing mobile network functions
from the access network to the evolved packet core (EPC) of the mobile network. OAI is
generally divided into two parts: the EPC software that is known as OAI-CN; and the access-
network software that goes under the name of OAI-RAN. OAI currently provides a standard-
compliant implementation of a subset of Release 14 LTE for all the major components of the
core network, i.e. the Home Subscriber Server (HSS), the Mobility Management Entity
(MME), the Serving Gateway (SGW or S-GW) and the Packet Data Network (PDN) Gateway
(PGW or P-GW), as well as the access-network, i.e. the eNB, that can deployed on standard
Linux-based computing equipment either as a monolithic BS or a disaggregated BS with a
Baseband Unit (BBU) and the Remote Radio Unit (RRU),.

Mosaic-5G is a complementary open source project with respect to OpenAirInterface pfor
the purpose of building agile 5G service platform. Mosaic5G has three main platforms:
FlexRAN enabling monitoring, control, programmability in the RAN domain, LL-MEC that
acts as a controller for edge and core domains providing a subset of features as specified by
ETSI MEC, and JoX which is an event-driven juju-based service orchestrator core with plugins
to interact with different network domains.

1.1 Objectives

Virtualised 5G RAN-Core Infrastructure regards the establishment of slice-friendly cross-
domain physical and virtual infrastructure layers, to provide an execution foundation for the
upper layers in the SliceNet architecture. Within this context, SliceNet will contribute a
virtualised 5G RAN-Core segment, to benefit from the advantages of the emerging 5G slicing
paradigm, oriented towards the support of challenging use cases by verticals.

The following specific objectives are identified, based on the description of the work:

 Establish a 5G infrastructure including both the RAN and the Core segments;

 Describes various methods for deploying a virtualised 5G infrastructure together with
several examples for the deployment of OAI-based 5G services;

 Design and prototype a virtualised 5G infrastructure supporting network slicing
including both the RAN and the Core segments.

1.2 Approach and Methodology

The functionalities of a slicing/slice-friendly 5G RAN infrastructure should be offered for
virtualised infrastructures, re-using existing mechanisms and tools (e.g., with respect to
SDN), to achieve seamless control and configuration of physical and virtual resources.
Network Slicing for the LTE network is composed mainly of two egalitarian parts: i) first, a
slice of the core network resources and services, i.e. a grouping of physical and virtual
resources bundled together with the EPC services; ii) and second, a slice of the eNB

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 19 of (76)

resources and services, sharing techniques for sharing of the eNB resources (i.e, Resource
Blocks (RBs)) in frequency, time, and space dimensions.

SliceNet has defined three representative vertical use cases, namely, Smart-Grid, eHealth
and Smart City [3]. Each use case has different requirements regarding network
infrastructure, e.g. the eHealth and Smart-Grid use cases require a Mobile/Multi-access Edge
Computing (MEC) platform while the Smart-City use case does not. Additionally, the use
cases require the deployment of a variety of different physical infrastructures including RAN
(4G, 5GNR - New Radio) and Core (EPC, Next Generation Core Network - NGCN). As a result,
in this document we try to highlight different methods for deploying a virtualized 5G
infrastructure via several examples for the deployment of OAI-based 5G services. In order to
provide an infrastructure deployment that covers the SliceNet use cases, we consider a
C-RAN (Centralized, or Cloud Radio Access Network) architecture (with fronthaul network) in
the context of this document.

1.3 Document Structure

The remainder of this document is organised as follows: Section 2 presents the
OpenAirInterface and Mosaic5G platforms, as the foundation of the SliceNet RAN-CN
infrastructure. Section 3 describes in details different methods for deploying a virtualized
slicing-friendly RAN-CN infrastructure ranging from an automated deployment method to
manual deployment through Linux utility. Moreover, Section 3 provides a number of
examples regarding the deployment of OAI-based 5G services to support the SliceNet use
cases. Section 4 describes a deployment example for SliceNet infrastructure covering the
RAN, the MEC and the Core segments. Finally, Section 5 serves as a conclusion to this
document.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 20 of (76) © SliceNet consortium 2018

2 OpenAirInterface and Mosaic5G Platforms

2.1 An Overview of OpenAirInterface

OpenAirInterfaceTM (OAI) [2][4] wireless technology platform is a flexible platform to enable
an open 4G-5G ecosystem. The platform offers an open-source software-based
implementation of a subset of the 4G-5G systems spanning the full protocol stack of 3GPP
standard in both E-UTRAN and EPC. It can be used to build and customize a base station (e.g.
OAI eNB or gNB), a user equipment (OAI UE) and a core network (OAI EPC) in a PC. In a 4G
compatible scenario, the OAI eNB can be connected either to a commercial UE or OAI UE to
test different configurations and network setups and monitor the network and mobile
device in real-time. In addition, OAI UE can be connected to an eNB test equipment (e.g.
CMW500) as well as a commercial eNB (e.g. Amarisoft, IP.Access, etc.).

OAI is based on a PC hosted software radio frontend architecture. With OAI, the transceiver
functionality is realized via a software radio front end connected to a host computer for
processing. OAI is written in standard C for several real-time Linux variants optimized for
Intel x86 and ARM processors and released as free software under the OAI License Model.
OAI provides a rich development environment with a range of built-in tools such as highly
realistic emulation modes, soft monitoring and debugging tools, protocol analyzer,
performance profiler, and configurable logging system for all layers and channels.

2.1.1 Software Platforms

Currently, the OAI platform includes a full software implementation of 4th generation
mobile cellular systems compliant with 3GPP LTE standards in C under real-time Linux
optimized for x86. At the Physical layer, it provides the following features:

 LTE release 10 compliant, with a subset of release 14;

 Frequency Division Duplex (FDD) and Time Division Duplexing (TDD) configurations in
5, 10, and 20 MHz bandwidth;

 Transmission mode: 1 (Single-Input Single-Output - SISO), and 2, 4, 5, and 6 (Multiple-
Input and Multiple-Output - MIMO 2×2);

 Channel Quality Indicator (CQI)/Precoding Matrix Indicator (PMI) reporting;

 All downlink (DL) channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH,
PDSCH, PMCH;

 All uplink (UL) channels are supported: PRACH, PUSCH, PUCCH, SRS, DRS;

 Hybrid Automatic Repeat Request (HARQ) support (UL and DL);

 Highly optimized base band processing (including turbo decoder). With AVX2
optimization, a full software solution would fit with an average of 1x86 core per eNB
instance (64QAM in downlink, 16QAM in uplink, 20MHz, SISO).

For the E-UTRAN protocol stack, it provides:

 LTE release 10 compliant and a subset of release 14 features;

 Implements the Medium Access Control (MAC), Radio Link Control (RLC), Packet Data
Convergence Protocol (PDCP), Radio Resource Control (RRC), S1 Application Protocol
(S1AP), X2 Application Protocol (X2AP), Generic Tunneling Protocol (GTP) layers;

 Protocol service for all Rel10 Channels and eMBMS (MCH, MCCH, MTCH);

 Full reconfigurable Channel-aware proportional fair scheduling;

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 21 of (76)

 Fully reconfigurable protocol stack;

 Integrity check and encryption using the Advance Encryption Standard (AES) and
Snow3G algorithms;

 Support of RRC measurement with measurement gap;

 Standard S1AP and GTP-U interfaces to the Core Network;

 IPv4 and IPv6 support.

Evolved packet core network features:

 Mobility Management Entity (MME), Serving Gateway (SGW), PDN Gateway (PGW),
and Home Subscriber Server (HSS) implementations. OAI reuses standards compliant
stacks of GTPv1u and GTPv2c application protocols from the open-source software
implementation of EPC called nwEPC1 ;

 Non-Access Stratum (NAS) integrity and encryption using the AES and Snow3G
algorithms;

 UE procedures handling: attach, authentication, service access, default and dedicated
radio bearer establishment;

 Transparent access to the IP network (neither external SGW nor PGW are necessary).
Configurable access point name, IP range, Domain Name System (DNS) and E-UTRAN
Radio Access Bearer (E-RAB) quality of service (QoS);

 IPv4 and IPv6 support.

Figure 1. OpenAirInterface software stack

Figure 1 shows a schematic of the implemented LTE protocol stack in OAI. OAI platform can
be used in several different configurations involving commercial components to varying
degrees:

 Commercial UE ↔ Commercial eNB + OAI EPC

 Commercial UE ↔ OAI eNB + Commercial EPC

 Commercial UE ↔ OAI eNB + OAI EPC

 OAI UE ↔ OAI eNB + OAI EPC

 OAI UE ↔ OAI eNB + Commercial EPC

 OAI UE ↔ Commercial eNB + Commercial EPC

1
 nwEPC – EPC SAE Gateway, https://sourceforge.net/projects/nwepc/

OAI soft UE

RRC

NAS

MAC

RLC

Linux IP
stack

PDCP

PHY

IP packets AT commands

OAI soft eNB

MAC

RLC

RRC S1-C

SCTP

X2

IP

Ethernet

UDPPDCP

GTP-U/S1-U

PHY

Ethernet

IP

SCTP

S1-C

NAS

MME Application

S11 S1-U

S+P-GW Application

GTP-U

OAI soft EPC (MME and S+P-GW

eNB Application

UDP

S6a/Diameter

HSS

Linux stack3GPP layers Control PlaneData Plane

Management (OSS)

SGi

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 22 of (76) © SliceNet consortium 2018

2.1.2 Hardware Platforms

OAI is designed to be agnostic to the hardware radio frequency (RF) platforms. It can be
interfaced with 3rd party Software-Defined Radio (SDR) RF platforms without significant
effort. At present, OAI officially supports the following hardware platforms.

 EURECOM EXMIMO2: This board, developed by Eurecom, features four high-quality
RF chipsets from Lime Micro Systems (LMS6002), which are LTE-grade MIMO RF
front-ends for small cell eNBs. It supports stand-alone operation at low-power levels
(maximum 0 dBm transmit power per channel without any power amplifier) simply
by connecting an antenna to the board. RF equipment can be configured for both
TDD and FDD operation with channel bandwidths up to 20 MHz covering a very large
part of the available RF spectrum (250 MHz-3.8 GHz) and a subset of LTE MIMO
transmission modes2.

 USRP X-series/B-Series: This is the Ettus USRP B-series and X-series products that are
supported by OAI via Ettus UHD Driver (USB3 and Ethernet)3, 4.

 LIMESDR: This is the Lime Micro Systems SDR board that is supported by OAI via the
Lime USB3 driver5, 6.

 BladeRF: This is a Nuand SDR board that is also supported by OAI via the bladeRF
USB3 driver7.

2.2 An Overview of Mosaic5G

Mosaic-5G.io [5] is an ecosystem of open-source platforms and use cases for 5G system
research and development leveraging software-defined networking (SDN), network function
virtualization (NFV), and multi-access edge computing (MEC) technology enablers to realize
the service-oriented 5G vision. With Mosaic-5G, network services can be provisioned on
demand and deployed over a virtualised infrastructure, allowing the transition from
nowadays vertical dedicated networks to shared and customizable horizontal networks.

Mosaic-5G.io currently provides five main platforms8:

 JOX is an event-driven juju-based service orchestrator core with plugins architecture
to interface with different network domain.

 FlexRAN is a flexible and programmable platform for Software-Defined Radio Access
Networks.

 LL-MEC is an ETSI-aligned Multi-access edge computing platform that also acts as
Core network controller for Software-Defined Mobile Networks.

 OpenAirInterface RAN (OAI-RAN) is a 3GPPP compatible implementation of a subset
of features of RAN release 14 with support of FlexRAN.

 OpenAirInterface CN (OAI-CN) is a 3GPPP compatible implementation of a subset of
features of CN release 12 with support of LL-MEC.

2
 https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirExpressMimo2

3
 http://www.ettus.com/product/details/UB210-KIT.

4
 https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/HowToConnectCOTSUEwithOAIeNBNew

5
 https://myriadrf.org/projects/limesdr/

6
 https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/how-to-setup-oai-with-lmsdr

7
 https://www.nuand.com`/

8
 https://gitlab.eurecom.fr/mosaic5g/mosaic5g

https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirExpressMimo2
http://www.ettus.com/product/details/UB210-KIT
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/HowToConnectCOTSUEwithOAIeNBNew
https://myriadrf.org/projects/limesdr/
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/how-to-setup-oai-with-lmsdr
https://gitlab.eurecom.fr/mosaic5g/mosaic5g

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 23 of (76)

In addition, Mosaic-5G includes a constellation of platform packages, software development
kits (SDKs), network control applications and data sets under the Store repository. It allows
to develop and bundle plug-and-play network applications tailored to a particular use case,
and compose and customize a network service delivery platform across reusable
applications.

Figure 2. Mosaic-5G.io ecosystem

In the following, we briefly present the three main platforms, namely JOX, FlexRAN, and LL-
MEC.

2.2.1 JOX in a Nutshell

JOX is a Juju-based orchestrator for the virtualized network that natively supports network
slicing. Using JOX, each network slice can be independently optimized with specific
configurations on its resources, network functions and service chains. JOX operates on top of
the Juju virtual network function management (VNFM) with a plugins architecture to
interface with FlexRAN, LL-MEC and virtual infrastructure management (VIM).

The JOX architecture, as shown in Figure 3, includes two main components: (a) JOX core that
includes JSlice and Jcloud controller to control slice and cloud resources respectively, and (b)
JOX plugging framework that enables different plugins for RAN, CN, MEC, and VIM to enable
fast reactions like event handling and monitoring. Furthermore, it exposes the northbound
REST API to enable several basic operations such as create, (re-)configuration, on each JSlice,
connected to a JCloud.

Figure 3. JOX architecture

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 24 of (76) © SliceNet consortium 2018

As illustrated in Figure 4, JOX can orchestrates the deployment of the standard LTE chain,
i.e., eNB, MME, S/PGW, MySQL, HSS as well as FlexRAN and LL-MEC for a new JSlice, in
different environments ranging from physical machine, container or virtual machine. Service
dependencies may exist when deploying chains, for instance, the relationship between
MySQL and HSS cannot be built until HSS is installed and configured. JOX orchestrates the
service deployment and automatically handle dependencies and conflicts through Juju
without any actions.

MySQL

HSS MME

SP-GW

FlexRAN

eNB

LL-MEC

RRU

Figure 4. An example of a standard LTE chain with Domain Controllers

2.2.2 FlexRAN in a Nutshell

FlexRAN platform is the first open-source software-defined RAN platform and is designed
with flexibility supporting separate control and user plane operations. Moreover, it can
either centralize RAN domain control logics among multiple base stations or delegate control
decisions in a distributed manner. Hence, FlexRAN provides modulated control functions,
separated controller/agent control framework and well-defined APIs for “on-the-fly” control
reconfiguration.

Two key elements resides in FlexRAN architecture: (a) Real-time controller (RTC) that
enables coordinated control over multiple RANs, reveals network graph primitives and
provision SDKs for control application, and (b) RAN runtime that acts as a local agent
controlled by RTC, virtualizes underlying RAN radio resources, pipelines RAN service function
chain and provides SDKs enabling distributed control application. Practically, the developed
As shown in Figure 5, FlexRAN protocol between RAN runtime and real-time controller can
provide several characteristics: provide statistics, enable reconfiguration, trigger event and
delegate control.

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 25 of (76)

Figure 5. FlexRAN protocol

FlexRAN enables the slice-specific resource abstraction and scheduling to fulfil service
requirements, such as throughput (Mbps), latency (millisecond), and reliability (packet drop).
For instance, three different slice services (video, eHealth, IoT) can independently apply their
customized radio resource management (RRM) control logics as shown in Figure 6.

Figure 6. Different slice services in FlexRAN.

2.2.3 LL-MEC in a Nutshell

LL-MEC platform leverages SDN principle to separate user plane processing from its control
logics at the edge and core networks. With OpenFlow, the user plane is abstracted for the
purposes of monitoring, analysis and control. The OpenFlow protocol is applied over the

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 26 of (76) © SliceNet consortium 2018

Open Virtual Switch (OVS) to enable user plane programmability. Further, SDKs are provided
to enable a flexible MEC application development environment.

Figure 7. LL-MEC Platform [9]

LL-MEC platform is aligned with the ETSI MEC Mp1 and Mp2 reference interfaces. The Mp1
interface enables low-latency or elastic MEC applications through Core API, REST API and
message bus, while Mp2 can instruct user plane how to route traffic among applications,
networks, services, etc. Within LL-MEC, two services are provided: (a) Edge packet service
(EPS) (equivalent to traffic rule control) that manages the static and dynamic traffic rules and
handles multiple OpenFlow libraries and OVS, and (b) Radio network information service
(RNIS) that exposes real-time RAN information (e.g., user and radio bearer statistics) and
delegates the control decision over the user plane.

LL-MEC enables versatile applications, such as radio-aware video content optimization. It
aims to adjust video quality based on the real-time per-user wireless channel quality to
reduce the video stalling and utilize all available radio resources. For instance, a user with
poor channel condition only receives a 240p video, while another one can enjoy 4k video
streaming when it is close to the base station.

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 27 of (76)

3 Virtualised Slicing-Friendly 5G Infrastructure

This section highlights different tools for deploying a virtualized 5G infrastructure. Figure 8
shows the mapping of the deployment tools to ETSI NFV reference architecture [6].

Figure 8. Mapping the deployment tools to ETSI NFV architecture [6]

A Virtual Infrastructure Management (VIM), according to the ETSI NFV management and
orchestration (MANO) specification [7], is a virtual infrastructure manager that provides the
Infrastructure-as-a-Service (IaaS) by assembling different NFV Infrastructures (NFVIs), each
with different technologies/vendors, and abstracting them into compute, storage and
network nodes/resources. Existing solutions for VIM include OpenStack [8], VMware
vSphere, CloudStack, Google Kubernetes VIM, etc. As mentioned in D3.1 [9], SliceNet
proposes to use OpenStack VIM as NFVI management. OpenStack is an open-source
software service framework, which provides service provisioning and virtualization.
OpenStack architecture is modular and pluggable, thus allows using the most appropriate
modules according to the need. As an OpenStack module, Heat provides orchestration of
services, however, is limited to OpenStack-based platform.

In ETSI NFV architecture, a VNFM is responsible for the lifecycle management of Virtual
Network Functions (VNFs). VNFM takes care of deploying, monitoring, scaling and removing
VNFs on a VIM. Juju [10], which is one of the main VNFM for ETSI Open Source MANO
(OSM)[11], is mainly adopted as a VNFM in SliceNet.

An NFV Orchestrator (NFVO) is responsible for the Network Slice (NS) lifecycle management
together with the VNF lifecycle (supported by the VNFM) and the NFVI resources (supported
by the VIM). Based on a preliminary investigation, SliceNet proposes three solutions to
explore Juju-based orchestrator (JOX) [12], Open Baton [13], and OSM [11] as an NFVO. In
the context of this document, we will mainly focus on JOX while briefly introducing Open
Baton and OSM.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 28 of (76) © SliceNet consortium 2018

Regarding NFVI, OpenStack, which is fundamental to the VIM, provides different key
components for NFVI management including: (i) OpenStack Compute (Nova) for managing
virtual or bare metal servers; (ii) OpenStack Block Storage (Cinder) for virtual storage; and
(iii) OpenStack Networking (Neutron) providing virtual networking [14]. In more detail, Nova
supports a wide variety of compute technologies such as Kernel-based Virtual Machine
(KVM), Xen, Linux Container (LXC), Hyper-V, VMware, XenServer, OpenStack Ironic and
PowerVM, which provides the flexibility in choosing a hypervisor(s). Neutron provides
networking functionality between interface devices (e.g. vNICs) managed by other
OpenStack services and supports advanced network services. Interestingly, Neutron has also
enabled adoption of control and management technologies for software-defined networking
(SDN) [14]. These SDN services may interact with other Neutron’s components through REST
APIs. For instance, OpenStack can work with several SDN controllers such as OpenDaylight
(ODL) [15], ONOS [16], etc.

Finally, Metal as a service (MaaS) [17], which is responsible for hardware resource
management, provides an easy way to set up the hardware on which to deploy any service
that needs to scale up and down dynamically.

In this section, we introduce the deployment tools together with several examples on how
to use these tools for the deployment of OAI-based 5G services. Again, we remind the reader
that the infrastructure itself is for C-RAN deployment.

3.1 Automated Deployment of 5G Virtualised Infrastructure through Juju

Figure 9. Juju - Open Source Generic VNFM [18]

Juju is a generic VNFM in the ETSI NFV architecture, which can be used to quickly and
efficiently deploy, configure, scale, integrate and perform operational tasks in a wide
selection of public clouds such as Amazon Web Services (AWS), Azure, Google Compute
Engine (GCE), and Rackspace, as well as in private clouds like OpenStack and VSphere, along
with bare metal servers (MaaS) and containers. Juju models services, their relationships and
scale regardless of the underlying infrastructure. In more detail, Juju defines a service as a
group of units, which is an approach that allows to easily scale in or out services, simply by
adding or removing units. In its essence, Juju takes care of installation, configuration and
communication among services, yet without taking the actual decisions for a particular

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 29 of (76)

service. Instead, it delegates service-specific decisions to a set of scripts called “Charms” that
implement the service behavior. Charms contain all necessary instructions for deploying and
configuring a service by orchestrating the entire lifecycle of the service: a Charm defines how
the service should be fetched, installed and run, how configuration files should be filled up
and how to react to events.

A collection of Charms that link services together is called a “Bundle”. A Bundle allows to
deploy whole chunks of app infrastructure in one go. According to [19], a Charm corresponds
to a service definition and a collection of Charms and Bundles corresponds to the NS
catalogue according to ETSI. In addition, the process of uploading and deploying Charms into
Juju corresponds to the NS onboarding and instantiation process, respectively. A global
Charm catalogue containing all available Charms and Bundles that can be found in the Juju
store [20].

eNB RRUSP-GW

MME

HSSMySQL

Figure 10. An example of a Bundle from the Juju Store

Using OAI C-RAN as an example, Figure 10 shows the OAI C-RAN bundle from the Juju store9.
This Bundle defines a service template for a 5G C-RAN deployment with functional split
based on OAI. It consists of the following Charms: MySQL, OAI-HSS, OAI-MME, OAI-SPGW,
OAI-eNB and OAI-RRU. More details on how to create a Bundle/Charm, as well as on the
structure and organization of a Charm will be provided in subsection 3.1.4.1.1.

In what follows next, we explain in more detail the notion of a Charm along with that of a
Juju controller and model.

3.1.1 Juju Charms

Juju is a service modelling tool based on a concept of Charms to handle deployment and
management of various cloud-based applications. Conceptually, Charms are composed of
metadata, configuration data and hooks with some extra support files in order to download,
configure, install, scale and maintain a service. This abstraction allows a very rapid
deployment and maintenance of services, even without a detailed knowledge about the

9
 https://jujucharms.com/u/navid-nikaein/oai-5g-cran/

https://jujucharms.com/u/navid-nikaein/oai-5g-cran/

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 30 of (76) © SliceNet consortium 2018

internals of the service itself. One important remark is that a Charm does not contain the
code of a service itself, but merely the scripts, which can download the code from upstream
sources.

Figure 11. Structure of a Charm (EPC Charm10 as an example)

Specifically, the Charm is made up of (i) a “metadata.yaml” file describing in general the
Charm with basic declarative information, defining the set of relations that the service can
participate to as well as which services the Charm offers to other Charms; and (ii) a
“config.yaml” with the specified options exposed to the user for service configuration and a
set of hooks that are invoked by the Juju agent in order to trigger events in a Charm. Juju
manages the service lifecycle with hooks (or scripts) implemented inside Charms. Currently,
there are five unit hooks, namely: install, config-changed, start, upgrade-charm and stop.
These hooks are invoked during the lifecycle of a service, as specified in the Charm’s
configuration file. Besides this, there are four relation hooks for each interface that a Charm
supports, named after the interfaces: (i) ifaceName-relation-joined, (ii) ifaceName-relation-
changed, (iii) ifaceName-relation-departed and (iv) ifaceName-relation-broken to handle
cases where the interface is connected to the service, or disconnected, or the configuration
or settings of that interface are changed.

Generally, Charms are mostly used to model more complex deployments, potentially
including many different applications and connections. As a result, a Bundle allows installing
an entire working deployment easily and quickly as a Charm. The bundle consists of three
main sections:

 Target machines specifications and constraints;

 Charms declaration and configuration;

 Charms relations.

Specifically, the first section of the Bundle defines a set of machines, which are required to
deploy the services included in the Bundle. This information is passed to a cloud provider

10

 https://jujucharms.com/u/navid-nikaein/oai-epc/trusty/22

https://jujucharms.com/u/navid-nikaein/oai-epc/trusty/22

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 31 of (76)

(MaaS, OpenStack, AWS, GCE, etc.), which in turn provisions the machines using this
specification and gives them back to Juju for further deployment of services on top of them.
The user is able to define several constraints such as the number of Central Processing
Unit (CPU) cores, Random-Access Memory (RAM) size, availability zones or tags to offer a
hint to the cloud provider about the user’s preferences about the machines that match their
interest.

The second section declares all the Charms that the Bundle needs along with configuration
options. These options can be set to default values, which allows the Charm to operate
correctly. Then, a user can change the value of each option via Juju. Juju then requests a
machine from the cloud provider and places a single Charm unit on top of it. The placement
of Charm units can also be specified.

The third and last section of the Bundle specifies the relationships between Charms. Each
Charm provides some capabilities while it also consumes some others. This is the modelling
part of Juju. Using the GUI, a user can simply perform drag and drop actions on the Charms
to connect them. One thing to remember is that Bundle defines connections between the
Charms, not the Charms units.

It is important to note that a Charm unit is a single instance of an application deployed by a
Charm. Most of the Charms can deploy multiple units of the application. This is the basic
scalability feature of Juju. At this point, we remind the reader that service scalability
depends on the number of units. For example, let us assume that an application is using the
database heavily, thus we need to add a database replica to ease the load on the original
one. To do so, the user can add one or multiple units of MySQL11 via Juju. Juju will
automatically request additional machines from the cloud provider, install MySQL on them,
and configure the replication and load balancing details between the instances.

 Juju add-unit -n5 mysql #add 5 units of MySQL12

3.1.2 Clouds

As mentioned earlier, Juju can use a number of public clouds (including AWS, Azure, GCE,
and Rackspace) to deploy workloads, as well as private clouds (e.g. OpenStack, vSphere,
MaaS) which you configure. Additionally, Juju can work directly with physical, virtual and
container machines. It makes Juju independent of substrate, which is very important both
for production and for the development cycle [19].

3.1.3 Controllers and Models

For management, Juju creates a special node, which is called the “Juju Controller”, during
bootstrap/installation stage. This controller hosts the database, manages all the machines in
the running models and responds to all events that are triggered throughout the system. It
also manages the scale-out, configuration and placement of all models/applications, user
account and identification, access and sharing.

In order to facilitate the management of a group of applications and resources to
accommodate different workloads or use cases, Juju introduces the notion of “model”. A
model is associated with a specified controller. One typical example for model is using

11

 https://jujucharms.com/mysql/
12

 If you need to place more than one unit on a machine, use the “--to” option

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 32 of (76) © SliceNet consortium 2018

different models to deploy different regions. Model then can be replicated while keeping the
same configuration of machines that Juju creates within this model, the application that get
deployed on those machines and their relationships. Additionally, models can be added
easily at any time.

3.1.4 Technical Use Cases

This section explains the deployment of OAI 5G C-RAN as a typical example of how to use
Juju/JOX to deploy virtualized 5G infrastructure.

C-RAN Deployment - a High Level Overview

Figure 12. C-RAN architecture and components.

In recent years, C-RAN (Centralized, or Cloud Radio Access Network) with centralized
processing in Baseband Units (BBUs) and Remote Radio Units (RRUs) using CPRI (Common
Public Radio Interface)13 has been more and more deployed thanks to its significant
advantages including network deployment, reduced operating costs, as well as improved
network performance [21]. However, due to high bandwidth requirements, CPRI requires
expensive fronthaul to carry Radio Frequency (RF) samples from BBU to RRU, resulting in
rising costs. In [21], the authors argued that to meet the requirement in terms of capacity,
density and other performance aspects (e.g., service delay, user bandwidth) of 5G, fronthaul
interfaces need to provide low delay and high-bandwidth transmission services by means of
restructuring of functions between the BBU and RRUs. As a result, the new C-RAN
architecture has been proposed by splitting different parts of radio stack between different
network elements (BBU and RRU) [21] [22]. Also, a new BBU and RRU interface based on
packet transmission technology, namely Next Generation Fronthaul Interface (NGFI), has
been defined [21] [22].

In NGFI architecture, some BBU functions are shifted to RRU. Accordingly, BBU is redefined
as the Radio Cloud Center (RCC) while RRU becomes the Radio Remote System (RRS). The
Radio Aggregation Unit (RAU) allows interfacing RCC with several RRUs. RCC connects with
RRS via the NGFI interface. Regarding different NGFI interfaces, the authors in [23] show the
potential designs of NGFI split-points for LTE network proposed by China Mobile [21]. Among
them, we just highlight:

 IF4p5 split-point: IF4p5 corresponds to the split-point at the input (TX) and output
(RX) of the OFDM symbol generator (i.e. frequency-domain signals) [22]. According to
[22], IF4 is “Resource mapping and IFFT” and “FFT and Resource de-mapping”.
Therefore, IF4p5 is simply compressed transmitted or received resource elements in
the usable channel band.

13

 CPRI, http:/www.cpri.info

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 33 of (76)

 IF5 split-point (Baseband/RF divisions): In this solution, RRU only implements RF-
related functions.

The current version of OAI supports both split-points, however, we use the IF4P5 split-point
as an interface between BBU/RRC and RRU in our deployment scenario.

Figure 12 shows the high-level architecture of the C-RAN deployment which consists of core
network part (including HSS, MME, SGW, and PGW) and RAN part (BBU/eNB and RRU). In
our deployment scenario, OAI-CN is used to deploy the functionality of an EPC while OAI-
RAN for the BBU and RRU functionality.

3.1.4.1 Deploy of slice-friendly LTE Service Chain with Juju

MySQL

HSS MME

SP-GW

FlexRAN

eNB

LL-MEC

RRU

Figure 13. Slice-Friendly virtualized 5G C-RAN and CORE Slice deployed by JuJu

This section explains the deployment of OAI 5G C-RAN as an example of how to use Juju to
deploy a virtualized 5G infrastructure. Figure 13 shows the OAI Bundle from Juju Charms
store regarding its components and their relations. This Bundle makes use of the following
Charms: MySQL, OAI-HSS, OAI-MME, OAI-SPGW, OAI-eNB, OAI-RRU, FLEXRAN, and LL-MEC14
to create a slice-friendly 5G C-RAN slice.

In the following, we will describe the details structure of a Charm by taking OAI-MME as
an example.

3.1.4.1.1 Structure of a Charm (OAI-MME)

As mentioned earlier, a Charm is a set of files that typically consists of instructions for
deploying and configuring a service. Basically, the following files are included in a Charm:

 a metadata.yaml file describing the Charm with basic declarative information,
defining to which relations the service can participate in and which services the
Charm offers to other Charms;

 a config.yaml specifying the options that are exposed to the user for the service
configuration;

 Hooks which are invoked by the Juju agent to trigger events in a Charm.

14

 https://jujucharms.com/u/navid-nikaein/

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 34 of (76) © SliceNet consortium 2018

Metadata.yaml

This file defines the features of the service Charm and the kind of relations it can participate
in. The name field represents the Charm name, which is used to form the Charm Uniform
Resource Locator (URL) of the online Charm store. The summary and description are to
describe the Charm and its features. The tag is used to sort the Charm in the store. The
“provides” and “requires” subfields list the service relations the Charm may participate in
and they are complementary, so a service that provides an interface can only have that
specific relation established with a service that requires the same interface, and vice versa.

name: oai-mme
summary: Evolved Packet Core Network (EPC) based on OpenairInterface
maintainers:
 - Navid Nikaein <navid.nikaein@eurecom.fr>
 - Andrea Bordone Molini <bordone@eurecom.fr>
description: |
 This Charms allows you to design, deploy, provision, and dispose your 4G-5G
OpenAirInterface EPC out of the box on any cloud infrastructure.
tags:
 - Telecom
 - 4G-5G
 - EPC
 - Core Network
 - OpenAirInterface
 - Eurecom
subordinate: false
provides:
 mme:
 interface: S1-C
requires:
 hss:
 interface: S6a-hss
 spgw:
 interface: S11

The interface names can be whatever and using the same interface name in another Charm
allows the two to exchange information through juju infrastructure (juju state server).
Specifically, OAI-MME Charm provides a service named “MME” through the S1-C interface.
The name recalls the virtual interface name between the MME and the eNB/BBU in the LTE
architecture, but here the purpose is simply to point out what Charm should be related to
OAI-MME Charm and towards which interface. In fact, OAI-eNB (and OAI-BBU) Charm will
require the OAI-MME Charm and it will use the same interface name, which represents the
protocol conventionally followed by the service units to exchange information.

OAI-MME Charm will work together with OAI-HSS Charm that provides the “hss” service,
therefore the OAI-MME Charm will require this service on the same interface (S6a-hss).
Actually, this kind of information will be exchanged through interfaces, once the Charms are
deployed, is defined by a set of files (relation hooks) in the Charms themselves and it
happens a layer above the deployed software and it is necessary to provide to the services

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 35 of (76)

encapsulated by the Charms the condition to properly run and coexist. With the same
reason, OAI-MME Charm requires OAI-SPGW Charm.

For more information regarding Charm metadata, please refer to [24].

Config.yaml

options:
 branch:
 default: "develop"
 description: |
 branch indicates which installation you want to do. If you want a stable installation,
change this option to "master".
 type: string
 revision:
 default: "head"
 description: get a specific revision from the openair-cn git repository.
 type: string
 kernel:
 default: "generic"
 description: set the default kernel, generic or low latency.
 type: string
 realm:
 default: "openair4G.eur"
 description: |
 Diameter realm of the MME. HSS and EPC have to have the same. NO empty value.
 type: string
 eth:
 default: "eth0"
 description: |
 This is the S1-C interface name.
 type: string
 maxenb:
 default: "10"
 description: Maximum number of eNB that can connect to MME. Max Value is 10.
 type: string
 maxue:
 default: "10"
 description: |
 For debug purpose, used to restrict the number of served UEs the MME can handle. Max
Value is 50.
 type: string
 relative_capacity:
 default: "10"
 description: |
 Even though this parameter is not used by the MME for controlling the MME load
balancing within a pool (at least for now), the parameter has to be forwarded to the eNB
during association procedure. Values going from 0 to 255.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 36 of (76) © SliceNet consortium 2018

 type: string
 mme_statistic_timer:
 default: "10"
 description: |
 Displayed statistic (stdout) period. You can access the stdout: cat /srv/mme.out on the
machine where this Charm is deployed.
 type: string
 emergency_attach_supported:
 default: "no"
 description: This will attach the unauthenticated UEs (not supported).
 type: string
 authenticated_imsi_supported:
 default: "no"
 description:
 type: string
 verbosity:
 default: "none"
 description: sets the asn1 log level verbosity. Valid values are "none", "info", or "annoying"
 type: string
 gummei_tai_mcc:
 default: "208"
 description: TAI=MCC.MNC:TAC. MCC is the Mobile Country Code. Must be three digits.
 type: string
 gummei_tai_mnc:
 default: "95"
 description: TAI=MCC.MNC:TAC. MNC is the Mobile Network Code. Must be two or three
digits.
 type: string

The optional config.yaml file defines how the software can be configured by the user. The
objective is to expose to the user the options that he/she would be willing to tweak when
deploying the service or when it is running.

The Charm should operate correctly with no explicit configuration settings. In fact, there is a
default value associated to each option. Moreover, Juju allows providing a config.yaml file
with the desired values for the options at the deployment time. Another option is that the
user can reconfigure the software by using Juju tool when the service is running. In our case,
this file allows the user to have partial control on the way the MME is built and the way the
MME will behave once it is running. In a typical deployment scenario when OAI-MME is
installed as a standard-alone application in a physical or a virtual machine, these options can
be put in a configuration file and then to be parsed to the OAI-MME.

In the following, we highlight several options that allow the user to choose how to configure
the OAI-MME:

 branch: specify the “git branch” from where the source code must be fetched;

 realm: use “realm” to assign to the MME element used to talk over the diameter
protocol;

 maxenb: define the maximum number of eNBs that the MME can support;

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 37 of (76)

 maxue: define the maximum number of UEs that the MME can handle;

 gummei_tai_mcc, gummei_tai_mnc: define the Public Land Mobile Network (PLMN),
Mobile Network Code (MNC) and Mobile Country Code (MCC) to assign to the
deployed mobile network.

Charm’s Hooks

Hooks are a series of files that are called during the lifecycle of the service encapsulated
within the Charm. A service unit’s direct action is entirely defined by its Charm’s hooks that
will be invoked by Juju at particular times. Based on triggered events, Juju will fire up a
specific hook to apply the change on the machine. Hooks may be written in any language.
They run non-concurrently to inform the Charm that something happened, and they give a
chance for the Charm to react to events in arbitrary ways.

The set of common unit hooks with predefined names are:

 install

 start

 stop

 config-changed

 upgrade-charm

 update-status

In the context of OAI-MME, the defined relation hooks are strictly related to which services
the Charm needs or exposes. When services are related, Juju decides which hooks to call
within each Charm based on the local relation name. Specifically, OAI-MME requires
relations called “hss”, “spgw” and provides a relation called “mme” so the following relation
hooks have been defined to manage the relations’ lifecycles:

 hss-relation-broken

 hss-relation-changed

 hss-relation-departed

 hss-relation-joined

 mme-relation-broken

 mme-relation-changed

 mme-relation-departed

 mme-relation-joined

 spgw-relation-changed

 spgw-relation-departed

It is not mandatory to use all units or relation hooks, so at the time Juju would call them, it
may simply skip the execution of some of them.

3.1.4.1.2 Juju Charm Deployment

After preparing the machines by either leveraging on a cloud infrastructure or manually
installing/creating the machines, we can use a simple Juju command to deploy the Bundle as
following:

$juju deploy oai-5g-cran-slice.yaml

In our case, we deployed OAI C-RAN bundle on top of a private MaaS-cloud.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 38 of (76) © SliceNet consortium 2018

Scaling

As mentioned earlier, Juju not only makes it simple to deploy services, but also crucially
makes it easy to manage them too. Its dynamic configuration ability, which allows the
operator to re-configure services on the fly, add, remove, or change relationships between
services, and scale in or out and up or down with ease [25]. Such scaling capabilities are
crucial to achieve scalable network slices.

Spinning up another unit of a certain service allows having the chance of distributing the
load over the different service instances. In general, a load balancer will be needed in front
of the service units in order to actually distribute the incoming requests to the different
instances. However, in our scenario the OAI software components themselves will operate
the load balancing. In fact, the eNB is in charge of choosing the MME where to forward the
signalling messages coming from a UE. In LTE, the scalability can be operated either for the
MME or for the SPGW in different ways. For example, the following commands will add a
new OAI-MME instance and link MME with other services.

$juju deploy oai-mme oai-mme_1
$juju add-relation oai-mme_1 hss
$juju add-relation oai-spgw oai-mme_1
$juju add-relation oai-enb oai-mme_1

Additionally, a network operator might want to scale up a particular service deployed inside
the environment that means it might increase manually the computational power of the
virtual machine where that OAI-MME service is deployed. Alternatively, we can also use
another more powerful machine from the group of machines added to the manual
environment, by re-deploying that service through Juju. The following commands will
replace an MME instance by a new one with a different computational power.

$juju remove-service oai-mme_1
$juju deploy --constraints “cpu-cores=4 ram=4G” oai-mme oai-mme_1
$juju add-relation oai-mme_1 hss
$juju add-relation oai-spgw oai-mme_1
$juju add-relation oai-enb oai-mme_1

3.1.4.2 Deploy LTE Service Chain for Network Slicing with JOX

As mentioned in the previous section, Juju can be used to deploy a virtualized 5G
infrastructure in an automated way. However, in this approach, Juju, as a VNFM, is mainly
responsible for VNF lifecycle management (e.g., instantiation, update, query, scaling, and
termination). As a result, it lacks the functionalities at the network service-level regarding
lifecycle management, global resource management, and policy management. It is where an
NFVO comes into play, especially to achieve slicing-friendly infrastructure. Generally, an
NFVO, with a complete overview of the system, is responsible for [7]:

 maintaining a global view of system;

 on-boarding of application packages;

 NS lifecycle management (including instantiation, scale-out/in, performance
measurements, event correlation, termination);

 global resource management, validation and authorization of NFVI resource
requests;

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 39 of (76)

 policy management for NS instances.

SliceNet proposes JOX - a Juju-based orchestrator, as an NFVO not only for deploying
virtualized 5G infrastructure but also for MEC platform and its application (as specified in
D3.1 [9]). One of the main reasons is that JOX is created as a 5G orchestration targeting
network slicing. As a result, JOX inherently supports lifecycle management of network slices
and orchestration for the mobile network. Specifically, it supports basic operations defined
by 3GPP in TR 28.801 [26] to manage the lifecycle (preparation, instantiation, configuration,
activation, runtime and decommissioning phase) of a Network Slice Instance (NSI), where all
phase related API methods are exposed via the Northbound API. Besides, JOX also supports
orchestration for the Mobile Network where it exploits RAN and CN specific plugins to
efficiently orchestrate the network resources and services. Furthermore, JOX also supports
the optimisation of the operational environment, for example, running a slice-specific logic
or global optimisation on all slices applications on top of the Northbound API.

Using JOX, each network slice can be independently optimized with specific configurations
on its resources, network functions and service chains. Inside the JOX core, a set of services
is used to operate and control each network slice, while at the same time support the
necessary interplay between resource and service orchestration, VNFM and VIMs as these
are defined in the ETSI MANO architecture [7]. From the implementation perspective, JOX is
tightly integrated with the Juju VNFM framework provided by Canonical [27]. The Juju
system is also one of the main VNFM for ETSI OSM [11] [28].

The core JOX characteristics are summarized as follows:

 slice-specific lifecycle management and a powerful northbound API;

 core services facilitate the optimization of the orchestration procedures;

 JOX Plugin Framework where each plugin element interacts with the corresponding
agent via a message bus, for example, RAN specific plugins in order to control the
physical or virtualized LTE eNB;

 slice descriptors are coupled with the service configuration;

 network slice logic can be easily introduced as an application for slice optimization.

In the following paragraphs, we will highlight the architecture, components and the
implementation of JOX as well as an example of how to use JOX for orchestrating LTE eNB
resources.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 40 of (76) © SliceNet consortium 2018

Figure 14. JOX main components and properties

Figure 14 presents the main components of JOX including JOX Network Slices (JSlices) and
JOX Clouds (JClouds). In JOX, a slice is represented by a JSlice object that is defined as a set of
models (called JModels) together with a policy specification. This policy may be global for all
the slice models, while every model is deployed over a specific cloud infrastructure that is
controlled by a single VIM (e.g. RAN-VIM). Every JModel is a Bundle of:

 resources: include all physical (e.g. servers, spectrum) and virtual resources (e.g.,
virtual machines (VMs));

 services: include physical or virtual network functions (PNFs and VNFs) such as eNB
and vMME and virtualized network applications (VNAs) (e.g. monitoring);

 service chains: describe the relationship between PNFs/VNFs/VNAs (e.g. between
eNB and vMME);

 policy: a JModel-specific policy.

Every JCloud object hosts all the underlying cloud resources and interacts with the physical
infrastructure and the cloud control mechanisms through two channels: (1) the VNFM for a
set of basic functionalities, and (2) directly with the VIM for fine-grain monitoring and
control. Although VNFM is able to interact with the VIM, it is the direct communication
between the orchestrator and the VIM that can offer the maximum level of control of the
underlying physical and virtual infrastructure.

JOX is a single VNFM - multi VIM orchestrator. The VNFM is Canonical’s Juju, which interacts
with Charms that act as structured NFV element managers driven by Juju. A Charm
encapsulates a VNF as a service and contains all the necessary hooks (i.e., scripts and
primitives) to manage the life cycle of the VNF and its relationships within service chains. It
contains all the logic required to deploy, configure, integrate, scale, and expose the service
to the outside world, that are available to JOX through a rich Juju API. We highlight that a
rich set of OAI-based 4G and a subset of 5G VNFs (for MEC, RAN and CN) are already
available as Juju Charms in the Juju store (an online VNF catalogue [27]).

Juju supports a number of VIMs and a variety of the clouds including both public clouds and
private ones such as AWS, Azure, GCE, Rackspace, MaaS and LXC. With JOX, the underlying
cloud resources are extended with physical or virtual RAN and CN elements and a set of

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 41 of (76)

resources that also include, for example, radio spectrum and resource blocks. Note that
while JOX exploits all the services exposed by Juju regarding the resource management of
the infrastructure, the API between Juju and VIMs is restricted to a basic set of
functionalities (e.g., deploy VMs with specific requirements). In order to retrieve/analyze the
real-time performance and trigger custom events, JOX exploits direct communication with
the VIMs through a plugin framework.

Figure 15. JOX architecture

The architecture of JOX is depicted in Figure 15. JOX exposes a northbound REST API. Using
the exposed methods one can create a JSlice, connect to a JCloud and adjust all the models,
resources, services and service relationships. In more detail, JOX is aligned with the
recommendations of the basic operations that are defined by 3GPP in TR 28.801. According
to this, the NSI lifecycle phases are preparation, instantiation, configuration, activation,
runtime control and decommissioning. Through the API methods related to these phases are
exposed. A set of core services is used in support of slice-specific lifecycle management, data
handling, monitoring and template management. Specifically, JOX Slices Controller (JSC) is
responsible to host and control all the instantiated JSlices. This is the place where global
optimizations can be performed. JOX Clouds Controller (JCC) is responsible to host and
control all the instantiated JClouds. JCC offers services to the JSC. JOX enables network slice
lifecycle management and allows to orchestrate each network slice independently. JOX
exploits RAN and CN specific plugins to efficiently orchestrate the edge network resources
and services e.g. orchestrating a new slice across multiple eNBs, partitioning the radio
resources and deploying a dedicated CN for this newly generated slice. It is important to
note that the core of JOX framework is technology-agnostic, and is able to support 4G/5G
technologies through the plugin architecture. With the same principle, it can be easily
integrated with different VIMs via the plugin framework.

Network Slice Definition, Control and Management

In JOX, a network slice is represented by a JSlice. To define a JSlice, the NSI owner defines a
set of resources, requirements and services, service relationships and the corresponding
configurations. Currently, JOX provides a simple JSlice definition since standard templates
definitions is currently an open research issue.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 42 of (76) © SliceNet consortium 2018

Figure 16. JOX JSlice definition in JSON representation

Figure 16 depicts an empty network slice (without any resources or services), which can be
created as a POST message to JOX. In the future, template descriptions will be aligned with
the work delivered in OASIS TOSCA [29] and the modelling work in the Internet Engineering
Task Force (IETF) [30]. For every model, we utilize different namespaces for resources,
services and the bindings to services. This way a resource (e.g. a VM) is described using a
JSlice-JModel specific name. For example, the container identifier for the specific model is
“k2” while the container is hosted in machine “cF45” that can be a physical machine or a
container or a KVM virtual machine. Besides the information related to “where to deploy”
the service, the configuration of the service is passed together with its definition; otherwise
default configuration is loaded. This flexibility is enabled by the Juju framework, which
triggers the corresponding Juju Charm hooks (e.g. config-changed and relation-changed). In
this phase, a negotiation routine with the VIM can also be executed. Such negotiation
procedures were described in [31]. While a logical definition of services and networks are
initially requested by the slice, the VIM supports the requested capabilities, SLA and QoS
levels based on its current state and the book-keeping information maintained by the top-
level orchestrator.

JOX also supports the modification of the runtime state of a network slice in two modes:
auto and manual. In the former, the network slice controller detects a performance
degradation that leads to a SLA violation. In such case, specific actions need to be performed
through interactions with the plugin framework, for example, increase in memory and CPU
power to support the current workload, or increase the radio resources of a particular slice
to increase its data rate. In the manual mode, the network slice owner is able to adjust the
parameters and configurations of the network slice and the corresponding sub-elements
through the northbound APIs. In both cases, a set of monitoring services is exploited at the

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 43 of (76)

level of network slice (e.g., slice is healthy), the VNF, and the cloud infrastructure. These are
used to either trigger the necessary action sets or facilitate the decision maker procedures.

The ability to monitor and adjust the network slice behavior and characteristics in runtime is
an extremely powerful feature of JOX since it allows network slice logic to be easily
introduced. In the current version of JOX, this is achieved through direct interactions with
KVM, LXD hypervisors and the plugin framework for the RAN. Automatic events creation will
be supported in future release.

Building LTE VNF Chains for Network Slicing with JOX

JOX exploits a rich set of functions to enable network slicing through Juju VNFM and Charms.
Each Charm encapsulates every underlying LTE network module as a VNF, leveraging the OAI
platform [32]15. Figure 17 shows an example of using JOX to deploy two network slices with
different end-to-end logical networks. In slice A, the OAI eNB and EPC are deployed in a
single VM. In slice B, a cloud-RAN chain using disaggregated RAN is deployed over different
VMs. For every slice, the OAI solution can be chained using Juju relationship hooks and
appropriate VNFs. For example, different functional splits can be exploited between the RRU
and the BBU VNFs16. In this case, JOX orchestrates the deployment of standard LTE chain
(eNB, MME, SPGW, MySQL, and HSS) for a new JSlice17. With the support of Juju VNFM, JOX
has the ability to fully automate the deployment of a LTE network service chain in different
execution environments ranging from a physical machine to a container or a VM.

Figure 17. Network slicing in JOX

Throughout this use case, OAI service chains were deployed as a real-time LTE platform. Two
virtualization environments (LXC and KVM) were considered as the targets to deploy the LTE
services. For the sake of simplicity, the testbed is deployed in a physical machine. The
physical server infrastructure was based on commodity Linux-based machines, equipped
with 6-cores i7-3930K CPU at 3.2GHz and 16GB of RAM. Based on JOX, during the
deployment for all the VNFs, all the kernel dependencies were automatically satisfied

15

 OAI charms can be found at jujucharms.com/q/oai
16

 Example can be found at jujucharms.com/u/navid-nikaein/oai-5g-cran/
17

 Example of this service chain can be found at jujucharms.com/u/navid-nikaein/oai-nfv-4g/

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 44 of (76) © SliceNet consortium 2018

(because of the scripting inside the Charms installation hooks). In Juju, a common lifecycle
for a service has the following order (1) initialization: where the target environment is
instantiated, such as LXC, KVM, or physical machine; (2) installation: where the service is
installed on the environment; (3) configuration: where the service is reconfigured; (4) start
and stop: where the service is started or stopped depending on whether the service
relationships are met, and (5) relationship: where the service chain is built and dependencies
are met. In our setup during installation, the Juju Charms were available from Juju remote
repositories. Moreover, when chains are deployed, service dependencies may exist. For
instance, the relationship between MySQL and HSS cannot be built until the HSS is installed
and configured. This is the same between MME and SPGW/HSS, and between eNB and
MME. This imposes time delays that cannot be avoided, due to the way the relation hooks
operate in Juju. On the other hand, JOX orchestrates the service deployment and
automatically handles dependencies and conflicts through Juju, without requiring any other
action to be taken.

As a preliminary result, Figure 18 shows the deployment time of the LTE service chain. We
observe that the installation delay dominates in most of the service lifecycle, because the
services chains are deployed and built from source. The installation time can be reduced
drastically when deploying the service from a local package or an image.

Figure 18. Deployment time of VNF chains

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 45 of (76)

3.2 Automated Deployment of 5G Virtualised Infrastructure through
OpenStack and Heat

Figure 19. OpenStack service overview [14]

Figure 19 shows the logical architecture of OpenStack which mainly consists of [14]:

 The OpenStack Compute (Nova): Nova is the heart of OpenStack which provides
power massively scalable, on demand, self-service access to compute resources by
provisioning and managing large networks of virtual machines. The Compute service
facilitates this management through an abstraction layer that interfaces with
supported hypervisors including KVM, LXC, Hyper-V, Docker, bare metal, etc.;

 The OpenStack Block Storage service (Cinder) provides block storage resources for
compute instances;

 The OpenStack Networking service (Neutron, previously called Quantum): Neutron
provides “networking as a service” between interface devices managed by other
OpenStack services including DNS, Dynamic Host Configuration Protocol (DHCP), load
balancing, firewall, etc.;

 The OpenStack Image service (Glance) provides discovering, registering and
retrieving service for disk and server images;

 The OpenStack Identity service (Keystone): Keystone is a shared service that
provides API client authentication, service discovery, and distributed multi-tenant
authorization throughout the entire cloud infrastructure;

 The OpenStack Dashboard (Horizon) provides a web-based interface to OpenStack
services;

 RabbitMQ is a message queue service, which coordinates operations and status
information among OpenStack services.

3.2.1 Comparison of OpenStack Deployment Tools

Regarding OpenStack deployment, in order to avoid potential errors and to reduce the effort
needed for re-deployment and management, an automated deployment tool should be
used. Based on a preliminary investigation, there are several possible solutions for
automated OpenStack installation relying on different tools such as Mirantis Fuel [33],
Ubuntu Autopilot [34], OpenStack-Ansible [35] as well as the combination of Canonical’s
MAAS [36] and Juju. A brief comparison between these tools is shown in Table 1. The first
approach, i.e. a combination of Juju and MAAS, supports heterogeneous hypervisors along
with containers. It is proved to be very flexible regarding the architecture layout, while
remaining simple to use without extensive knowledge about OpenStack internals. The only
problem with Juju is that many tasks must be done manually such as service placement,

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 46 of (76) © SliceNet consortium 2018

monitoring and cluster maintenance. These issues are resolved in Autopilot, but this is a
commercial product with an expansion beyond the number of ten servers being possibly
quite costly. On the other hand, Mirantis Fuel is very stable, easy to use. However, it lacks
support for a lightweight visualization using containers and heterogeneous hypervisors.
Lastly, OpenStack-Ansible seems to be a very flexible solution, but with a much stepper
learning curve than the other tools. It is a perfect tool for a big deployment where a team of
system administrators can work on fine tuning of every OpenStack component. For small or
proof of concept (PoC) deployments, OpenStack-Ansible requires a lot more configuration
and tuning compared to other tools. As a result, in the context of SliceNet, we opted Juju
and MAAS as the OpenStack deployment tool.

For more information regarding the comparison of OpenStack deployment tools, please
refer to [37].

Table 1. A summary comparison of OpenStack deployment tools

 Juju and
MAAS

Autopilot Mirantis Fuel OpenStack
Ansible

Bare metal provisioning Yes Yes Yes No

Ease of service scaling Easy Easy Easy Moderate

Ease of cluster size scaling Easy Easy Easy Moderate

Ease of deployment
customization

Easy Hard Hard Moderate

OS Maintenance tools No Yes Yes No

OS Monitoring tools No Yes Yes No

GUI Yes Yes Yes No

LXD hypervisor support Yes Yes No No

VMware hypervisor support Yes Yes Yes Yes

KVM hypervisor support Yes Yes Yes Yes

Heterogeneous hypervisors Yes Yes No Yes

Supported operating
systems

Ubuntu/
CentOS

Ubuntu Ubuntu/CentOS Ubuntu/
CentOS/

openSUSE

Network auto configuration No Yes Yes No

Cost per server per year Free Not free* Free Free

Commercial support
available

No Yes Yes No

*) First 10 servers are free

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 47 of (76)

3.2.2 Deployment of OAI-based 5G Services

3.2.2.1 Juju/OpenStack

This section explains C-RAN deployment as an example of OAI-based 5G services deployment
on top of OpenStack which is in turn deployed by using the combination of Juju and MAAS.
The idea is that MAAS will be used to manage the hardware resources and provision the
servers that, later, will be used to deploy OpenStack services automatically by Juju. Finally,
the OAI services are implemented on top of OpenStack, which will be served as a cloud
provider.

The high-level architecture of the C-RAN deployment, which consists of EPC part (including
HSS, MME and SGW/PGW) and RAN part (BBU and RRU), is described in Figure 20. All the
network entities (MME, HSS, SGW/PGW, BBU, and RRU) will be deployed in a virtualized
environment on top of OpenStack. The radio card will be connected to the RRU via the
interface USB-3.0 which then allows a real UE to be attached to the deployed mobile
network via this wireless interface. This testbed uses OAI-CN to deploy the EPC functionality
while OAI-RAN for the BBU and RRU functionality.

From a practical point of view, different network entities have different requirements in
terms of latency, power and kernel support. RRU is a network element that interfaces
directly with RF equipment (for example, commodity lab RF SDR platforms such as USRP
B200/B210) via USB3.0 for over-the-air (OTA) experiments, its performance should be close
to bare metal speeds. In addition, USB-Passthrough is needed to pass USB devices to the
OpenStack instance that will be used to deploy the functionality of a RRU. On the other
hand, BBU typically requires much more power in comparison to RRU. Thus, the OpenStack
instances for the EPC entities and BBU can be deployed using such a high-power hardware
(HW)/CPU platform while a Personal Computer (PC) or a low-power platform can be used to
host RRUs. Additionally, BBU needs a low latency kernel while SGW/PGW needs a special
kernel module to support GTP as required to deploy OAI software stack [4]. As a result,
different types of hypervisor may be needed for different types of VM or container. For
instance, both KVM and LXC can be used to deploy EPC and BBU while LXC should be used
for the deployment of RRU as described in Figure 20. Therefore, two possibilities are
considered as follows:

 Using LXC to deploy all network entities: In this case, the host machine needs to be
installed with the kernel supporting GTP for SGW/PGW;

 Defining two different zones: one zone for KVM and another for LXC (e.g., using the
notion of availability zone in MAAS). EPC entities as well as BBU could be deployed on
either KVM or LXC zone while RRU on LXC zone. In this case, MAAS has to deal with
tag to deploy the instances in the corresponding zone.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 48 of (76) © SliceNet consortium 2018

Figure 20. C-RAN deployment on top of OpenStack

For instance, we adopted the first alternative. This means that LXC is used to deploy all
network entities including EPC (HSS, MME, SGW/PGW), BBU as well as RRU. Accordingly, the
testbed consists of two workstations (namely Xenial1 and Xenial2), two PCs (namely
Neptune and Venus), one Laptop (namely Sud) and one switch as shown in Figure 21.
Mapping to the C-RAN high-level architecture, the two workstations will host the OpenStack
instances to deploy EPC and BBU functionality (as well as OpenStack services) while the two
PCs will be used to deploy RRUs. The laptop will be responsible for MAAS/Juju controller
deployment. All devices are interconnected using a central Ethernet switch using 1GbE
interfaces18. The laptop is also connected to the external network and acts as a gateway for
the internal one. Here are the specifications for the hardware used to set up the testbed:

 Two Workstations (Xenial1 and Xenial2):
o 10 CPU cores, 64GB of RAM, 296GB of Hard disk drive (HDD)
o Interfaces: two Gigabit Ethernet (GbE), two small form-factor pluggable (SFP+),

and one iDRAC;

 Two PCs (Neptune and Venus):
o CPU cores, 32GB of RAM, 500GB of HDD
o Interface: 1GbE

 One Laptop (Sud):
o CPU cores, 8GB of RAM, 500GB of HDD
o Interface: two GbE

 One Cisco 2960X Ethernet switch:
o Interfaces: 24 x 1GbE, two SFP+

18

 Xenial1 and Xenial2 servers will be interconnected using 10GbE interfaces in the future.

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 49 of (76)

Figure 21. C-RAN testbed

Figure 22 shows the real image of the testbed deployed at Eurecom.

Figure 22. Image of the C-RAN testbed

Network Planning

In the context of SliceNet, network isolation is a useful feature to support network slicing.
OpenStack introduces the notion of tenant networks for connectivity within projects by
relying on different types of network isolation and overlay technologies such as Virtual Local
Area Network (VLAN), Virtual Extensible LAN (VxLAN) and Generic Routing Encapsulation
(GRE). For our testbed, VLAN is used. Again, for the sake of simplicity, only one internal
network is defined for the moment. As a result, the following IP networks can be
distinguished (see also Table 2):

 External Network - Eurecom managed network, used for the Internet access.

Cisco Switch

2 x Workstations
(Xenial1, Xenial2)

2x PCs (Neptune,
Venus)

Laptop (Sud)

RF card

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 50 of (76) © SliceNet consortium 2018

 Internal Network - Network managed by MAAS, used for management, server
provisioning and OpenStack traffic (including Neutron). DNS and DHCP provided by
MAAS.

 Public Network - Network used for publicly routable floating IPs. For the moment,
this network is not necessary.

Table 2. Parameters of the C-RAN testbed networks

Name CIDR Gateway DNS DHCP

External
network

192.168.12.0/24 192.168.12.100 192.168.12.100

Internal
network

10.123.0.0/24 10.123.0.1 10.123.0.1 10.123.0.2 -
10.123.0.20

Public network - - - -

It is noted that the addresses reserved for DHCP are used by MAAS to bootstrap the physical
servers.

C-RAN Deployment

To deploy C-RAN testbed, several steps need to be executed. First, the physical machines
need to be interconnected as described in Figure 21. The laptop, acting as a gateway for
Internet connection, needs to be configured to allow the OpenStack instances connect to
Internet via this computer and setup interfaces for MAAS internal network. After MAAS
installation, a virtual machine, which will be served as a Juju controller, is created and
commissioned by MAAS. The next step is to deploy Juju controller to the previously created
virtual machine. After powering the physical servers up, they will be detected, and then will
be commissioned by MAAS. At the end of this step, they are ready for the deployment of the
OpenStack services. The machines commissioned by MAAS can be seen from MAAS’ GUI as
shown in Figure 23.

Figure 23. Machines commissioned in MAAS

The deployment of OpenStack services is then orchestrated by Juju using machines
provisioned by MAAS. In this case, Juju first creates a new model for OpenStack-related

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 51 of (76)

services and then deploys them using a corresponding bundle file (bundle.yaml). The bundle
file defines all the required OpenStack services, their configuration, placement and
interaction between them. For the moment, several OpenStack services are needed
including the OpenStack Dashboard (Horizon), the OpenStack Identity service (Keystone), the
OpenStack Image service (Glance), the OpenStack Compute (Nova), the OpenStack
Networking service (Neutron), RabbitMQ, MySQL, and OVS. Specifically, Table 3 shows the
placement of OpenStack-related services. From a practical standpoint, the following steps
are executed to deploy OpenStack services.

Step 1: Switch off all of the physical machines where we wish to deploy OpenStack services
(including Xenial 1, Xenial2, Venus and Neptune).

Step 2: Create a new Juju model.

$juju add-model os

Step 3: Verify that Juju controller is working.

$juju status

Step 4: To deploy OpenStack, launch the following command:

$juju deploy bundle.yaml

It takes approximately 30 minutes to deploy OpenStack services. We can observe the
progress of the deployment using the following command:

$watch -c juju status --color "${@:1}"

Step 5: When Juju reports that all services are deployed and ready, execute the following
command to find out the IP address of Horizon interface:

$juju status | grep openstack-dashboard

Step 6: Go to http://<openstack_dashboard_IP>/horizon and login to Horizon to manage
OpenStack services.

Table 3. Placement of OpenStack and other services at the machines of the testbed

Xenial 1 Xenial 2 Neptune Venus

Horizon (LXD) Nova-compute-
KVM/LXD

Nova-Compute-LXD Nova-Compute-LXD

MySQL (LXD) OVS OVS OVS

RabbitMQ

Keystone (LXD)

Glance (LXD)

Nova-cloud-controller

Neutron-API

Neutron-Gateway

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 52 of (76) © SliceNet consortium 2018

After the setup of OpenStack services, several configuration steps are required in order to
obtain a minimal working cloud environment e.g., configure internal/external network and
subnet, configure availability zones, import images into OpenStack Glance and setup Secure
Shell (SSH) connections for the OpenStack instances. For more information regarding
OpenStack configuration, please refer to [51].

Passthrough Radio Card to a Virtual Instance

As mentioned earlier, the RF card will be connected to RRU via USB 3.0, which allows user to
connect to the deployed mobile network via a wireless interface. However, in a virtualized
environment managed by OpenStack, it is not straightforward. In other words, USB devices
are not automatically attached to an OpenStack instance. USB-passthrough is therefore
needed to pass USB devices into an instance. Based on a preliminary investment, there is
three possible solutions for USB-passthrough including (i) implementation of USB-
passthrough feature into OpenStack; (ii) out-of-band USB-passthrough using Juju; and (iii)
USB controller passthrough using PCI-passthrough [51].

As an example, we use the third solution for USB-passthrough since this solution only
depends on the possibility to support passthrough under KVM/LXD (independence from
Juju/OpenStack). In this solution, the script to attach USB cards to an instance can be
executed as a standalone script. It can also be executed automatically as a Juju action.
Basically, this script will detect the instance where the RF will be connected to and attach
the card to this instance accordingly.

By using OpenStack, we created several instances for setting up the testbed as shown in
Figure 24. For the first deployment, we could have to install the functionalities of all the
network entities by following the instruction from OAI-RAN [2] and OAI-CN [4]. However, we
then can use these instances to create the corresponding images which allow to deploy a
new instance for RRC, RRU, EPC components or even a new C-RAN testbed easily and quickly
in OpenStack environment.

Figure 24. C-RAN instances in OpenStack environment

Finally, we have a fully functional mobile network. We then use a commercial off-the-shelf
(COTS) UE to verify the functionality of the deployed mobile network. As expected, the UE

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 53 of (76)

can successfully attach to the deployed mobile network and establish a PDN connection to
the Internet (as can be seen in Figure 25). Figure 26 shows the MME log with the information
related to the connected eNB and the connected UE.

Figure 25. UE connected to the deployed network – OpenAirInterface

Figure 26. UE connected to the deployed network

3.2.2.2 Heat

Heat [52] is OpenStack's main orchestration component, which is capable of launching
deployments of complex cloud applications described in text files (called templates). The
following is a simple Heat template (Heat Orchestration Template, or HOT) describing a
typical OAI-based LTE deployment with four main components – HSS, MME, S/P GW, and
eNB.

heat_template_version: 2015-05-23
description: LTEaaS
parameters:
 key_name:
 type: string
 description: Name of a KeyPair to enable SSH access to the instance
 default : cloudkey

resources:

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 54 of (76) © SliceNet consortium 2018

 HSS:
 type: OS::Nova::Server
 properties:
 image: hss-1
 flavor: HSS.med
 key_name: cloudkey
 networks: [{ network: PUBLIC_NETWORK }]
 user_data: |
 #!/bin/bash
 MY_IP=`ip addr show dev eth0 | awk -F'[/]*' '/inet /{print $3}'`
 sed -i 's/MY_IP/'$MY_IP'/g' /etc/hosts
 hostname hss-1
 run_hss

SPGW:
 type: OS::Nova::Server
 properties:
 image: epc-3
 flavor: EPC.med
 key_name: cloudkey
 networks: [{network: PUBLIC_NETWORK }]
 user_data:
 str_replace:
 template: |
 #!/bin/bash
 MY_IP=`ip addr show dev eth0 | awk -F'[/]*' '/inet /{print $3}'`
 sed -i 's#MY_IP_S1#'$MY_IP'/24#g' spgw.conf
 sed -i 's#MY_IP#'$MY_IP'/24#g' spgw.conf
 run_spgw

 MME:
 type: OS::Nova::Server
 properties:
 image: epc-3
 flavor: EPC.med
 key_name: cloudkey
 networks: [{network: PUBLIC_NETWORK }]
 user_data:
 str_replace:
 template: |
 #!/bin/bash
 MY_IP=`ip addr show dev eth0 | awk -F'[/]*' '/inet /{print $3}'`
 sed -i 's/MY_IP/'$MY_IP'/g' /etc/hosts
 sed -i 's/HSS_IP/'$HSS_IP'/g' /etc/hosts
 sed -i 's#MY_IP_S11#'$SPGW_IP'/24#g' mme.conf

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 55 of (76)

 sed -i 's#MY_IP_S1#'$MY_IP'/24#g' mme.conf
 sed -i 's#MY_IP#'$MY_IP'/24#g' mme.conf
 hostname mme-1
 run_mme
 params:
 $HSS_IP: { get_attr: [HSS, first_address] }
 $SPGW_IP: { get_attr: [SPGW, first_address] }

 ENB:
 type: OS::Nova::Server
 properties:
 flavor: eNB.med
 image: enb-usrp
 key_name: cloudkey
 networks: [{ network: PUBLIC_NETWORK }]
 user_data:
 str_replace:
 template: |
 #!/bin/bash -v
 MY_IP=`ip addr show dev eth0 | awk -F'[/]*' '/inet /{print $3}'`/24
 sed -i 's#MY_IP_ADDRESS_REPLACE#'$MY_IP'#g' enb.conf
 sed -i 's#MME_IP_ADDRESS_REPLACE#$MME_IP#g' enb.conf
 ./lte-softmodem -O enb.conf

 params:
 $MME_IP: { get_attr: [MME, first_address] }

A Heat template typically contains several sections:

 heat_template_version is used to specify the version of the template syntax that is
used.

 description is used to provide a description of what the template does.

 parameters provides input parameters which allow users to customize a template
during deployment.

 resources is the most important section in a template. It defines compute instances
together with the information related to which flavour, image, public key and
network to use for these instances. In this example, three instances are defined: HSS,
EPC, and eNB.

Please refer to [53] for more information regarding HOT syntax.

3.2.3 Deployment of OAI-based vEPC Services

In order to satisfy all the needs of the operators to come up with an NFV architecture that
will meet all the requirements for virtualizing the mobile packet core, it is imperative that we
will first present first the requirements of the mobile services and applications that will be
running on the top of the mobile packet core.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 56 of (76) © SliceNet consortium 2018

Figure 27. Evolved Packet Core Network components

The user equipment connects to the network over the uU interface to the eNB. The
connection terminates on the PDN Gateway. The MME, HSS and SGW are other important
components in establishing the connection and providing subscriber service and make up
the evolved packet core.

Figure 28. OSI layers and protocols used on the control plane between the UE and MME of
an LTE network

The process of attaching an UE to an LTE network has to take place in five phases involving
six of the functional nodes from the network. The five phases are the following:

 UE Identity acquisition, in this phase the UE identifies itself to the network by
communicating its International Mobile Subscriber Identity (IMSI) identifier, another
identifier used, based on the network implementation, is the Globally Unique
Temporary Identifier (GUTI). IMSI is a unique ID that globally identifies a mobile
subscriber. It is composed of two parts, namely PLMN ID and Mobile Subscription
Identification Number (MSIN). A PLMN ID is an ID that globally identifies a mobile
operator (is a combination of MCC and MNC). MSIN is a unique ID that identifies a
mobile subscriber within a mobile operator. In contrary, GUTI comes as a security
improve of the IMSI identification in the radio link connection of the mobile
subscriber. Unlike IMSI, a GUTI is not permanent, but changed into a new value
whenever generated. When the process of initial attach for an UE to an LTE network
takes place, it sends its IMSI to the network for authentication to be identified. Once
connection is established, the MME delivers a GUTI value through Attachment Accept
message to the UE. This value is then can be used as its ID instead of IMSI when it
reattaches to the network.

 Authentication, in this phase the mutual authentication is realized by the EPS-AKA
method. This method supposes that all the keys that are needed for various security
mechanism are derived from an intermediate key which is viewed as the local master
key for the subscriber in contrast to the permanent master key. Inside the network
side, the local master key is stored in the MME and the permanent master key is
stored in the AuC. This approach provides the following advantages:
o It enables cryptographic key separation.

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 57 of (76)

o The system is improved by providing key freshness and it is possible to renew the
keys used in security mechanism.

 Non-Access Stratum Security Setup

 Localization Update, in this phase the MME informs the HSS that it manages the UE
and recovers the services to which the UE has subscription.

 EPS Session Establishment, in this phase the bearer is realized based on the QCI.

All the above detailed phases can be identified in the Figure 29.

Figure 29. The UE attachment phases

In an NFV architecture, two models need to be taken into account:

 SGW, PGW, MME and HSS collocated in the same data center;

 MME + SGSN (WCDMA) located in the regional data centers and PGW or SGW + HSS
+ IP services located in the core or the national data center.

In the second case where one or more components may be distributed, the underlying
infrastructure design including OpenStack will be impacted. This is referred to as Distributed
NFV. If only some 3GPP functions are placed in the regions/ edge of the network, we may
choose to deploy on compute nodes in that region as long as the latency is below the latency
threshold of OpenStack and application control plane. Those compute nodes may be
integrated with storage and deployed as Hyper Converged Infrastructure. In some cases, a
smaller deployment of OpenStack may be used in these regions. This raises a lot of design
questions regarding the shared identity infrastructure (referring to the OpenStack identity
Service (Keystone)) and image service (referring to the OpenStack Image Service (Glance)).

Virtual Private Clouds may be deployed in many different ways:

 Dedicated Private Cloud for VPC;

 Collocated with other VNFs in operators private cloud;

 Hosted in public clouds (IaaS, Platform as a Service (PaaS) or Virtual Network
Function as a Servic (VNFaaS));

 Hosted in vendors private cloud and offered as a service.

VNF vendors tend to bundle combinations of the above services based on functional
requirements of operators. These combinations could lead to varying deployment models all
the way from the number of VMs to High Availability (HA), scale, traffic mix, and throughput
requirements.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 58 of (76) © SliceNet consortium 2018

Depending on the type of services being deployed, the VNFs may be deployed in one of the
following ways:

 Lightweight deployment using an All-in-One OpenStack deployment that typically
runs on a single server:
o If multiple functions are required, multiple servers are deployed, each running

the VNF. This deployment scenario can be observed in Figure 30.

Figure 30. Lightweight All-in-One OpenStack Virtual Private Cloud deployment for vEPC

o Runs on blade or rack-mount servers;
o Suitable for cloud deployment on private, public or hybrid-clouds;

 Running on pre-bundled, fixed configuration blade-servers over KVM hypervisor;

 Full HA OpenStack Platform deployment comprising of multiple servers.

The Internet facing interface of the EPC network is referred as SGi in 3GPP specifications. As
a packet leaves the gateway (PGW), it has no longer a context about the subscriber. It is a
pure IP packet. IP services such as DPI, Parental Control, Video Optimization, Web
Optimization, URL filtering/enrichment, Firewall and NAT are applied to the IP packets as
they leave the mobile network towards the Internet. Since these services reside on the SGi
interface, they are commonly referred to as GI-LAN services. Such services are typically
deployed in some combinations and form a logical chain.

In most of the mobile networks, there is some variation of GI-LAN service, but restricted to
APN granularity, rather than subscriber level. This is because traditional GI-LAN service
requires physical connections to form the chain. In today’s solutions, SDN is used to create
logical chains between GI-LAN elements. In this case, the actual application runs in a virtual
environment typically on top of an OpenStack environment, rather than purpose-specific
appliances. This approach offers a huge advantage because applications can scale based on
demand and conversely shrink. A typical example of this would be when people return from
work and turn on their TV or Over-The-Top (OTT) video, this creates a surge in traffic and
creates a demand on GI-LAN elements.

If we analyze the situation from the infrastructure point of view, GI-LAN will closely resemble
the vEPC VNF, it will have the same requirements of orchestrations, VNF lifecycle
management, performance and security. Alongside those common requirements as
mentioned earlier, GI-LAN will require metering capability to determine the resource usage,
to be able to grow and shrink upon demand. This requirement is aiming at the future
capability of growing and shrinking automatically. Another requirement for the GI-LAN is
regarding the compatibility of the OpenStack with the Service Function Chaining that will
have to support. Service Function Chaining encapsulation can leverage Network Service
Header or Multi-Protocol Label Switching (MPLS).

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 59 of (76)

vEPC components such as SGW and PGW may be placed either centrally at the core data
center or regionally to serve the local cell sites or exit points. In LTE, the SGW selection is
typically based on the network topology as well as the location of the UE (Tracking Area
Code, TAC). The subscriber connection terminates on the PGW and the decision of which
PGW to assign to the subscriber depends on the subscription context including the
information related to the Access Point Name (APN), among the others. vEPC enables mobile
network operators and enablers to use a virtual infrastructure to host voice and data
services, rather than using an infrastructure built with physical functions only.

Network slicing or network multi-tenancy, being a capability also enabled by vEPC, pose a
prerequisite for providing multiple services simultaneously. By using the vEPC approach, the
mobile network operators (MNOs) can reduce OPEX and CAPEX, while speeding up delivery
and enabling on-demand scalability.

In a vEPC, most of the above-mentioned functions may be virtualized, including PGW, SGW,
MME, PCRF, FW, Router, DPI, Switches and LB. This case is typically for the operators who
are building a new mobile packet core or upgrading and adopt virtualization approach.

The approach to deploy vEPC is based on NFV technology, where vEPC is seen as a NFV use
case. However, within a general Virtual Packet Core (VPC) case, the MNOs may have more
specific use cases depending on what services they provide.

The vEPC solution is based on a NFV-SDN Architecture, all entities (MME, HSS, PGW, SGW
and PCF) being implemented in this case with support of VMs (or containers), instantiated
through a Controller node (OpenStack deployment). The VMs are then instantiated and
managed from Cloud, based on the ETSI MANO approach with resources for the VNF given
by the NFVI. This approach is straightforward in order to implement the functions of a classic
EPC, so each NE can be implemented as a single or multiple VMs, as a multi-tenancy
implementation.

Figure 31. vEPC solution is based on a NFV-SDN Architecture

OpenAirInterface (OAI) as is presented in [2] is an open source Rel-10/Rel-14 3GPP
compliant reference implementation of EPC and E-UTRAN that runs on general purpose
computing platform. The software is capable of interface with commodity lab RF SDR
platforms for OTA experiments with commercial devices. The potential of OAI can be
exploited within the R&D SliceNet scope for open vEPC core network, integrated into a
scenario combining the virtualized RAN and Core Infrastructure, which will be then applied
to the SliceNet use-cases and integrated within the SliceNet architecture.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 60 of (76) © SliceNet consortium 2018

In the context of OPNFV project, OAI offers the potential to test OPNFV infrastructure within
the framework of Functest project [39], offering several open source 3GPP 4G/5G VNFs, for
example, EPC (HSS, MME, S/PGW), BBU, OAISIM (OAI Simulator for 3GPP RAN), RRU, and UE.
The communication between the different VNFs within OAI can happen over standard IP
Communication interface thus avoiding the need of special purpose servers/RF equipment
for testing OAI.

The current plan for OAI is to integrate OAI EPC as a VNF within OPNFV Functest as a part of
Danube, the fourth OPNFV release, as described in [40].

OAI community is working in disaggregating OAI EPC into HSS, MME, SGW, and PGW. All the
different EPC components will run in their own virtual environments and be chained
together with service orchestrator to provide EPC functionality.

Figure 32. OAI as VNF within OPNFV [38]

OAI can provide several interesting use cases around 4G/5G cellular deployment within
OPNFV. The OAI community is also working towards creating SDN interfaces which can be
leveraged for more complex test cases involving SDN controllers such as ODL and ONOS M-
CORD19.

OAI integration in the KVM4NFV project [41] shows that the RAN virtualization may make
higher demand on computing capability and the hypervisors are not designed or targeted for
the specific Telco NFVI requirements, mainly due to the performance features. The Pharos
project [42] is developing an OPNFV lab infrastructure integrating OAI as VNF, managed by
Juju which opens up interesting possibilities for further integration and testing within the
Pharos test labs.

The OAI Community also aims to work closely with ETSI NFV/ETSI MEC ISG, for example in
terms of providing PoCs demonstrating key concepts of these work groups.

In the future, OAI continues to work in close collaboration with OPNFV communities for joint
demonstration and for working towards an end-to-end ETSI NFV platform based on open
source tools. OAI is also working to develop its core software for future 3GPP releases
towards 5G. Furthermore, OAI testing within OPNFV Pharos Labs using OPNFV Functest

19

 Mobile CORD, https://wiki.opencord.org/display/CORD/Mobile+CORD

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 61 of (76)

provides valuable feedback to the OAI community. OAI integration with OPNFV in
conjunction with other open source projects has the potential to create an end-to-end
reference platform built on open source software that can be potentially used by
3GPP/ETSI/NGMN for PoC and demonstration.

3.2.4 Deployment of Athonet-based vEPC Services

Athonet [54] provides a complete software-based mobile packet core solution (EPC) which
also includes a HSS, Voice-over-LTE (IMS for VoLTE), and LTE Broadcast (eMBMS). The
industry's most efficient mobile core solution that can be deployed in fully virtualised
environments (NFV), enterprise data centres or on standard off-the-shelf servers. It can be
used in highly distributed deployments in Tier 1 Mobile Operators and OTE has deployed it in
its labAthonet vEPC architecture.

Athonet’s LTE mobile core complies with the default 3GPP interfaces as shown in the figure
below.

Figure 33. Athonet vEPC architecture [52]

The EPC, which contains the core network nodes MME, SGW (S-GW), PGW (P-GW), HSS,
PCRF, connects externally via the following 3GPP compliant interfaces:

 S1: connects EPC to access nodes

 S5/S8: connects SGW and PGW

 S6a: connects MME and HSS for the authentication of user access and profiling

 Gx: connects PCRF and PGW and enables the PCRF to prioritize certain type of data

 Rx: connects the PCRF to external AF (application function such as IMS)

 Gx: connects PCRF and PGW and enables the PCRF to prioritize certain type of data
traffic

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 62 of (76) © SliceNet consortium 2018

 Gy: for online charging

 Bx: FTP(S) based interface which allows billing systems

 Cx: Diameter interface

 SGi: connects the PGW to Intranet and Internet

MME

The MME supports the following features:

 S1-MME: it is the interface to connect the MME to eNBs

 S6a: Diameter interface for authorization of the users

SGW

The SGW follows 3GPP specifications Rel-12 and supports the following:

 S1-U: GTPv1-U interface for connecting the SGW to the eNBs

 S5/S8: GTPv2 interface to connect SGW and PGW

 X2 handover

 S1 Release procedure

PGW

The PGW follows 3GPP specifications Rel-12 and supports the following features:

 SGi: connects the PGW to Intranet and Internet

 S5/S8: GTP2v interface to connect SGW and PGW

 Gx: connects PCRF and PGW and enables PCRF to prioritize traffic

 VRF support

PCRF

The PCRF also follows Rel-12 and supports the features:

 Rx: to connect PCRF to external application function

 Create/delete bearers

 Subscription repository

 Policy based services

HSS

The HSS follows also 3GPP Rel-12 specifications and supports the following features:

 S6a: Diameter interface for transfer transcription

 USIM credentials

 EPC user profile management

3.2.4.1 QoS Settings

The QoS settings can be done according to QCI, Gradual Bit Rate (GBR), Maximum Bit Rate
(MBR) and Priority values.

3.2.4.2 System Management

Athonet has implemented Element Management System (EMS) for the core management
system. It can manage system configuration and 3GPP nodes, user management and QoS
profile management, detailed user activity and secure access.

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 63 of (76)

Integration points are available for connecting the vEPC to third parties:

 SNMP for KPI and performance monitoring

 SNMP traps for alarm monitoring

 RESTful API for user provisioning, profile assignment, activating and de-activating
users

Supported protocols, interfaces and standards

 Architecture enhancements for non-3GPP access, according to 3GPP 23.402

 Intra-domain connection of RAN nodes to multiple CN nodes according to 3GPP
23.236

 Network sharing according to 3GPP 23.251

 Stream Control Transmission Protocol (SCTP) according to RFC 4960

 User Datagram Protocol according to RFC 768

 Internet Protocol according to RFC 791

 Transmission Control Protocol according to RFC 793

 Internet Protocol version 6 (IPv6) specification according to RFC 2460

 GTP-U based interfaces according to 3GPP 29.060-29.281

 QoS architecture according to 3GPP 23.107

 Diameter interfaces according to 3GPP 29.230

 S1-AP according to 3GPP 36.413

 S1 data transport according to 3GPP 36.414

 NAS-EPS according to 3GPP 24.301

 Gy interface according to 3GPP 32.299 and RFC 4006

 Bx interface according to 3GPP 32.251, 3GPP 32.297, 3GPP 32.298

 Rx interface according to 3GPP 23.203

 Gx interface according to according to 3GPP 29.212

 Cx interface according to 3GPP 29.228-9

3.3 Manual Deployment of 5G Virtualised Infrastructure through Linux
Utility

In this subsection, we deploy a simplified version of C-RAN (as shown in Figure 20) by relying
on different Linux utilities such as LXC, LXD, KVM and Docker. In this case, instead of
deploying HSS, MME, and SGW/PGW in separate entities, we install all the EPC
functionalities on one container/virtual machine.

3.3.1 LXC

Linux Containers (LXC) [43] is an operating-system-level virtualization method for running
multiple isolated Linux systems (containers) on a control host. Linux containers can offer an
environment as close as possible to a standard Linux installation without the need for a
separate kernel and all the hardware simulation.

The following paragraph will briefly go through the main steps to install LXC and use LXC to
deploy a C-RAN testbed based on OAI-RAN and OAI-CN.

Step 1: LXC installation

To install LXC and the required packages, execute the following command:

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 64 of (76) © SliceNet consortium 2018

$sudo apt-get install lxc lxc-template bridge-utils

Before creating the containers, we need to configure the network for the containers which
then allow to set up different private networks (please refer to [44] for more information).

Step 2: Creating a container

To create a new container, we use “lxc-create” command. For example, the following
command is to create a new container namely bbu_lxc based on Ubuntu 16.04 (64-bit).

$sudo lxc-create -n bbu_lxc -t ubuntu -- -r xenial -a amd64

To deploy the C-RAN testbed, three containers are needed for deploying EPC, BBU and RRU.

$sudo lxc-create -n oai-epc -t ubuntu -- -r xenial -a amd64
$sudo lxc-create -n oai-bbu -t ubuntu -- -r xenial -a amd64
$sudo lxc-create -n oai-rru -t ubuntu -- -r xenial -a amd64

Step 3: OAI installation

After creating the containers, we start these containers and then use these containers to
deploy OAI software.

We first start the containers by using the following commands:

$sudo lxc-start -n oai-epc
$sudo lxc-start -n oai-bbu
$sudo lxc-start -n oai-rru

After that, we can see the list of deployed containers by using “lxc-ls” command:

Figure 34. List of deployed LXC containers

In order to deploy the BBU/RRU functionality, we login to oai-bbu/oai-rru container and
follow the installation guide from [2].

$sudo lxc-console -n oai-bbu

For more details, we first get the OAI source code from OAI Git repository20.

$git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git
$cd openairinterface5g
$git checkout develop

We then build OAI as a BBU by using the following commands:

$cd openairinterface5g
$source oaienv
$cd cmake_targets
$./build_oai -I
install SW packages from internet
$./cmake_targets/build_oai -c -x -t ETHERNET -w USRP --eNB

20

 https://gitlab.eurecom.fr/oai/openairinterface5g/

https://gitlab.eurecom.fr/oai/openairinterface5g.git

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 65 of (76)

Similarly, we install OAI-EPC on top of oai-epc container by following the installation guide
from [4]. The BBU then needs to be configured to talk with the EPC and RRU. The same step
should also be done for EPC and RRU. Please refer to [2] [4] for more information on OAI
installation.

Step 4: USB-passthrough

Similar to the C-RAN deployment on top of OpenStack, USB-passthrough needs to be done
to allow the radio card to be attached to the oai-rru container. One possible solution is to
modify the LXC configuration file of the corresponding container, for example, as following

lxc.mount.entry = /dev/bus/usb/XXX dev/bus/usb/XXX none bind,optional,create=dir
USB Dongle for weather station
lxc.cgroup.devices.allow = c YYY:* rwm

Where XXX is the bus ID where the USB device is attached and YYY is the character device ID.

Step 5: Launch the testbed

We first access to oai-cn container and launch the HSS, MME and SGW/PGW accordingly.

$cd openair-cn/scripts
$./run_hss
$./run_mme
$./run_spgw

We then access to oai-rru and oai-bbu to launch RRU and BBU functionality.

For example, the following commands are to launch BBU:

$cd openairinterface5g/cmake_targets/lte_build_oai/build/
$sudo ./lte-softmodem -O
/home/ubuntu/openair5g/openairinterface5g/targets/PROJECTS/GENERIC-LTE-
EPC/CONF/rrc.band7.tm1.usrpb210.conf

After this step, a fully functional mobile network is deployed. We can see from MME that the
deployed BBU (eNB) has been connected to the core network, however, without any
connected UE.

Figure 35. MME log without any connected UE

The deployed network then hosts a COTS UE (see Figure 36 and Figure 37). Again, we can
clearly see that the UE is attached to OpenAirInterface network.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 66 of (76) © SliceNet consortium 2018

Figure 36. MME log with a connected UE

Figure 37. UE connected to the deployed network using LXC (OpenAirInterface)

3.3.2 LXD

LXD [45] is a container hypervisor providing a REST API to manage LXC containers. In fact,
LXD is building on top of LXC to provide a new, better user experience.

Using LXD to deploy a C-RAN testbed, as LXC, similar steps are executed to install LXD,
configure LXD environment, create LXC containers for EPC/BBU/RRU and install OAI software
on these containers. From a technical standpoint, the following steps are executed.

Step 1: Install LXD

$sudo apt update
$sudo apt install lxd

Step 2: Setup LXD and configure LXD environment

We first execute “sudo lxd init” command and then follow the instruction to provide
additional information related to the network configuration.

Step 3: Launch a container

The following commands create three LXC containers for oai-epc, oai-bbu and oai-rru.

$lxc launch ubuntu:16.04 oai-epc
$lxc launch ubuntu:16.04 oai-bbu
$lxc launch ubuntu:16.04 oai-rru

We can check the active containers by using “lxc list” command.

https://linuxcontainers.org/lxd

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 67 of (76)

Figure 38. List of active LXC containers (created by LXD)

Again, OAI functionality is deployed on these LXC containers similar to that in the subsection
3.3.1.

Regarding USB-passthrough, LXD version 2.5 or higher is required. To achieve that, we install
LXD version 2.5 from the source code21 and deploy this version to the host where we will
attach the RF card via USB3.0 [51]. We then execute the following command from the
selected host to attach the USB device to the oai-rru container.

$sudo lxc config device add oai-rru 5G_card usb vendorid=2500 productid=0020

Where “5G_card ” is the name of the RF card. The information regarding the vendorid and
productid can be found by using “lsusb” command as follows:

Figure 39. Vendor ID and product ID of the RF card

Finally, we can launch all the entities in a similar way as mentioned in the previous section
and attach a COTS UE to the deployed mobile network.

3.3.3 KVM

Unlike LXC, KVM (Kernel-based Virtual Machine) [46] virtualization requires a separate
kernel instance and dedicated resources to run. KVM, categorized as full-virtualized type,
abstracts hardware and operating system by emulation or pass-through hardware. KVM is a
favourite hypervisor of the OpenStack project and is used in most OpenStack distributions.
However, with the release of LXC 2.0 and LXD, LXC/LXD increasingly gains the support from
OpenStack. In comparison with KVM, LXC allows to reduce the overhead, which in turn
provide the capability to support a large number of containers and allow delivering bare
metal performance. In our case, as mentioned earlier, LXC may be suitable for deploying RRU
and eNB (in a typical LTE scenario) which need to perform as close as possible to bare-metal
speeds. On the other hand, KVM may be more suitable when some kernel requirements are
taken into account. It is worthy to note that for the moment how to attach the RF to a KVM
instance via USB-passthrough is still an open issue. Both KVM and LXC/LXD are supported by
OpenStack.

Here are some quick steps to deploy OAI-based 5G services under KVM.

Step 1: Install KVM

21

 https://github.com/lxc/lxd

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 68 of (76) © SliceNet consortium 2018

$sudo apt-get install qemu-kvm libvirt-bin bridge-utils virtinst

Step 2: After configuring networking (by relying on the bridged mechanism) and adding user
to the libvirtd group, create a KVM instance by using the following commands:

$sudo virt-install -n web_devel -r 512 --disk
path=/var/lib/libvirt/images/web_devel.img,bus=virtio,size=4 -c
ubuntu-16.04-i386.iso --network network=default,model=virtio
--graphics vnc,listen=0.0.0.0 --noautoconsole -v

Please refer to [47] for more information regarding KVM installation under Ubuntu.

3.3.4 Docker

Docker [48] similar to LXC is relied on the Linux kernel features such as cgroups, namespaces
and apparmor to create a virtualized isolated environment. As a result, the performance of
both LXC and Docker is very similar. Docker typically acts as an application container which
packages the application and all its dependencies in a virtual container that can run on any
Linux server that supports the container runtime environment. In other words, Docker
containers typically run only a single process per container.

Here are some basic steps to install Docker (Community Edition - CE) e.g., using the Docker
repository [49].

Step 1: Setup the Docker repository

$sudo apt-get update
$sudo apt-get install apt-transport-https ca-certificates curl software-properties-common
$curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
$sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 Stable"

Step 2: install Docker CE

To install the latest version of Docker, launch the following commands:

$sudo apt-get update
$sudo apt-get install docker-ce

To install a specific version of Docker CE, list the available versions in the repo, then select
and install:

$apt-cache madison docker-ce
$sudo apt-get install docker-ce=<VERSION>

Step 3: Verify that Docker CE is installed correctly by running the hello-world image.

$sudo docker run hello-world

Step 4: Deploy OAI functionalities (EPC, eNB/BBU, RRU) as follows:

We first create a network from which static IP addresses are used to assign to the
containers.

$sudo docker network create --driver=bridge --subnet=172.19.0.0/24 --gateway=172.19.0.1
oainet

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 69 of (76)

$sudo docker run --ip=172.19.0.11 --net=oainet -t -i --privileged --rm --name="oai5g_enb" -v
/dev/bus/usb:/dev/bus/usb ubuntu:14.04

The above command will open a shell inside Docker container, which then allows you to
install OAI eNB/BBU as mentioned in the previous section.

Similarly, a container for RRU is created with the following command:

$sudo docker run --ip=172.19.0.12 --net=oainet -t -i --privileged --rm --name="oai5g_rru" -v
/dev/bus/usb:/dev/bus/usb ubuntu:14.04

It is noted that, for EPC, we need to load GTP module in the Docker container, the following
command is used:

$sudo docker run --ip=172.19.0.9 --net=oainet -t -i --rm -P --privileged --cap-add=ALL -v
/dev:/dev -v /lib/modules:/lib/modules -h "yang" --name="oai_epc" ubuntu:14.04
/bin/bash

3.4 Other Automated Deployment Tools

A part from the above-mentioned automated deployment tools, Open Baton and Open
Source MANO (OSM) are also potential candidate for the virtualized 5G infrastructure
deployment.

3.4.1 Open Baton

Open Baton [13] is an open source platform, which provides a standard aligned
implementation of the ETSI NFV MANO specification. The architecture of Open Baton is
presented in Figure 40. Open Baton is easily extensible. It integrates with OpenStack as main
VIM implementation. Additionally, it provides a plugin mechanism for supporting additional
VIM types. For more details, beside the NFVO which is fully compliant with ETSI MANO,
Open Baton supports [50]: (i) A generic VNFM, which can be easily extended for supporting
different type of VNFs; (ii) An Autoscaling Engine (AE system) which can be used for
automatic runtime scaling operation of VNFs; (iii) A Fault Management System (FM) for
automatic management of faults occuring at the NFVI/VNF level; (iv) a Network Slicing
Engine (NSE) to ensure a specific QoS for a Network Slice Instance (NSI) or Network Slice
Subnet Instance (NSSI); (vi) A set of libraries for integrating new network services e.g., for
building your own VNFMs; and (vii) A dashboard for easily managing all the VNFs.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 70 of (76) © SliceNet consortium 2018

Figure 40. Open Baton architecture [50]

3.4.2 OSM

Figure 41. OSM mapping to ETSI NFV MANO [28]

Open Source MANO (OSM) [11][28] is an ETSI-hosted project to develop an Open Source
NFV management and orchestration (MANO) software stack aligned with ETSI NFV which is
to enhances interoperability with other components (VNFs, VIMs and SDN controllers), and
create a plug-in framework to make platform easy to extend and maintain. OSM is published
under Apache v2 license, integrates existing open source modules from Telefonica’s
OpenMANO project, Canonical’s Juju Charms and Rift.io orchestrator.

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 71 of (76)

Figure 41 shows the approximate mapping of scope between the OSM components and the
ETSI NFV MANO logical view. OSM scope covers both design-time and run-time aspects to
deliver a production-quality MANO stack. For more information regarding OSM, please refer
to [11] [28].

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 72 of (76) © SliceNet consortium 2018

4 A Deployment Example for the SliceNet Slicing-Friendly
Infrastructure

Figure 42 shows a deployment example for the SliceNet Infrastructure which is based on the
OAI, Mosaic-5G FlexRAN and LL-MEC platforms. This infrastructure offers the following
features:

 A RAN runtime slicing system, which enables the dynamic creation of slices with QoS
support, while providing functional and resource isolation among different slices
(e.g., verticals);

 LL-MEC platform leverages the SDN principle to separate user plane processing from
its control logics at the edge and core networks to enable user plane programmability
as per slice requirements;

 Dedicated core networks on per slice basis enabling isolation among different slice.

Figure 42. Deployment Example of a SliceNet RAN-Core Slicing-Friendly Infrastructure

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 73 of (76)

5 Conclusions

The main objective of this document is to present the activities related to the design and
prototyping of a virtualized 5G RAN-Core infrastructure to achieve an end-to-end slicing-
friendly infrastructure. The proposed SliceNet RAN-Core infrastructure leverages OAI and
Mosaic5G open-source platforms to provide a flexible platform for the dynamic control and
allocation of radio and core network resources (including radio spectrum and resource
blocks) and services in response to the needs of the deployed services. The design,
implementation and validation of a prototype for integrated network programmability for
the RAN and core network is presented with different flavours.

 In addition, the current document serves as an in-depth analysis of the different tools for
deploying a virtualized 5G infrastructure from the access to the core network in a holistic
manner. Lastly, several technical use cases have been prototyped with empirical results in
order to validate the essential technical approaches proposed to enable a slicing-friendly
RAN-Core infrastructure.

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 74 of (76) © SliceNet consortium 2018

References

[1] 5GPPP Architecture Working Group, “5G Architecture White Paper: View on 5G
Architecture”, Dec. 2017, available online at: https://5g-ppp.eu/wp-
content/uploads/2018/01/5G-PPP-5G-Architecture-White-Paper-Jan-2018-v2.0.pdf

[2] OpenAirInterface, Apr. 2018, [Online]. Available: http://www.openairinterface.org/

[3] SliceNet, Deliverable 2.1 - Vertical Sector Requirements Analysis and Use Case
Definition, Oct. 2017.

[4] OpenAirInterface - Core Network (OAI-CN), Apr. 2018, [Online]. Available:
https://github.com/OPENAIRINTERFACE/

[5] Mosaic5G.io, Apr. 2018, [Online]. Available: http://mosaic-5g.io/

[6] ETSI GS NFV 002, “Network Functions Virtualisation (NFV); Architectural Framework”,
Oct. 2013, available online at
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v0101
01p.pdf

[7] ETSI GS NFV-MAN 001, “Network Functions Virtualisation (NFV); Management and
Orchestration”, Dec. 2014, available online at
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-
man001v010101p.pdf

[8] OpenStack, Apr. 2018, [Online]. Available: https://www.openstack.org/

[9] SliceNet, Deliverable 3.1 - Design and Prototyping of SliceNet Virtualised Mobile Edge
Computing Infrastructure, Apr. 2018.

[10] Juju, Apr. 2018, [Online]. Available: https://jujucharms.com/

[11] Open Source MANO, Apr. 2018, [Online]. Available: https://osm.etsi.org/

[12] K. Katsalis, N. Nikaein, and A. Huang, “JOX: an event-driven orchestrator for 5G
network slicing”, in Proc. IEEE/IFIP Network Operations and Management Symposium,
2018.

[13] Open Baton, Apr. 2018, [Online]. Available: https://openbaton.github.io/

[14] OpenStack Foundation Report, “Accelerating NFV Delivery with OpenStack Global
Telecoms Align Around Open Source Networking Future”, 2016, available online at
https://www.openstack.org/assets/telecoms-and-nfv/OpenStack-Foundation-NFV-
Report.pdf

[15] OpenDaylight, Apr. 2018, [Online]. Available: https://www.opendaylight.org/

[16] ONOS, Apr. 2018, [Online]. Available: https://onosproject.org/

[17] Metal as a service (MaaS), Apr. 2018, [Online]. Available: https://maas.io/

[18] Canonical, “Implementing vCPE with OpenStack and Software Defined Networks”, Apr.
2018, [Online]. Available: https://www.slideshare.net/PLUMgrid/implementing-vcpe-
with-openstack-and-software-defined-networks

[19] Juju for Telcos and Service Providers Pt. 2, Apr. 2018, [Online]. Available:
https://insights.ubuntu.com/2015/07/23/juju-for-telcos-and-service-providers-pt-2

Deliverable D3.2 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 75 of (76)

[20] Juju Charm Store, Apr. 2018, [Online]. Available: https://jujucharms.com/store

[21] China Mobile Research Institute, “White Paper of Next Generation Fronthaul
Interface”, Jun. 2015

[22] OpenAirInterface (OAI), NGFI Whitepaper, Apr. 2018, [Online]. Available
http://www.openairinterface.org/?page_id=1695

[23] N. Nikaein, E. Schiller, R. Favraud, R. Knopp, I. Alyafawi, and T. Braun, “Towards a
Cloud-Native Radio Access Network”, Book Chapter of “Advances in Mobile Cloud
Computing and Big Data in the 5G Era”, Springer, 2016, ISBN: 978-3-319-45143-5

[24] Juju Charm Metadata, Apr. 2018, [Online]. Available:
https://jujucharms.com/docs/1.25/authors-charm-metadata

[25] Canonical Ltd. Juju Documentation, Apr. 2018, [Online]. Available:
https://jujucharms.com/docs/stable/getting-started

[26] 3GPP TR 28.801, “3rd Generation Partnership Project, Technical Specification Group
Services and System Aspects; Telecommunication management; Study on
management and orchestration of network slicing for next generation network”, Jan
2018

[27] Juju VNFM Framework, Apr. 2018. [Online]. Available: http://jujucharms.com/

[28] OSM Release Three, Apr. 2018. [Online]. Available: https://osm.etsi.org/images/OSM-
Whitepaper-TechContent-ReleaseTHREE-FINAL.pdf

[29] ETSI GS NFV-SOL 001, “Network Functions Virtualisation (NFV) Release 2; Protocols and
Data Models; NFV Descriptors based on TOSCA; TOSCA-based NFV descriptors”, v
0.0.2, July 2016

[30] IETF, “Technology Independent Information Model for Network Slicing.” Available:
IETF: draft-qiang-coms-net-slicing-information-model-00

[31] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, “Network slices toward 5G
communications: Slicing the LTE network,” IEEE Communications Magazine, vol. 55,
no. 8, pp. 146–154, 2017.

[32] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet,
“OpenAirInterface: A flexible platform for 5G research,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 33–38, 2014.

[33] Mirantis Fuel, Apr. 2018. [Online]. Available:
https://www.mirantis.com/software/openstack/fuel/

[34] Autopilot, Apr. 2018. [Online]. Available: https://pages.ubuntu.com/Autopilot-
welcome.html

[35] OpenStack-Ansible, Apr. 2018. [Online]. Available:
https://www.ansible.com/integrations/cloud/openstack

[36] Ubuntu MAAS, Apr. 2018. [Online]. Available: https://www.ubuntu.com/server/maas

[37] E. Cebrat, K. Maslowski, “Comparison of OpenStack deployment tools” , Semester
project Report, Mar. 2017

https://jujucharms.com/store

SliceNet H2020-ICT-2014-2/761913 Deliverable D3.2

Page 76 of (76) © SliceNet consortium 2018

[38] OPNFV Upstream Projects – OpenAirInterface, Apr. 2018, [Online]. Available:
https://www.opnfv.org/community/upstream-projects/openairinterface

[39] OPNFV - Base system functionality testing (Functest), Apr. 2018, [Online]. Available:
https://wiki.opnfv.org/display/functest/Opnfv+Functional+Testing

[40] OpenAirInterface - VNFs for 3GPP Cellular Stack, Apr. 2018, [Online]. Available:
https://wiki.opnfv.org/display/functest/OpenAirInterface+-
+VNFs+for+3GPP+Cellular+Stack

[41] KVM4NFV Project, Apr. 2018, [Online]. Available:
https://wiki.opnfv.org/display/kvm/Nfv-kvm

[42] Pharos Project, Apr. 2018, [Online]. Available:
https://www.opnfv.org/community/projects/pharos

[43] Linux Container - LXC, Apr. 2018, [Online]. Available: https://linuxcontainers.org/

[44] LXC – Server guide, Apr. 2018, [Online].
Available: https://help.ubuntu.com/lts/serverguide/lxc.html

[45] LXD, Apr. 2018, [Online]. Available: https://linuxcontainers.org/lxd/introduction/

[46] KVM, Apr. 2018, [Online]. Available: https://help.ubuntu.com/community/KVM

[47] Ubuntu Libvirt, Apr. 2018. [Online]. Available:
https://help.ubuntu.com/lts/serverguide/libvirt.html

[48] Docker, Apr. 2018, [Online]. Available: https://www.docker.com/

[49] Get Docker CE for Ubuntu, Apr. 2018. [Online]. Available:
https://docs.docker.com/install/linux/docker-ce/ubuntu/

[50] G. Carella, “Open Baton - The Open Source Network Function Virtualization
Orchestrator (NFVO)”, Apr. 2018, [Online]. Available:
https://wiki.opnfv.org/download/attachments/6819410/OpenBaton-OPNFV-16-9-
v0.1.pdf

[51] T. Nguyen, C. Bonnet, N. Nikaein, P. Matzakos, and K. Bountouris, “Research Report:
Testbed Deployment - OAI as a Service”, Dec. 2017.

[52] Heat – OpenStack Orchestration, Apr. 2018. [Online]. Available:
https://docs.openstack.org/heat/latest/

[53] Heat Template Guide, Apr. 2018. [Online]. Available:
https://docs.openstack.org/heat/latest/template_guide/index.html

[54] Athonet, Apr. 2018. [Online]. Available: https://www.athonet.com

[End of document]

