

Deliverable D7.1

Cross Plane Slice and Service Orchestrator

Editor(s): José Cabaça and Pedro Neves, Altice Labs

Deliverable nature: Report (R)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery
date:

31 October 2019

Actual delivery date: 11 November 2019

Suggested readers: Infrastructure Providers, Communication Service Providers, Digital Service
Providers Network Operators, Vertical Industries

Version: 1.0

Total number of pages: 128

Keywords: Orchestration, Network Slice, 5G, SDN, NFV

Abstract

Following the overall architecture definition from task 2.1, this task will further specify and implement
multidomain, cross-plane slice and service orchestrator. On one side, the SliceNet Orchestrator will
empower cross-plane/vertical coordination of control, service and data planes to achieve system-level
self-organised slicing control and slice management operation. On the other side, it will also coordinate
multiple horizontal administrative domains to deliver the contracted end-to-end slice with the
required characteristics. This task will also address the need to extend the legacy service & resources
catalogues and inventories in order to integrate the slice concept as a new managed entity. For this
the task 7.1 also aims the design and implementation of the slice and service catalogue and inventory
that will provide all the required information about the slices, services and resources for the whole
SliceNet architecture components.

Ref. Ares(2020)2699456 - 25/05/2020

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 1 of (128)

Disclaimer

This document contains material, which is the copyright of certain SliceNet consortium parties, and
may not be reproduced or copied without permission.

All SliceNet consortium parties have agreed to full publication of this document.

The commercial use of any information contained in this document may require a license from the
proprietor of that information.

Neither the SliceNet consortium as a whole, nor a certain part of the SLICENET consortium, warrant
that the information contained in this document is capable of use, nor that use of the information is
free from risk, accepting no liability for loss or damage suffered by any person using this information.

The EC flag in this document is owned by the European Commission and the 5G PPP logo is owned by
the 5G PPP initiative. The use of the flag and the 5G PPP logo reflects that SliceNet receives funding
from the European Commission, integrated in its 5G PPP initiative. Apart from this, the European
Commission or the 5G PPP initiative have no responsibility for the content.

The research leading to these results has received funding from the European Union Horizon 2020
Programme under grant agreement number H2020-ICT-2014-2/761913.

Impressum

[Full project title] End-to-End Cognitive Network Slicing and Slice Management Framework in
Virtualised Multi-Domain, Multi-Tenant 5G Networks

[Short project title] SLICENET

[Number and title of work-package] WP7 – Cross Plane Orchestration & Use Cases Prototyping

[Number and title of task] T7.1 - Cross Plane Slice and Service Orchestrator

[Document title] Cross Plane Slice and Service Orchestrator

[Editor: Name, company] José Cabaça and Pedro Neves Altice Labs

[Work-package leader: Name, company] Pedro Neves, Altice Labs (ALB)

Copyright notice

 2019 Participants in SLICENET project

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 2 of (128) © SLICENET consortium 2019

Executive summary
This deliverable first describes the role of the orchestrator in the SliceNet [1] architecture. Then, an
overview of the main solutions/products working in orchestration activities is provided either under
the auspices of Standard Definition Organizations (SDOs), Open Source Communities (OSCs) and other
H2020 EU projects. Herein is important to highlight that the SliceNet Orchestrator is based on a
solution developed in H2020 5G-Transformer project, which is extended to support slicing in multi-
domain environments, as well as the required adaptations to the SliceNet logical, functional and
informational architecture.

The next chapters provide the SliceNet orchestration approach in more detail focusing on the DSP and
NSP orchestration aspects, from service orchestrator and slice orchestrator architecture to service
level and network slice level requirements. Also a functional perspective of the orchestration is
provided in the form of workflows, highlighting the preparation, subscription, runtime and
decommission phases of a service/network slice. Finally, a detailed description of the orchestration
interfaces are also given, as well as an explanation of the software prototype being delivered.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 3 of (128)

List of authors
Company Author Contribution
ALB Pedro Neves, José Cabaça Introduction, SliceNet orchestration

approach, Orchestration workflows,
Conclusion

NXW Giacomo Bernini, Pietro G. Giardina, Ali
Nejabati

SliceNet orchestration approach,
SliceNet information model,
Orchestration logical architecture,
SliceNet orchestration interfaces,
Software prototype, Orchestration
related activities overview

UPC Salvatore Spadaro, Fernando Agraz,
Albert Pagès, Rafael Montero

SliceNet orchestration approach,
SliceNet information model,
Orchestration logical architecture,
SliceNet orchestration interfaces,
Software prototype, Orchestration
related activities overview

IBM Kenneth Nagin Orchestration related activities
overview

ECOM Navid Nikaein, Osama Arouk Orchestration related activities
overview

TEI Ciriaco Angelo Orchestration related activities
overview

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 4 of (128) © SLICENET consortium 2019

Table of Contents

Contents
Executive summary ... 2

List of authors .. 3

Table of Contents .. 4

List of figures ... 7

List of tables .. 8

Abbreviations .. 11

1 Introduction ... 13

1.1 Motivation and scope clarification 13

1.2 Document outline 14

2 Orchestration related activities overview ... 15

2.1 3GPP 15

2.1.1 Stage 1 - Requirements ... 15

2.1.2 Stage 2 - Information Model definitions ... 16

2.1.3 Stage 3 - Solution Set definitions... 16

2.2 ETSI 16

2.2.1 NFV .. 16

2.2.2 MEC ... 17

2.2.3 ZSM .. 19

2.3 Industry 21

2.4 Open Source 22

2.4.1 Open Source MANO .. 22

2.4.2 ONAP ... 23

2.5 H2020 R&D Projects 25

2.5.1 5G Transformer ... 25

2.5.2 SELFNET ... 26

3 SliceNet Orchestration Approach .. 29

3.1 Orchestration vision 29

3.1.1 NSP level Orchestration ... 30

3.1.2 DSP level Orchestration ... 30

3.1.3 DSP & NSP Deployment Combinations – Impact on Orchestration 31

3.2 Orchestration requirements 32

3.2.1 Vertical service level requirements ... 33

3.2.2 Network Slice level requirements ... 36

3.2.3 Resource level requirements ... 38

4 SliceNet Information Model .. 41

4.1 Vertical service information model 41

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 5 of (128)

4.1.1 Vertical Service Blueprint .. 41

4.1.2 Vertical Service Descriptor .. 43

4.1.3 End-to-end Network Slice Instance ... 44

4.2 Slice information model 44

4.2.1 Network Slice Template .. 45

4.2.2 Network Slice Subnet Template .. 46

4.2.3 Network Slice Instance .. 48

4.2.4 Network Slice Subnet Instance .. 51

4.3 Resource information model 53

5 Orchestration Logical Architecture ... 56

5.1 Reference Baseline: The 5G-Transformer Vertical Slicer 56

5.2 Service Orchestrator Internal Architecture 57

5.2.1 Vertical Service Manager ... 59

5.2.2 Vertical Service and Network Slice Catalogue ... 59

5.2.3 End-to-end Network Slice Manager .. 60

5.2.4 VSD/NST Translator ... 61

5.2.5 Arbitrator ... 61

5.2.6 Vertical Service and Network Slice Inventory ... 62

5.2.7 Communication Service ... 62

5.2.8 P&P Driver ... 63

5.3 Slice Orchestrator Internal Architecture 63

5.3.1 Network Slice Front-end .. 65

5.3.2 Communication Service ... 65

5.3.3 Network Slices Catalogue .. 65

5.3.4 Network Slice Lifecycle Manager .. 66

5.3.5 NST/NSD Translator ... 66

5.3.6 Arbitrator ... 67

5.3.7 Network Slice Inventory .. 67

5.3.8 P&P driver .. 68

5.3.9 Southbound resource control drivers ... 68

5.4 NMR-O Internal Architecture 68

5.4.1 Northbound Interface ... 69

5.4.2 Network Service Orchestrator ... 70

5.4.3 Catalogue and Inventory ... 70

5.4.4 Open Source MANO .. 70

5.4.5 Extended Infrastructure Manager ... 71

5.5 Cross-layer orchestration considerations 71

6 Orchestration Workflows .. 74

6.1 Design, Onboard and Offer 74

6.2 Instantiation 75

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 6 of (128) © SLICENET consortium 2019

6.3 NSP NS Optimization 77

6.4 DSP End-to-end NS Optimization 78

6.5 Vertical service reconfiguration through P&P 79

6.6 Vertical service decommission 81

7 SliceNet Orchestration Interfaces ... 83

7.1 Service-level interfaces 83

7.1.1 Vertical service management APIs .. 83

7.1.2 Management and administrative APIs .. 91

7.2 Slice-level Interfaces 94

7.2.1 Network slice management APIs ... 95

7.2.2 Management and administrative APIs .. 106

7.3 Resource-level APIs 109

7.3.1 Network service management APIs .. 109

7.3.2 Management and administrative APIs .. 113

8 Software Prototype ... 117

8.1 Service and Slice Orchestrators Prototypes 117

8.1.1 Implementation details ... 117

8.1.2 Source code structure ... 118

8.1.3 Software license and dependencies .. 119

8.2 Resources Orchestrator Prototype 120

8.2.1 Implementation details ... 120

8.2.2 On-boarding phase prototyping .. 121

8.2.3 Software license and dependencies .. 122

9 Conclusions .. 124

References ... 125

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 7 of (128)

List of figures
Figure 1: SliceNet Foundations .. 13

Figure 2: Cross-Plane Orchestration – Orchestration and Information Sub-Planes.............................. 14

Figure 3: 3GPP NRM in 5G ... 15

Figure 4: ETSI NFV architectural framework ... 17

Figure 5: ETSI MEC-in-NFV reference architecture (source: ETSI MEC [6]) ... 19

Figure 6: ETSI ZSM reference architecture (source ETSI ZSM 001 [8]) .. 20

Figure 7: OSM general view... 23

Figure 8: ONAP Architecture (Dublin release) ... 24

Figure 9: 5G-TRANSFORMER architecture .. 26

Figure 10: SELFNET reference architecture ... 27

Figure 11: SliceNet Business Roles and Main Interactions .. 29

Figure 12: Orchestration and Information sub-planes at the NSP (Standalone Deployment).............. 30

Figure 13: Orchestration and Information sub-planes at the DSP (Standalone Deployment) 31

Figure 14: DSP and NSP deployment combinations .. 32

Figure 15: Orchestration and Information sub-planes at the DSP & NSP (Combined Deployment) 32

Figure 16: SliceNet eHealth VSB graphical representation ... 42

Figure 17: Network Slice objects relationships (ref. 3GPP) ... 49

Figure 18: ETSI-3GPP: Touch points between the NFV information model and the Network Slicing
information model .. 55

Figure 19: 5G-Transformer Vertical Slicer: high-level architecture and mapping to SliceNet SS-O re-
use ... 57

Figure 20: 5GT-VS reference points .. 57

Figure 21: SliceNet Service Orchestrator functional architecture .. 58

Figure 22: SliceNet Slice Orchestrator functional architecture ... 64

Figure 23: NMR-O functional architecture .. 69

Figure 24 Cross-layer Slice Orchestration approach: interfaces and coordination actions 72

Figure 25: Service and Slice Design, onboarding and Offer workflow .. 74

Figure 26: Service and Slice Instantiation workflow ... 75

Figure 27: NMRO Slice instantiation workflow ... 76

Figure 28: NSP NS Optimization workflow .. 77

Figure 29: DSP end-to-end NS Optimization workflow ... 78

Figure 30: DSP end-to-end NS Optimization workflow (final state) .. 79

Figure 31: Vertical reconfiguration through P&P workflow .. 80

Figure 32: NMRO Slice reconfiguration workflow ... 81

Figure 33: Vertical service decommission workflow ... 82

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 8 of (128) © SLICENET consortium 2019

List of tables
Table 1: Service level orchestration discovery requirements ... 33

Table 2: Service level orchestration fulfillment requirements .. 34

Table 3: Service level orchestration assurance requirements .. 35

Table 4: Service level orchestration decommissioning requirements .. 35

Table 5: Slice level orchestration discovery requirements ... 36

Table 6: Slice level orchestration fulfillment requirements .. 37

Table 7: Slice level orchestration assurance requirements... 37

Table 8: Slice level orchestration decommissioning requirements .. 38

Table 9: Resource level orchestration discovery requirements .. 38

Table 10: Resource level orchestration fulfillment requirements .. 39

Table 11: Resource level orchestration assurance requirements ... 40

Table 12: Resource level orchestration decommissioning requirements ... 40

Table 13: Vertical Service Blueprint .. 42

Table 14: Vertical Service Descriptor .. 43

Table 15: End-to-end Network Slice Instance information model .. 44

Table 16: NST information model ... 45

Table 17: NSST information model .. 47

Table 18: NSI information model .. 49

Table 19: ServiceProfile information model (ref. 3GPP 28.541) ... 49

Table 20: NSSI information model ... 51

Table 21: Slice Profile information model (ref. 3GPP 28.541) .. 52

Table 22: NSD Information Model ... 53

Table 23: VNFD Information Model .. 54

Table 24: Service and Slice Design, Onboard and Offer workflows .. 74

Table 25: Service and Slice Instantiation workflow ... 75

Table 26: NMRO Slice Instantiation workflow .. 76

Table 27: NSP NS Optimization workflow ... 77

Table 28: DSP end-to-end NS Optimization workflow .. 78

Table 29: DSP end-to-end NS Optimization workflow .. 80

Table 30: NMRO Slice reconfiguration workflow .. 81

Table 31: Vertical service decommission workflow .. 82

Table 32: Service Orchestrator REST APIs: Get all VSBs .. 83

Table 33: Service Orchestrator REST APIs: Get VSB .. 84

Table 34: Service Orchestrator REST APIs: Create VSD ... 84

Table 35: Service Orchestrator REST APIs: Get all VSDs .. 85

Table 36: Service Orchestrator REST APIs: Get VSD .. 85

Table 37: Service Orchestrator REST APIs: Update VSD .. 86

Table 38: Service Orchestrator REST APIs: Delete VSD ... 87

Table 39: Service Orchestrator REST APIs: Create VSI... 87

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 9 of (128)

Table 40: Service Orchestrator REST APIs: Get all VSIs ... 88

Table 41: Service Orchestrator REST APIs: Get individual VSI ... 88

Table 42: Service Orchestrator REST APIs: Delete VSI ... 89

Table 43: Service Orchestrator REST APIs: Optimize e2e NSI ... 89

Table 44: Service Orchestrator REST APIs: end-to-end NSI actuation .. 90

Table 45: Service Orchestrator REST APIs: Notify VSI lifecycle event ... 91

Table 46: Service Orchestrator REST APIs: Create Tenant .. 92

Table 47: Service Orchestrator REST APIs: Query Tenant ... 92

Table 48: Service Orchestrator REST APIs: Delete Tenant .. 93

Table 49: Service Orchestrator REST APIs: Create VSB ... 93

Table 50: Service Orchestrator REST APIs: Delete VSB ... 94

Table 51: Slice Orchestrator REST APIs: Get all NSTs .. 95

Table 52: Slice Orchestrator REST APIs: Get all NSTs .. 96

Table 53: Slice Orchestrator REST APIs: Get NSST ... 96

Table 54: Slice Orchestrator REST APIs: Create NSI .. 97

Table 55: Slice Orchestrator REST APIs: Create NSI .. 97

Table 56: Slice Orchestrator REST APIs: Get all NSIs ... 98

Table 57: Slice Orchestrator REST APIs: Get individual NSI ... 99

Table 58: Slice Orchestrator REST APIs: Get all NSSIs ... 99

Table 59: Slice Orchestrator REST APIs: Get individual NSSI ... 100

Table 60: Slice Orchestrator REST APIs: Delete NSI ... 100

Table 61: Slice Orchestrator REST APIs: Delete NSSI ... 101

Table 62: Slice Orchestrator REST APIs: Multi-domain actuation of NSI... 101

Table 63: Slice Orchestrator REST APIs: Single-domain actuation for NSI optimization 102

Table 64: Slice Orchestrator REST APIs: Single-domain actuation for NSSI actuation 103

Table 65: Slice Orchestrator REST APIs: Notify NSI lifecycle event ... 103

Table 66: Slice Orchestrator REST APIs: Notify NSSI lifecycle event ... 104

Table 67: Slice Orchestrator REST APIs: Subscription to NST related events 104

Table 68: Slice Orchestrator REST APIs: Notification of NST event ... 105

Table 69: Slice Orchestrator REST APIs: Create Tenant... 106

Table 70: Slice Orchestrator REST APIs: Query Tenant ... 106

Table 71: Service Orchestrator REST APIs: Delete Tenant .. 107

Table 72: Slice Orchestrator REST APIs: Create NST.. 107

Table 73: Slice Orchestrator REST APIs: Create NSST .. 108

Table 74: Slice Orchestrator REST APIs: Delete NST .. 108

Table 75: Slice Orchestrator REST APIs: Delete NSST .. 109

Table 76: Network service management: List available network services ... 109

Table 77: Network service management: Get network service information 110

Table 78: Network service management: List network service instances .. 110

Table 79: Network service management: Get network service instance information 111

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 10 of (128) © SLICENET consortium 2019

Table 80: Network service management: Network service instantiation ... 111

Table 81: Network service management: Modify network service instantiation 112

Table 82: Network Service Management: Notify Network Service Instance lifecycle event 112

Table 83: Network service management: Terminate network service instance................................. 113

Table 84: Management and administrative APIs: Add VIM .. 113

Table 85: Management and administrative APIs: Delete VIM .. 114

Table 86: Management and administrative APIs: Add WIM ... 114

Table 87: Management and administrative APIs: Delete WIM ... 114

Table 88: Management and administrative APIs: Create VNF .. 115

Table 89: Management and administrative APIs: Delete VNF .. 115

Table 90: Management and administrative APIs: Create Network Service .. 116

Table 91: Management and administrative APIs: Delete Network Service .. 116

Table 92: Source code structure.. 118

Table 93: SS-O prototype dependencies ... 119

Table 94: VNFD YAML file .. 121

Table 95: NSD YAML file .. 122

Table 96: NMR-O prototype dependencies... 122

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 11 of (128)

Abbreviations
3GPP 3rd Generation Partnership Project
5G Fifth Generation (mobile/cellular networks)

5G PPP 5G Infrastructure Public Private Partnership
AI Artificial Intelligence
API Application Program Interface
BSS Business Support System
DSP Digital Service Provider
CN Core Network
EIM Extended Infrastructure Manager
eMBB enhanced Mobile Broad Band
ENI Experiential Network Intelligence
ETSI European Telecommunications Standards Institute
FCAPS Fault Configuration Accounting Performance Security
FMC Fixed Mobile Convergence
KPI Key Performance Indicator
mMTC massive Machine Type Communications
ML Machine Learning
MEC Multi-access Edge Computing
NBI North Bound Interface
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NFVO Network Function Virtual Orchestrator
NMRO Network Management Resource Orchestrator
NRM Network Resource Models
NSD Network Service Descriptor
NS Network Slice
NSI Network Slice Instance
NSSI Network Slice Subnet Instance
NSO Network Service Orchestrator
NSP Network Service Provider
NST Network Slice Template
NSS Network Slice Subnet
NSST Network Slice Subnet Template
ONAP Open Network Automation Platform
ONOS Open Network Operating System
OOM ONAP Operations Manager
OSC Open Source Communities
OSS Operations Support System
OSM Open Source MANO
P&P Plug&Play
PLMN Public Land Mobile Network
PNF Physical Network Function
PoC Proof Of Concept
QoE Quality of Experience
QoS Quality of Service

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 12 of (128) © SLICENET consortium 2019

R&D Research and Development
RAN Radio Access Network
SBI South Bound Interface
SDN Software Defined Networks
SDK Software Development Kit
SDO Standard Definition Organizations
SliceNet End-to-End Cognitive Network Slicing and Slice Management Framework in Virtualised

Multi-Domain, Multi-Tenant 5G Networks
SO Service Orchestrator
SON Self-Organizing Networks
TS Technical Specification
UE User Equipment
URLLC Ultra Reliable Low Latency Communications
VIM Virtual Infrastructure Manager
VNF Virtual Network Function
VNFD Virtual Network Function Descriptor
VNFM Virtual Network Function Manager
VM Virtual Machine
VS Vertical Slicer
VSB Vertical Service Blueprint
VSD Vertical Service Descriptor
VSI Vertical Service Instance
ZSM Zero-touch network Service Management

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 13 of (128)

1 Introduction

1.1 Motivation and scope clarification
SliceNet aims to design, prototype and demonstrate an innovative, verticals-oriented, QoE-driven 5G
network slicing framework focusing on cognitive network management and control for end-to-end
slicing operation across multiple operator domains in SDN/NFV-enabled 5G networks. To achieve such
an ambitious aim, SliceNet must thoroughly address a set of key areas, named as SliceNet Foundations,
illustrated in Figure 1, including Network Slicing, Multiple Administrative Domains, Plug & Play
capabilities, One Stop API, Cognitive Network Management and Cross-Plane Orchestration.

Figure 1: SliceNet Foundations

Orchestration is one of the most important aspects in today’s service provider operations. It is a key
element in the service fulfillment chain, addressing several important aspects, such as exposing service
offers, provisioning new service subscriptions and orchestrating network resources according to the
service requests. In tomorrow’s operations, such as the ones envisaged in SliceNet, orchestration
procedures will be paramount to achieve the desired service automation and vertical oriented
scenarios. However, evolution is required at the currently existing orchestration procedures to be able
to cope with several challenging requirements. For example, (1) besides orchestrating end-to-end
services and network resources, orchestration solutions will have to cope with and manage the
lifecycle of a new artifact – the network slice. Additionally, (2) in order to deliver vertical industries the
desired end-to-end service offers, which will require more than a single service provider domain, the
orchestration procedures will have to be able to address scenarios in which the end-to-end service is
composed by network slices delivered in multiple service provider domains. Another key aspect in
SliceNet vision is the (3) closed-loops automation, enhanced by the integration of cognitive Artificial
Intelligence (AI) models, enabling service providers to proactively fix the network slices and maintain
the desired service levels to the verticals. Closing the management and/or control loop requires
orchestration to be agile and flexible enough to deal with real-time scenarios brought by the cognitive
network management. Finally, another important aspect (4) is the 5G network, which has significant
modifications compared with its antecessor, 4G, and therefore requires also orchestration procedures
to handle a multitude of new variables and approaches such as Network Function Virtualization (NFV),
Software-Defined Networking (SDN), Multi-access/Mobile Edge Computing (MEC) when interacting
with the network environment.
The purpose of the Cross-Plane Orchestration is to provide a set of coordination functions across
several logical layers (i.e. service, slice, resources) with the aim of orchestrating the provisioning of
end-to-end network slices. The cross-plane orchestration in SliceNet makes use of recursive
orchestration abstractions that hide complex operations in multiple administrative domains (i.e. more
than one network provider), multiple technologic domains (i.e. RAN, WAN and datacenters), and
multiple layers (i.e. services, slices and resources).

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 14 of (128) © SLICENET consortium 2019

Diving into the SliceNet logical architecture, orchestration procedures are involved in the
Orchestration Sub-Plane itself, but also on the Information Sub-Plane, which holds the required
information (catalogues and inventories) to enable orchestration procedures. Figure 2 illustrates these
subplanes in the whole SliceNet framework. Further details about these sub-planes and their internal
components will be provided within this document.

Figure 2: Cross-Plane Orchestration – Orchestration and Information Sub-Planes

1.2 Document outline
The document has the following structure:

 Section 2 reviews the ongoing activities (industry, open-source and R&D) related to
orchestration;

 Section 3 provides a high-level description of the SliceNet orchestration vision;
 Section 4 describes the project’s slice information model;
 Section 5 details the orchestration logical architecture;
 Section 6 defines the most important orchestration workflows;
 Section 7 describes the orchestration interfaces;
 Section 8 reports the software prototype being implemented;
 Section 9 concludes the document.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 15 of (128)

2 Orchestration related activities overview
This section provides an overview of the related orchestration activities in the SDOs, OSCs, Industry
and R&D projects.

2.1 3GPP
Regarding 3GPP, the 5G management and orchestration aspects are represented using Network
Resource Models (NRMs) and Interface models [2]. NRM can represent all functions and resources of
the mobile network whose management is standardized, e.g. NRM for Core Network (CN) functions,
NRM for RAN functions. The NRM specifications can be categorized into three parts (Figure 3 illustrates
the 3GPP NRM in 5G):

Figure 3: 3GPP NRM in 5G

2.1.1 Stage 1 - Requirements

The 5G NRM specifications define many requirements [3]:
a. NRM generic, without any domain specific definitions like CN entities.
b. Support network management that includes virtualized network functions
c. Requirements for managing NG-RAN, including multi Radio Access Technology (RAT) dual

connectivity.
d. Requirements for managing 5G core network functions
e. Requirements for managing Network Slice (NS) and Network Slice Subnet (NSS)

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 16 of (128) © SLICENET consortium 2019

2.1.2 Stage 2 - Information Model definitions

This stage [4] defines the semantic of Information Object Class (IOC) attributes and relations visible on
the management interfaces in protocol and technology neutral way. The 5G NRM supports the
modelling of NR and NG-RAN, 5G Core, and Network Slice [TS 28.540, TS 28.541, TS 28.542, TS 28.543],
in addition to Generic NRM [TS 28.622]. This later mode can be reused or inherited by other domain
specific models, e.g. NG-RAN. Figure 3 shows NRM for 5G networks.

a. Generic NRM: it specifies generic network resource information such as Link, Managed Service,
Managed Function, subnetwork. This NRM supports also Federated Network Information Model
(FNIM) in order to support Fixed Mobile Convergence (FMC) [TS 32.107]
b. NG-NRM: This model covers various 5G radio networks connectivity options, e.g. standalone
and non-standalone radio node deployment, as well as architectural options, e.g. NR nodes with or
without functional split.
c. 5G Core NRM: It supports the management of 5G core network functions, their respective, in
addition to supporting of Access and Mobility Management Function (AMF) Set and AMF Region
[TS 23.501].
d. Network Slice NRM: In order to support the Network Slice (NS) and Network Slice Subnet (NSS),
an information model for NS and NSS is also supported [TS 28.541].

2.1.3 Stage 3 - Solution Set definitions

This stage [5] maps the information model definitions of stage 2 to a specific solution set definition
used for implementation. These definitions for 5G include XML, JSON, and YANG solution set [TS
28.541].

2.2 ETSI

2.2.1 NFV

Started in 2012, the ETSI NFV Industry Specification Group (ISG) has been the driver of the network
transformation activities in ETSI, being at the core of the NFV technology definition and
standardization, starting from the NFV term itself. Up to now, the ISG has defined the initial framework
(including the architecture diagram depicted in Figure 4 and continued in the following phases working
on interfaces, information models and testing procedures. Detailed specifications for NFV related
workflows, data structures and APIs are now under consolidation in the close-to-be-finished Release
3. At the current stage, the NFV community has produced a wide set of mature and stable
specifications, has consolidated their applicability in the industry, and continues to work towards
multi-vendor interoperability and addressing new architectural and application challenges. The
available NFV standards of Release 3 are already used in the industry to implement NFV products. NFV
was originally conceived to help network service providers in the challenge of cost reduction and agility
improvement, and it has resulted to be a key framework to enhance how services are requested and
consumed by users. It is a necessary component for next-generation networks, and in particular for
5G.

With NFV, network functions are implemented in software and can run on homogeneous, industry-
standard commodity infrastructures. This software can then be moved to, or introduced in different

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 17 of (128)

locations in the network as required. NFV simplifies the roll-out of network services, reduces
deployment and operational costs and facilitates network management automation.

Figure 4: ETSI NFV architectural framework

As illustrated in the architecture diagram in Figure 4, the NFV scope is focused on the lifecycle of the
Virtualized Network Functions (VNFs) and the services built by composing them, and with other
components generally referred as PNFs (Physical Network Functions), irrespectively of their nature,
scope, technology. Therefore, the NFV software-enabled function and service lifecycle management
constitutes a new dimension to be considered in the network and service management arena, and it
has to be:

 Integrated with other end-to-end management tools and system, such those for network
slicing in 5G scenarios

 Considered as an essential enabling technology for network automation and simplification,
enabling same services to be easily deployed in multiple instances in distributed locations

 Considered as a key target for new operational architectures and deployments where
automation of virtualized environment and the services running on top is required

2.2.2 MEC

The ETSI Multi-access Edge Computing (MEC) ISG aims at creating an open environment where
applications from vendors, service providers, and third-parties can be easily integrated across multi-
vendor and multi-access Edge Computing platforms. Although all ETSI MEC specifications are defined

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 18 of (128) © SLICENET consortium 2019

to enable a self-contained MEC cloud able to exist in different cloud environments, in most telco
environment the real requirement is to extend NFV into the MEC realm, due to the maturity of the
NFV specifications and initial compliant products and multi-vendor interoperability trials. For this
reason, ETSI MEC has defined a MEC-in-NFV reference architecture in GS MEC 003 [6], which is show
in Figure 5.

The MEC-in-NFV architecture takes full advantage of the NFV MANO principles and components and
demonstrates how the architecture of ETSI MEC can fit and integrate with it. In particular, most of the
ETSI MEC Applications can be treated by ETSI NFV entities as VNFs – even when they are not designed
as such. In practice, with the proposed MEC-in-NFV architecture, the NFV scope is extended (from the
MANO building blocks up to the virtualized infrastructure management) to cover also the MEC
segment and functionalities with minimum impact on the available specifications, APIs, workflows and
deployment scenarios. In this direction, Figure 5 also shows a number of interfaces that appear to
require coordination and cooperation between ETSI MEC and ETSI NFV (i.e. those in red), resulting in
integration complexities.

For what concerns the MEC information model and its mapping to NFV data structures, the MEC
descriptor (AppD) for MEC applications, to be defined in the upcoming release of the ETSI GS MEC 010-
2 specification, has to be linked to the NFV VNF descriptor (VNFD) for a proper integration of MEC with
NFV. With the current NFV specification capabilities in terms of VNF onboarding, ETSI MEC defined
AppD can be registered as a Non-MANO NFV artifacts in the NFV catalogues, still requiring dedicated
lifecycle management routines within the NFV MANO to treat these artifacts as MEC ones.

In terms of future work, ETSI MEC expects to align with the emerging zero-touch management
principles, such as those defined in ETSI Zero touch network and Service Management (ZSM) and
update its reference architecture accordingly.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 19 of (128)

Figure 5: ETSI MEC-in-NFV reference architecture (source: ETSI MEC [6])

2.2.3 ZSM

The ETSI Zero touch network and Service Management (ZSM) ISG is aiming at defining a new, horizontal
and vertical end-to-end operable framework enabling agile, efficient and qualitative management and
automation of emerging and future networks and services. ZSM targets a network and service
management architecture where all operational processes and tasks (e.g., delivery, deployment,
configuration, assurance, and optimization) are executed automatically, ideally with full automation in
multi-vendor environments. The work of ETSI NFV and ETSI MEC solves dedicated aspects of network
and service management, and have defined management capabilities for their respective focus areas.
On top of this, ETSI ZSM aims to provide a holistic end-to-end network and service management
concept which, among others, enables the integration of NFV and MEC management demands.

The ZSM framework reference architecture is built around a set of building blocks that collectively
enable construction of more complex management services and management functions. The clear
identification and separation of management domains provide means to isolate management duties
(possibly referring to very heterogeneous technologies), considering boundaries of different nature
(technological, administrative, geographical, etc.). Each management domain provides a set of ZSM
management services, realized by functions that expose and/or consume a set of end-points. An end-
to-end service management domain is a special management domain responsible for the cross-domain

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 20 of (128) © SLICENET consortium 2019

management and coordination, which glue all of the single domain management services, functions
and end-points

Figure 6: ETSI ZSM reference architecture (source ETSI ZSM 001 [8])

At the core of the ZSM architecture there is a cross-domain integration fabric, which facilitates the
provision of services and the access to them through the related end-points across the various
domains. It also includes specific services for the communication between management functions,
which enable the exchange of management data to consumers. In addition, the cross-domain data
services provide the mean to persist data and access it. According to ZSM principles, management
services can be logically grouped according to the functionality offered (such as data collection,
analytics, intelligence, orchestration, control). Figure 6 depicts the ZSM framework reference
architecture. Due to its native openness and architecture flexibility, the ZSM framework is able to
integrate management services as implemented by Open Source framework or other SDOs. Examples

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 21 of (128)

include APIs from the TMForum ODA, management services as defined by 3GPP and from ETSI NFV.
The possibility to flexibly compose management services, together with the exchange management
data provide the foundation of closed loop automation.

2.3 Industry
With 5G, the telecommunication industry is more and more looking at comprehensive orchestration
solutions to ease the deployment of heterogeneous vertical services and network slices across several
technology domains. Indeed, the 5G network slicing principles and solutions are embracing
heterogeneous technologies, spanning from 5G New Radio (5G NR) access technologies, to converged
optical fronthaul and backhaul with SDN, and hybrid 4G LTE and 5G Core services. Each of these
segments and technology has normally its own stack of management and control tools and protocols
that need to be tightly integrated for being able to automatize the provisioning of end-to-end services
and slices.

Moreover, the service and slice deployment processes have to cope with geographical distributed
Point of Presence (PoP) locations where vertical applications as well as 5G related network functions
can be dynamically deployed and migrated according to the specific vertical use cases. These normally
include thousands of edge locations and tens of core locations for each telco operator.

As a consequence, the telecommunication industry is going in the direction of fulfilling these
requirements with holistic orchestration solutions that integrate under a unique umbrella different
kind of management tools for their products and services, as SliceNet is proposing with its cognitive
slice management and orchestration platform. While most of the key industry players (both telco
operators and vendors) are also participating in open source initiatives in the area of 5G network slices,
NFV and SDN orchestration, all of them are anyway delivering their own products with more and more
support of standard protocols and APIs.

This is evident in the context of the ETSI NFV Plugtests events for example [11], where in the last couple
of years few NFV interoperability events have been organized by ETSI to validate the interworking of
multi-vendor NFV-related products and interworking based on NFV APIs.

Among the European solution providers, Ericsson and Nokia are key players in the network slice
orchestration arena, and both are offering to their customers end-to-end slice orchestration solutions
to facilitate the delivery of 5G services customized for different vertical requirements.

Ericsson offers its Ericsson Orchestrator product as an integration of NFV Orchestration, Generic VNF
management and Service Orchestration and Configuration Management features in support of end-
to-end network slice coordination and provisioning [12]. In particular, for the emerging 5G use cases it
provides network slice management by using TOSCA as the template language for cross-domain
orchestration across access, transport, and core segments by interfacing with different network
domain managers and transport SDN controllers.

 Similarly, Nokia’s network slice and NFV orchestration portfolio is built around the CloudBand product
[13], which is an ETSI NFV MANO system with commercially proven reliability, automation,
repeatability and security. It is flexibly deployed for any combination of CloudBand Infrastructure
Software, CloudBand Application Manager, and CloudBand Network Director which provide
respectively NFVI/VIM, VNF Management and NFV Orchestration functions. The CloudBand suite can
be also integrated with the WaveFabric network slicing solution [14] for creating a flexible, scalable
and dynamically reconfigurable virtual optical network spanning across access, metro and core

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 22 of (128) © SLICENET consortium 2019

segments. Service driven and multi-layer flow steering enable Nokia WaveFabric to deliver efficient
and cost-effective transport services that meet the diverse requirements of 5G services and verticals.

2.4 Open Source

2.4.1 Open Source MANO

Open Source MANO [15] is an open community-driven project led by operators, whose goal is to
develop an NFV management and orchestration system aligned with the ETSI NFV standardization
body. The main goal of OSM is to achieve end-to-end network service deployment for telco services
through the orchestration and life-cycle management of VNFs, and local network services. To do this,
OSM relies on four main aspects [16]:

 A well-defined information model, which is aligned with ETSI NFV, that allows modelling telco-
oriented complex network services for automated deployment.

 A unified NorthBound Interface (NBI) that allows for the control, operation and supervision of
the life-cycle of the network services and slices.

 An extended concept of 'Network Service' that spans across virtual, physical and transport
domains, thus allowing for the control of the full end-to-end network service by transparently
interacting with VNFs, PNFs and transport connections.

 Support for Network Slice management.

In this context, OSM is able to provide network as a service (NaaS) functionality in two ways, namely
Network Service and Network Slice Instance (NSI). A Network Service is, in OSM, a set of
interconnected network functions (VNFs and/or PNFs). OSM provides an interface, which is exposed
by the NBI, to configure such Network Service. This API relies on a set of descriptors that follow the
OSM information model, which is in turn compliant with ETSI standards. This modelling enables the
creation of Network Service templates that can be further parameterized to create different instances
of the service, each one having its own lifecycle. The NSI is the enabler for OSM to provide Network
Slices as a service. In this context, OSM assumes the role of Slice Manager [18][19]. A NSI is seen here
as a composition of Network Services that can be treated as a single entity.

To provide such Network Service and NSI functionalities, OSM consumes the services offered by the
Virtual Infrastructure Managers (VIMs) and the WAN Infrastructure Managers (WIMs) it is connected
to. VIMs provide the computation facilities (e.g. VMs) where the VNFs reside and the intra-DC
connectivity, and WIMs offer the transport network configuration (e.g. inter-DC connectivity). OSM
introduces here the concept of end-to-end network services that can span several domains.

Figure 7 depicts an overview of OSM and its relation to the other elements that take part in the NFV
architectural framework [20]. At the bottom of the figure, the VIMs and WIMs are the elements that
provide the infrastructure where the network functions will be hosted. OSM supports different VIM
(e.g. OpenStack, OpenVIM, etc.) and WIM (e.g. ONOS, OpenDaylight, etc.) technologies. In the middle
of the figure, the OSM provides the MANO functionalities to manage the life cycle of the network
services and NSIs. As highlighted before, one of the key aspects of OSM is the definition of an
information model, which is aligned with ETSI NFV. This information model is aimed to provide a
unified view of the NSs, which are commonly composed of a set of heterogeneous functions (either
virtual or physical) coming from different infrastructure management technologies, providers, etc. On
top of the figure, the OSM NBI relies on this OSM information model to provide a set of API invocations
and descriptors that allow creating the Network Services in a simple and effective way by the system
clients (e.g. OSS and BSS).

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 23 of (128)

Figure 7: OSM general view

As mentioned above, OSM is currently targeting the support for NS as a service by means of the NSI
element. Unfortunately, this is not sufficient to cope with the goal of SliceNet, which is to provision
end-to-end cognition-based vertical-oriented services in support of 5G use cases. To achieve this, the
SliceNet orchestration plane is divided into three levels of orchestration, namely vertical service, slice
and resource, which are thoroughly explained in the forthcoming sections. In its current status, OSM
is able to provide network services over the physical and virtual infrastructure of operators. These
capabilities can cope with the resource level orchestration required by SliceNet. However, a more
sophisticated slice orchestration than the one currently provided by OSM is needed for SliceNet
purposes. Furthermore, the vertical service level is not considered in OSM. Hence, being OSM a mature
and well-supported NFV-O, it has been chosen to be a core part of the resource level orchestration in
SliceNet. In this context, OSM will be responsible for the configuration, lifecycle management and
exposure of network services provided by the NSP. These network services will be part of the Network
Slices that will be managed by the SliceNet Slice Orchestrator. In the upper level, the Network Slices
will compose the vertical service that will be orchestrated by the Service Orchestrator.

2.4.2 ONAP

The ONAP Platform [21] enables product-independent capabilities for design, creation and lifecycle
management of network services. ONAP uniquely provides a unified operating framework for vendor-
agnostic, policy-driven service design, implementation, analytics and lifecycle management for large-
scale workloads and services. With ONAP, network operators can synchronously orchestrate PNFs and
VNFs.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 24 of (128) © SLICENET consortium 2019

Figure 8: ONAP Architecture (Dublin release)

As a cloud-native application that consists of numerous services, ONAP requires sophisticated initial
deployment as well as post-deployment management. The ONAP Operations Manager (OOM) is
responsible for orchestrating the end-to-end lifecycle management and monitoring of ONAP
components. It is integrated with the Microservices Bus, which provides service registration/discovery
and support for internal and external APIs and key SDKs. OOM uses Kubernetes to provide CPU
efficiency and platform deployment. In addition, OOM helps enhance ONAP platform maturity by
providing scalability and resiliency enhancements to the components it manages.

The platform provides tooling for service designers as well as a model-driven run-time environment,
with monitoring and analytics to support closed-loop automation and ongoing service optimization.
Both design-time and run-time environments are accessed through the Portal Framework, with role-
based access for service designers and operations personnel.

The design-time framework provides a comprehensive development environment with tools,
techniques, and repositories for defining and describing resources, services, and products. This
includes policy design and implementation, as well as an SDK with tools for VNF supplier packaging and
validation.

The run-time environment executes the rules and policies distributed by the design and creation
environment, as well as the Controllers that manage physical and virtual networks. The Active &
Available Inventory (A&AI) component provides real-time views of a system’s resources, services,
products and their relationships with each other. In a fast-moving environment with rapid deployment
and teardown of virtual resources, this real-time monitoring and mapping is critical to service
assurance.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 25 of (128)

The run-time service execution components are in constant communication with the closed-loop
automation modules, which provide real-time monitoring, analytics, alarm and event correlation, etc.

2.5 H2020 R&D Projects

2.5.1 5G Transformer

5G-TRANSFORMER is a 5G-PPP Phase 2 project that aims at developing an SDN/NFV-based platform
for the delivery of vertical-tailored network slices as a mean to facilitate verticals industries in
provisioning their services over mobile transport networks. In particular, 5G-TRANSFORMER enables
verticals to easily meet their service requirements through customized 5G end-to-end slices. This is
done through aggregation and federation of transport networking and computing fabric resources
from the edge up to the core and cloud, for creation and management of slices on a federated and
virtualized infrastructure.

This requires a transformation of current mobile transport networks into an SDN/NFV-based Mobile
Transport and Computing Platform (MTP), bringing network slicing as a core paradigm for provisioning
MTP slices tailored to the specific needs of vertical industries. To do this, the 5G-TRANSFORMER
platform is based on extensions of the ETSI NFV MANO architecture: as depicted in Figure 9 below, it
consists of three main functional components:

 i. A Vertical Slicer (VS) for service and slice management [22].

 ii. A Service Orchestrator (SO) for service and resource orchestration in multi-domain, federated
scenarios [23].

 iii. The MTP, representing the underlying unified transport stratum, responsible for providing
the networking and computing resources required by the NFV NS orchestrated by the SO [24].

The main touching points of 5G-TRANSFORMER and SliceNet (targeting its orchestration framework)
are the SO and the VS principles and functionalities. For what concerns the SO, 5G-TRANSFORMER
addresses end-to-end service and resource orchestration across different administrative domains
through a federation paradigm. In particular, end-to-end services are split into multiple segments
deployed in different administrative domains, based on service requirements and resource availability.
Federation is managed at the interface between SOs belonging to different domains and handling
abstraction of services and resources. Therefore, it is clear that 5G-TRANSFORMER follows an approach
with a fully distributed end-to-end service orchestration, without any clear separation of roles between
Digital Service Providers (DSPs) and Network Service Providers (NSPs) as in the case of SliceNet, where
more north-south interactions (i.e. between DSPs and NSPs) are foreseen rather than east-west (i.e.
among NSPs).

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 26 of (128) © SLICENET consortium 2019

Figure 9: 5G-TRANSFORMER architecture

On the other hand, the VS aims at facilitating the specification, instantiation, monitoring and
management of vertical services through network slices, and it creates and maps the services onto
network slices according to the vertical requirements, managing their lifecycle. In this case, the VS can
be considered as valuable reference baseline for the SliceNet orchestration at the DSP level, in terms
of end-to-end network slicing features and lifecycle workflows. Following the VS approach, the SliceNet
DSP orchestrator could translate the vertical experiments, service and slicing requests into per-domain
slices and NFV Network Services to be deployed in the proper NSP domains.

2.5.2 SELFNET

SELFNET is a project focusing on 5G network management, with the main objective of developing an
efficient self-organizing network management framework for 5G through the combination of a
virtualized and software defined network infrastructure with artificial intelligence technologies,
pursuing automated network monitoring, autonomic network maintenance, automated deployment
of network management tools and automated network service provisioning.

SELFNET is driven by use cases designed to address major network management problems including
Self-protection capabilities against distributed cyber-attacks, Self-healing capabilities against network
failures, and Self-optimization to dynamically improve the performance of the network and the Quality
of Experience (QoE) of the users.

SELFNET has the specific objectives of designing, implementing and validating a self-monitoring and
detection subsystem, a distributed Self-Organising Network (SON) autonomic management engine
subsystem and a SON orchestration and virtual infrastructure management subsystem. Through these
automated and intelligence-based operations, SELFNET primarily contributes to significantly reducing
service creation time in software-defined and virtualised 5G networks. Moreover, SELFNET expects to

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 27 of (128)

help in realising the creation of a secure, reliable and dependable network with a “zero perceived”
downtime for services.

In the Figure 10, the SELFNET reference architecture is depicted. The architecture is divided into 6
parts:

 Infrastructure Layer,
 Virtualized Network Layer,
 SON Control Layer,
 SON Autonomic Layer,
 NFV Orchestration and Management Layer,
 Access Layer.

The architecture is aligned with the most relevant standards which are the foundations of the project
namely ETSI NFV, Open Networking Foundation (ONF), and TMForum.

Figure 10: SELFNET reference architecture

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 28 of (128) © SLICENET consortium 2019

Apart from SDN and NFV, SELFNET further explores Self-Organizing Networks (SON) for automatic 5G
network management tasks. SON solutions in LTE (or LTE-Advanced) networks are typically classified
into three categories including self-configuration, self-optimization, and self-healing. Self-
configuration refers to the dynamic plug-and-play configuration capability of newly deployed LTE eNBs,
whilst self-optimization enables already deployed eNBs to automatically adapt to radio conditions and
network loads. The self-healing function attempts to recover from temporary bottlenecks or failures
in the network, for example, eNB outage.

SliceNet differs from SELFNET in that SliceNet focuses on the orchestration of network slices with a
clear separation of roles between Digital Service Providers (DSPs) and Network Service Providers
(NSPs). In addition, SliceNet includes DSP and NSP data lakes that enables efficient sharing of data
between SliceNet components, among other differences.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 29 of (128)

3 SliceNet Orchestration Approach
This chapter focuses on describing the SliceNet orchestration vision (section 3.1) and on listing the
requirements to be taken into consideration for its design, implementation and validation (section
3.2).

3.1 Orchestration vision
One of SliceNet key pillars is to deliver end-to-end communication capabilities to verticals over
multiple network providers / administrative domains. Towards this goal, as identified in deliverable
D2.4 [25], SliceNet vision encompasses multiple business roles as follows:

 Digital Service Customer (DSC) / Vertical: subscribes and consumes end-to-end
communication services from the Digital Service Provider (DSP); the Vertical should indicate
only the required information about the service (e.g. end devices location, bandwidth
requirements, latency requirements, etc.), without having to understand the network details
and how the end-to-end service will be composed and offered;

 Digital Service Provider (DSP): responsible for managing the end-to-end services lifecycle,
including their creation and exposition to the Verticals, as well as their decomposition (during
provision) into one or more Network Slices (NSs) across one or multiple network providers /
administrative domains;

 Network Service Provider (NSP): responsible for managing the NSs and involved network
resources lifecycle, including their creation and exposition to the DSP (or DSPs), as well as their
provision, monitoring and optimization.

Figure 11 illustrates the SliceNet business actors and their main interactions which can be aggregated
in two core groups:

 Actuation (represented in orange) – provides all the functionalities and interfaces required for
offering, provisioning and optimizing end-to-end services and NSs;

 Supervision (represented in grey) – provides all the functionalities required for monitoring the
subscribed end-to-end services and NSs.

Figure 11: SliceNet Business Roles and Main Interactions

Concerning orchestration procedures, which is the focus of this deliverable, they are the core function
of all the actuation procedures represented in Figure 11 (and not on supervision ones), either they are

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 30 of (128) © SLICENET consortium 2019

related with NS and/or end-to-end-NS offering, provisioning and/or optimization. Therefore, these
functionalities are mandatory at both SliceNet technical roles - DSP and NSP. From the SliceNet
architecture perspective, two sub-planes are involved in the actuation procedures:

1. Orchestration: handles all the orchestration-related procedures;
2. Information: provides catalogue and inventory services.

The following subsections highlight the role and internals of each one of the aforementioned subplanes
when instantiated at the NSP and at the DSP.

3.1.1 NSP level Orchestration

The NSP is responsible for managing (onboard, offer, provision, monitor, optimize) the Network Slices,
NFV Network Services and all the underlying physical and virtual resources. Figure 12 illustrates the
Orchestration and Information sub-planes at the NSP business role. To deliver the required SliceNet
functionalities at the NSP-side, the following functional components (under the responsibility of task
7.1) are part of the Orchestration sub-plane:

3. Service and Slice Orchestrator (SS-O): manages the association between the requested
Network Slices by the DSP and the underlying NFV Network Services and resources;

4. NFV, MEC and RAN Orchestrator (NMR-O): acts as a NFV NS and resource orchestrator, taking
care of coordinating the lifecycle management of NFV NS instances composed by the
combination of VNFs, PNFs, MEC applications interconnected by means of forwarding graphs.

From the Information sub-plane, the following logical architecture components are available:

1. NS & NSS Catalogue: manages the NSs and NSSs descriptors;
2. Resource Catalogue: manages the resources (VNF, PNF) descriptors;
3. NS & NSS Inventory: manages the NSs and NSSs instances;
4. Resource Inventory: manages the resources (VNF, PNF) instances.

Figure 12: Orchestration and Information sub-planes at the NSP (Standalone Deployment)

3.1.2 DSP level Orchestration

The DSP main responsibility is to manage (onboard, offer, provision, monitor, optimize) end-to-end
Network Slices delivered across multiple administrative domains. Figure 13 illustrates the

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 31 of (128)

Orchestration and Information sub-planes at the DSP business role. To deliver the required SliceNet
functionalities at the DSP-side, the following functional components are part of the Orchestration sub-
plane (under the responsibility of task 7.1):

1. Service and Slice Orchestrator (SS-O): handles the association of services offered to verticals
and other service providers with network slices and their correspondent management
functions. The SS-O at the DSP is also responsible for the end-to-end orchestration of services
across multiple domains.

From the Information sub-plane, the following logical architecture components are available:

1. end-to-end Network Slice Catalogue: manages the end-to-end Networks Slices descriptors;
2. end-to-end Network Slice Inventory: manages the end-to-end Network Slices instances.

Figure 13: Orchestration and Information sub-planes at the DSP (Standalone Deployment)

3.1.3 DSP & NSP Deployment Combinations – Impact on Orchestration

The orchestration architectures described in sections Error! Reference source not found. and Error!
Reference source not found. for the NSP and the DSP, respectively, are applied when the DSP and NSP
business roles are independent (standalone deployment). In scenarios in which the DSP and the NSP
business roles are fulfilled by the same business entity, the DSP and NSP orchestration architecture
components are combined and therefore simplified. Figure 14 depicts the DSP and NSP combined
deployment. In this case, DSP and NSP#1 are the same business entity, whereas NSP#2 and NSP#3
business roles are fulfilled by other service providers.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 32 of (128) © SLICENET consortium 2019

Figure 14: DSP and NSP deployment combinations

From an architectural perspective, in the DSP and NSP combined deployment, there is a single SS-O to
manage and orchestrate the end-to-end-NSs, the NSs and the NSSs. Also the end-to-end-NSs, NSs and
NSSs catalogues and inventories are owned by the same business entity. Figure 15 illustrates the DSP
and NSP architecture in the combined deployment.

Figure 15: Orchestration and Information sub-planes at the DSP & NSP (Combined Deployment)

3.2 Orchestration requirements
As part of the SliceNet orchestration architecture definition, the identification of specific requirements
is key to drive the functional decomposition and the definition of the building blocks of the
architecture. Three levels of orchestration are envisioned in SliceNet, namely Service, Slice and
Resource, which are implemented in three different functional modules: the Service Orchestrator (i.e.
SS-O at DSP), the Slice Orchestrator (i.e. SS-O at NSP level) and the Resource Orchestrator (i.e. NMR-O
at NSP level). For each of these levels a set of requirements has been defined.

The SS-O, at both DSP and NSP levels, is involved in the vertical service and network slice lifecycle at
different phases, namely:

 Discovery phase - the SS-O capabilities supported by vertical services (at DSP level) and
network slices (at NSP level) are computed and exposed to the verticals (at DSP level) and to

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 33 of (128)

the DSPs (at NSP level) as offers. The NSP level offers are built over the resources exposed by
the NMR-O.

 Fulfilment phase - the SS-O provides the mapping from the customer requests (i.e. vertical
services at DSP level and network slices at NSP level) to end-to-end network slices (at DSP
level) or network slice resources (at NSP level), taking care to provision them and manage their
runtime lifecycle. At resource level, the NMR-O provides the network services to support the
network slice.

 Assurance phase - the SS-O at both DSP and NSP levels takes care to support the vertical
services and network slices monitoring, enabling the SliceNet FCAPS framework to access the
vertical service and network slice instances information. Similarly, the NMR-O enables network
service components monitoring at NSP level.

 Decommissioning phase - the SS-O participates and coordinates the release of network slices
and related resources (through the NMR-O) whenever a vertical service or an end-to-end
network slice is terminated.

In turn, the SS-O at NSP relies on the NMR-O, which is responsible for managing the infrastructure
resources, to provide such management at a lower level.

For each phase and orchestration level, specific and dedicated requirements are identified. The
following subsections list the orchestration requirements at vertical service, network slice and
resource levels.

3.2.1 Vertical service level requirements

The Vertical service level requirements are listed in the following subsections, grouped in discovery,
fulfilment, assurance and decommissioning requirements. The main functional component involved in
these requirements identification is the Service Orchestrator, i.e. the SS-O at the DSP level.

3.2.1.1 Discovery requirements

Table 1 describes the service level orchestration discovery requirements.

Table 1: Service level orchestration discovery requirements

ID Requirement Description

ReqSSO.DSP.Di.1 Vertical Service Offers exposure - The Service Orchestrator shall offer APIs
towards the vertical to offer Vertical Service Blueprints to be customized by the
vertical, and Vertical Service Descriptors

ReqSSO.DSP.Di.2 Network Slice Offers collection - The Service Orchestrator shall collect from NSPs
Slice orchestrators the available Network Slice Descriptors (each NSP
could/should expose also who are the potential peering NSPs)

ReqSSO.DSP.Di.3 Vertical Service and Network slice descriptors association - The Service
Orchestrator shall keep the association among the network slices
descriptors/templates gathered from the NSPs and the VSBs and VSDs.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 34 of (128) © SLICENET consortium 2019

ReqSSO.DSP.Di.4 Private and public vertical service offers - The Service Orchestrator should
support both private (i.e. towards restricted set of verticals) and public exposure
of vertical service offers.

ReqSSO.DSP.Di.5 Vertical Service Descriptor Instantiation - The Service Orchestrator shall allow a
vertical to create several instances of the same VSD.

ReqSSO.DSP.Di.6 Vertical Service Descriptors Onboarding - The Service Orchestrator shall enable
a vertical to store its service descriptions persistently, and to create, retrieve,
update, and delete VSDs.

ReqSSO.DSP.Di.7 Vertical Service Blueprints Onboarding - The Service Orchestrator shall allow the
DSP administrators to onboard and manage VSBs.

3.2.1.2 Fulfilment requirements

Table 1 describes the service level orchestration fulfillment requirements.

Table 2: Service level orchestration fulfillment requirements

ID Requirement Description

ReqSSO.DSP.Fu.1 Expose CRUD operations on Vertical Services - The Service Orchestrator shall
offer APIs to manage Vertical Services and end-to-end network slices. Verticals
shall be able to create, modify and terminate Vertical Services.

ReqSSO.DSP.Fu.2 Expose CRUD operations on end-to-end network slices - end-to-end network
slice runtime modification APIs (as part of FCAPS and Cognitive optimization)
shall also be exposed to other DSP-level components

ReqSSO.DSP.Fu.3 Translation of Vertical Service into Network Slices - At Vertical Service
activation/instantiation time, the Service Orchestrator shall select the proper
Network Slice offers to activate/instantiate from the NSPs in order to fulfil the
vertical requirements.

ReqSSO.DSP.Fu.4 Network Slices sharing - Existing Network Slice instances could be re-used (re-
use could be in the scope of the same vertical, requesting more services to the
same DSP)

ReqSSO.DSP.Fu.5 Activation/Instantiation of single-domain Network Slices - At Vertical Service
activation/instantiation time, the Service Orchestrator shall interact with NSPs
Slice Orchestrators to activate the correspondent slices (and providing any
required runtime information)

ReqSSO.DSP.Fu.6 Control/Management of Stitching of single-domain Network Slices into end-
to-end multi-domain Network Slice - The Service Orchestrator shall be able to
request/issue the proper cross-domain slice configurations towards the single-
domain NSPs slice orchestrators for assuring the required end-to-end QoS

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 35 of (128)

ReqSSO.DSP.Fu.7 CRUD operations on single-domain Network Slices (client-side) - The Service
Orchestrator shall be able to invoke the CRUD operations offered by the Slice
Orchestrators in the NSPs. Therefore it shall implement the client-side of those
single-domain slice lifecycle management APIs for creation, modification,
termination, fault management, performance monitoring.

ReqSSO.DSP.Fu.8 Activation of Vertical Plug & Play control instance - The Service Orchestrator,
upon successful instantiation of the end-to-end Vertical Service, shall activate
the vertical P&P control instance through the P&P Manager, by indicating the
required level of control exposure agreed with the vertical

ReqSSO.DSP.Fu.9 Expose interface to QoE optimizer to apply optimization actions - The Service
Orchestrator shall offer dedicated APIs for QoE optimization purposes and end-
to-end network slices runtime modifications to support the cognition loops

3.2.1.3 Assurance requirements

Table 3 describes the service level orchestration assurance requirements.

Table 3: Service level orchestration assurance requirements

ID Requirement Description

ReqSSO.DSP.As.1 Vertical service management isolation - The Service Orchestrator should
provide isolation among vertical services workflows and requests status coming
from different vertical actors.

ReqSSO.DSP.As.2 Vertical service monitoring - The Service Orchestrator, upon creation of new
vertical services, shall expose information about the new instances to the FCAPS
framework to enable DSP monitoring jobs for the vertical service and to assure
the verification of the vertical driven KPIs.

ReqSSO.DSP.As.3 End-to-end network slice monitoring - The Service Orchestrator shall ensure to
request to NSP Slice Orchestrators the monitoring of proper KPIs in the per-
domain network slices as a way to fulfil the vertical driven KPIs.

ReqSSO.DSP.As.4 Vertical service arbitration - The Service Orchestrator shall arbitrate network
slices among vertical service instances of different verticals based on priorities,
policies, SLA, and service requirements

3.2.1.4 Decommissioning requirements

Table 4 describes the service level orchestration decommissioning requirements.

Table 4: Service level orchestration decommissioning requirements

ID Requirement Description

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 36 of (128) © SLICENET consortium 2019

ReqSSO.DSP.De.1 Network slices termination - The Service Orchestrator shall be able to identify
the network slices to be decommissioned as a result of a VSI termination.

ReqSSO.DSP.De.2 Monitoring deactivation - The Service Orchestrator shall be able to identify the
monitoring mechanisms to be deactivated as a result of a VSI termination.

ReqSSO.DSP.De.3 Network slices termination awareness - The Service Orchestrator shall
implement means for receiving acknowledgement of releasing network slices
from the Slice Orchestrators.

ReqSSO.DSP.De.4 Vertical service termination notification - The Service Orchestrator should be
able to notify verticals about their VSIs termination.

3.2.2 Network Slice level requirements

The slice level requirements are listed in the following subsections, grouped in discovery, fulfilment,
assurance and decommissioning requirements. The main functional component involved in these
requirements identification is the Slice Orchestrator, i.e. the SS-O at the NSP level.

3.2.2.1 Discovery requirements

Table 5 describes the slice level orchestration discovery requirements.

Table 5: Slice level orchestration discovery requirements

ID Requirement Description

ReqSSO.NSP.Di.1 Network Slice Offers exposure - The Slice Orchestrator shall offer APIs towards
the DSPs Service Orchestrators to offer Network Slice Descriptors to be
activated/instantiated. This should include exposure of QoS capabilities, type of
slice, coverage area, etc.

ReqSSO.NSP.Di.2 NSP Resources Awareness - The Slice Orchestrator shall be aware of NFV, MEC
and RAN resources and services available for provisioning and configuration in
its NSP domain. This is done by collecting information from NMR-O level
catalogue(s)

ReqSSO.NSP.Di.3 Network slice and per-domain resource descriptors association - The Slice
Orchestrator shall keep the association among the network slices
descriptors/templates it exposes to the DSPs and the resource descriptors (NFV,
RAN, etc.) for per-domain resource orchestration.

ReqSSO.NSP.Di.4 Network Slice Descriptor Instantiation - The Slice Orchestrator shall allow a DSP
to create several instances of the same NSD.

ReqSSO.NSP.Di.5 Network Slice Descriptor Onboarding - The Slice Orchestrator shall allow the
NSP administrators to onboard and manage NSDs.

3.2.2.2 Fulfilment requirements

Table 6 describes the slice level orchestration fulfillment requirements.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 37 of (128)

Table 6: Slice level orchestration fulfillment requirements

ID Requirement Description

ReqSSO.NSP.Fu.1 Expose CRUD operations for Network Slices - The Slice Orchestrator shall
expose APIs for single-domain slice lifecycle management APIs. These should
cover creation, modification, termination, fault management, performance
monitoring.

ReqSSO.NSP.Fu.2 Translation of Network Slices into NFV, MEC, RAN services/configurations - At
Network Slice activation/instantiation time, the Slice Orchestrator shall select
the proper Resource descriptors available in the NSPs to fulfil the DSP
requirements. Existing NFV, MEC and RAN services and instances could be re-
used.

ReqSSO.NSP.Fu.3 Provisioning/configuration of single-domain Network Slices - At Network Slice
activation/instantiation time, the Slice Orchestrator shall coordinate the
provisioning of per-resource-domain services and configurations. To do that, it
shall interact with NFV orchestrator, RAN controller, any MEC orchestrator. It
shall also take care to enforce proper QoS configurations where needed
(including backhaul, inter-segment configuration and multi-domain).

ReqSSO.NSP.Fu.4 QoS configuration in single-domain Network Slices -The Slice Orchestrator shall
take care to enforce proper QoS configurations in the domains involved in the
given network slices (including backhaul, inter-segment configuration and multi-
domain).

ReqSSO.NSP.Fu.5 Activation of Plug & Play control instance - The Slice Orchestrator, upon
successful instantiation, shall activate the dedicated P&P control instance
through the P&P Manager, by indicating the required level of control exposure
agreed with the DSP.

ReqSSO.NSP.Fu.7 Expose interface to FCAPS to close the loop at NSP level - The Slice Orchestrator
shall offer dedicated APIs for FCAPS optimization purposes and single-domain
slice runtime modifications to support the FCAPS loops.

3.2.2.3 Assurance requirements

Table 7 describes the slice level orchestration assurance requirements.

Table 7: Slice level orchestration assurance requirements

ID Requirement Description

ReqSSO.NSP.As.1 Network slice management isolation - The Slice Orchestrator should provide
isolation among network slice workflows and requests status coming from
different DSPs.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 38 of (128) © SLICENET consortium 2019

ReqSSO.NSP.As.2 Network slice monitoring - The Slice Orchestrator, upon creation of new
network slice instances, shall dynamically enable the network slice monitoring
jobs in the NSP FCAPS to assure the verification of the KPIs requested by the DSP.

ReqSSO.NSP.As.3 Network slice arbitration - The Slice Orchestrator shall arbitrate network slices
resources among several network slice instances of different DSPs based on
priorities, policies, and slice requirements.

3.2.2.4 Decommissioning requirements

Table 8 describes the slice level orchestration decommissioning requirements.

Table 8: Slice level orchestration decommissioning requirements

ID Requirement Description

ReqSSO.NSP.De.1 Network services and slice resource decommissioning - The Slice Orchestrator
shall be able to identify the NFV network services and the slice resources to be
decommissioned as a result of a NST.

ReqSSO.NSP.De.2 Monitoring de-activation - The Slice Orchestrator shall be able to identify the
monitoring mechanisms to be de-activated as a result of a NSI termination.

ReqSSO.NSP.De.3 Network services and slice resource termination awareness - The Slice
Orchestrator shall implement means for receiving acknowledgement of
releasing NFV network services and slice resources from the per-domain
resource orchestrators and controllers.

ReqSSO.NSP.De.4 Network slice termination notification - The Slice Orchestrator should be able
to notify DSPs about their NSIs termination.

3.2.3 Resource level requirements

The resource level requirements are listed in this section following the same split as the previous
sections. The functional component responsible for fulfilling them is the Resource Orchestrator.

3.2.3.1 Discovery requirements

Table 9 describes the resource level orchestration discovery requirements.

Table 9: Resource level orchestration discovery requirements

ID Requirement Description

ReqNMRO.NSP.Di.1 Network Service Offers exposure - The Resource Orchestrator has to expose
the available resources (in terms of network services) to the Slice Orchestrator
at NSP. It has to provide a set of Network Service offers that can be consumed
by the Slice Orchestrator which, in turn, will build the Network Slice offer. This

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 39 of (128)

will be afterwards consumed at DSP level (by the Service Orchestrator) as part
of the end-to-end Slice that will support the Vertical Service.

ReqNMRO.NSP.Di.2 Infrastructure Resources Awareness - The Resource Orchestrator has to be
aware of the resources available at infrastructure level that will support the
network services to be offered. This is done by collecting information from the
Infrastructure Manager(s) of the NSP.

ReqNMRO.NSP.Di.3 Network services descriptors and resources association - The Resource
Orchestrator shall keep the association among the NSDs/NSTs it exposes to
the Slice Orchestrator and the infrastructure resources to be used.

3.2.3.2 Fulfilment requirements

Table 10 describes the resource level orchestration fulfillment requirements.

Table 10: Resource level orchestration fulfillment requirements

ID Requirement Description

ReqNMRO.NSP.Fu.1 Expose CRUD operations for Network Services - The Resource Orchestrator
shall expose APIs for network services lifecycle management. These should
cover creation, modification, termination, fault management and
performance monitoring.

ReqNMRO.NSP.Fu.2 Translation of Network Services into NFV, MEC and other network
configurations - At Network Service activation/instantiation time, the
Resource Orchestrator shall select the proper resources available in the NSP’s
infrastructure to fulfill the Network Slice requirements. Existing NFV, MEC and
RAN services and instances could be re-used.

ReqNMRO.NSP.Fu.3 Provisioning/configuration of the NFV and MEC services composing the
Network Slice - At Network Service activation/instantiation time, the
Resource Orchestrator shall coordinate the provisioning of NFV and MEC
services and configurations, as well as the network connectivity among them.
To do that, it shall interact with the infrastructure of the NSP. This may be
done through the VIM or other infrastructure management entity used by the
NSP.

ReqNMRO.NSP.Fu.4 Provisioning/configuration of the virtual network infrastructure associated
to the Network Slice - The Resource Orchestration is responsible for the life-
cycle management of the Network Functions associated to the virtual
infrastructure of the Network Slice.

3.2.3.3 Assurance requirements

Table 11 describes the resource level orchestration assurance requirements.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 40 of (128) © SLICENET consortium 2019

Table 11: Resource level orchestration assurance requirements

ID Requirement Description

ReqNMRO.NSP.As.1 Network service management isolation - The Resource Orchestrator should
provide isolation among network service workflows, requests and resources
associated to different network slices.

ReqNMRO.NSP.As.2 Network service and resources monitoring - The Resource Orchestrator has
to offer network service monitoring information to the NSP FCAPS to assure
the verification of the KPIs requested by the upper layers of the system.

3.2.3.4 Decommissioning requirements

Table 12 describes the resource level orchestration decommissioning requirements.

Table 12: Resource level orchestration decommissioning requirements

ID Requirement Description

ReqNMRO.NSP.De.1 Network functions and applications decommissioning - The Resource
Orchestrator shall be able to identify network and application functions to be
decommissioned as a result of a NST.

ReqNMRO.NSP.De.2 Monitoring deactivation - The Resource Orchestrator shall be able to identify
the monitoring mechanisms to be deactivated as a result of a NSI
termination.

ReqNMRO.NSP.De.3 Resources de-allocation awareness - The Resource Orchestrator shall
implement means for receiving acknowledgement from the infrastructure
manager at NSP level for releasing the resources allocated to a network
service.

ReqNMRO.NSP.De.4 Network service termination notification - The Resource Orchestrator
should be able to notify the Slice Orchestrator about the NSIs termination.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 41 of (128)

4 SliceNet Information Model

4.1 Vertical service information model
This section describes the vertical service information model that is at the basis of the vertical service
lifecycle management implemented by the SS-O at the DSP level. The focus is on the details of the
information that shall be conveyed in VSDs and the notations used.

4.1.1 Vertical Service Blueprint

The Vertical Service Blueprint (VSB) is a high level description of a template for an end-to-end network
slice service. It includes a high level description of the atomic functional components of the service and
their interconnection. Moreover, it contains a set of parameters that can be used to customize the
service. The VSB is used to describe in a formal and structured way the service that a vertical needs to
deploy. It is provided by the DSP (as part of service design process), possibly interacting with the
vertical to gather information about the required service and main capabilities.

In practice, the VSB represents a template of the vertical’s service, as it defines a set of parameters
that allow the customization of the service in some of its parts. Typically, parameters are used to
correctly size the service in terms of resources and requirements. Specific translation rules are defined
to take one or more parameter values as input and accordingly select the appropriate Network Slice
Templates that will actually implement the vertical service.

The VSB can also be used to produce a graphical rendering of the topology of the service at the One
Stop API level. In fact, while the textual format of the VSB aims at being human friendly, it can be
difficult to understand the connections between the functional components of the blueprint.

To represent the service, the VSB makes use of three main pillars:

 Atomic functional components: they represent the building blocks of the service. Usually, each
corresponds to a Network Service, a VNF or a PNF.

 End points: they are the anchor points to connect the atomic components together. They are
included in the description of the related atomic component but they are also described
separately as they can have specific properties.

 Connectivity services: they describe how endpoints and thus atomic components are
connected to each other to create virtual links.

Figure 16 shows a graphical representation of a VSB inspired by the SliceNet eHealth Use Case. The
green boxes are the atomic functional components, the black lines represent the endpoints, and the
blue circles are the connectivity services. The ambulances are also shown in the figure and they can be
considered as UEs. The vertical service is composed by a RAN component, by the two Telestroke
assessment and BlueEye VNFs running in the edge which require an EPC service to connect to the
hospital.

Table 13 reports the fields composing a VSB with their short description. It is left of the implementation
of the One Stop API framework (as front-end of the DSP SS-O), how blueprints are presented to
verticals and what support is provided to verticals to provide the parameters when preparing a VSD. A
wide range of parameters are possible, e.g. values for latency constraints, paths to virtual application
images, types of connection services, etc., could be left open in the blueprint. It is up to the One Stop
API whether it just offers free text fields, range limited fields, e.g. for latency values, drop-down menus,
e.g. for available traffic probes, etc., or whether it provides even wizard-like functionality to prepare a
VSD from a blueprint.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 42 of (128) © SLICENET consortium 2019

Figure 16: SliceNet eHealth VSB graphical representation

Table 13: Vertical Service Blueprint

Attribute Description

blueprintId Unique Identifier for the VSB.

version A version number

name Name for the VSB.

description Short description of the VSB.

parameters List of parameters that describe the service constraints the vertical has to
fill (i.e. valorize) when filling the VSB to produce a new VSD. The list provides
for each parameter its name, type, description, and the field of applicability

atomicComponents List of atomic functional components (i.e., network functions and virtual
applications in general) needed to implement the VSB.

endPoints Specification of connection endpoints. They can be internal or external.

connectivityServices List of virtual links and their relevant end points. Virtual links describe how
the atomic functional components are connected.

serviceSequence Description of how traffic flows among atomic components, supporting also
multicast scenarios.

configurableParameters Parameters that can be configured at instantiation time by the user for a
specific instance of service derived from the given blueprint.

applicationMetrics List of application metrics that this service can provide. Metrics reported
here are strictly application related. No network metrics are included. These
metrics are mapped to available metrics defined in the DSP FCAPS
catalogue, as defined in D6.6 [26] and D6.7 [27].

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 43 of (128)

qosMetrics List of QoS metrics that this service can provide. Metrics reported here can
refer to any QoS aspect, including network and service resource usage in
general. These metrics are mapped to available metrics defined in the DSP
FCAPS catalogue, as defined in D6.7 [27].

ppFunctions List of P&P control functions that are supported for the given vertical service
and can be requested by the vertical and activated to enable and expose
specific runtime control functions, in accordance with P&P principles
defined in D6.3 [28]. Each function is expressed with its name, exposure
level (e.g. slice) and type (e.g. control, monitoring, management)

cognitiveFunctions List of additional cognitive management and DSP optimization functions
that are supported for the given vertical service. These can map to specific
SliceNet optimization functions developed and reported in D5.5 [29] and
D5.6 [30]. These can also group and include cognitive functions that one or
more NSP have exposed through their Slice Orchestrators as part of their
slice offers.

4.1.2 Vertical Service Descriptor

The VSDs are the vertical service descriptors that drive the provisioning of new vertical service
instances, and are obtained after parameterizing the VSBs in the parts to be filled by the vertical, as
described in the previous section. The structure of the VSD is therefore derived from the VSB one, in
practice using most of the information expressed by the vertical when filling the VSB.

Table 14 shows the structure of a generic VSD.

Table 14: Vertical Service Descriptor

Attribute Description

vsdId Unique identifier for a VSD. This is provided by the SS-O when onboarding the
VSD.

name Name provided by the vertical for this VSD.

description Short description of the VSD, e.g. “Sensor monitoring for plant B”.

version A version number

blueprintId The identifier of the blueprint from which this VSD was derived

Sst Slice Service Type, as defined by 3GPP. Allowed values are therefore: eMBB,
URLLC, mMTC

serviceConstraints List of service related constraints that have to be fulfilled by vertical instances
created starting from the given descriptor (e.g. geographical constraints,
sharing rules, etc.).

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 44 of (128) © SLICENET consortium 2019

qosConstraints List of QoS related constraints that have to be fulfilled by vertical instances
created starting from the given descriptor.
This attribute contains the parameter types and values as filled by the vertical
according to the parameterization of the related VSB.

monitoring List of network and application KPIs that have to be monitored for this vertical
service when provisioned. This attribute contains the parameter types and
values as filled by the vertical according to the parameterization of the related
VSB.

ppFunctions List of P&P control functions that have been selected from those available in
the VSB by the vertical and have to be supported for the instances based on
the given descriptor.

cognitiveFunctions List of cognitive management and DSP optimization functions that have been
selected from those available in the VSB by the vertical and have to be
supported for the instances based on the given descriptor.

4.1.3 End-to-end Network Slice Instance

When a vertical service is instantiated as the combination of single-domain network slices, the DSP
creates for its internal end-to-end network slice lifecycle management logic an additional managed
object called end-to-end network slice instance.
An end-to-end network slice is mapped 1:1 to a vertical service instance, and it is stored by the DSP as
the combination of single-domain network slice instance information exposed by the NSPs. While the
vertical service instance is only exposed to the verticals, the end-to-end network slice instances are
kept internal in the DSP Service Orchestrator. Table 15 describes the end-to-end NSI Information
Model.

Table 15: End-to-end Network Slice Instance information model

Attribute Description

e2eNsiId It is the identifier of the end-to-end NSI. It is allocated by the DSP Service Orchestrator
when the VSI procedure is successfully completed.

vsiId It is the vertical service instance identifier, as created by the DSP Service Orchestrator.

nsiList List of NSI objects, according to the format defined in section 4.2.3. It includes the
information of all the single-domain NSIs created in the NSP domains.

4.2 Slice information model
The SliceNet slice information model is specified in accordance to the 3GPP Network Resource Model
[31], which provides the definition of New Radio (NR), Next Generation RAN (NG-RAN), 5G Core
Network (5GC) and network slice instance data structures and managed objects. In particular, the

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 45 of (128)

SliceNet slice information model that is at the base of the NSP slice orchestrator lifecycle management
leverages on the network slice part of the 3GPP NRM, especially for what concerns the Network Slice
Instance (NSI) and Network Slice Subnet Instance (NSSI).
The SliceNet slice information model is built around four main components:

 Network Slice Template (NST)
 Network Slice Subnet Template (NSST)
 Network Slice Instance (NSI)
 Network Slice Subnet Instance (NSSI)

These are the main elements that are managed by the NSP Slice Orchestrator in its catalogue and
inventory functions, and exposed to the DSP to fulfil the end-to-end network slice lifecycle
management.

4.2.1 Network Slice Template

The NST is a kind of network slice descriptor which describes the overall single domain network slice
offer of an NSP, and therefore includes a set of attributes that characterize the network slice.
The NST is created and maintained by the NSP, and used by the Slice Orchestrator as the baseline to
manage the lifecycle of the NSIs created starting from it. Moreover, the NST is exposed by the NSP to
the DSPs to enable the composition of end-to-end slices spanning across several NSP domains. Indeed,
specific attributes for the slice access points are included in the NST to describe how the network slices
created from the NST can be accessed and interconnected to other slices offered by other NSPs. These
slice access points can be considered as logical endpoints that model and abstract how the NSP allows
interconnecting and accessing to its slices.
Even if the NST information model used by the Slice Orchestrator is defined by SliceNet, it follows the
approach specified by 3GPP for the network slice NRM, where a network slice is composed by one or
more network slice subnets.
Moreover, in SliceNet, most of the actual precise network slice performance requirements are
expressed and requested at provisioning time, following the 3GPP approach defined in [32]. For this
reason, the NST includes attributes to express the maximum capabilities in terms of network slice
performances (reusing data structures defined by 3GPP for NSIs and NSSIs), which therefore allow DSPs
to further apply their slice reuse and sharing policies. Table 16 describes the NST information model.

Table 16: NST information model

Attribute Description

nstId It is the identifier of the NST.

nstName It is the name of the NST.

nstDescription It provides a short description of the network slices that can created from
the NST

nstProvider It is the provider for the slice offer included in the NST. It identifies the NSP
owning the NST.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 46 of (128) © SLICENET consortium 2019

sst It is the slice Service Type, as defined by 3GPP and requested by the DSP
when requesting the creation of the NSI. Allowed values are therefore:
eMBB, URLLC, mMTC.

nsstList It is the list of NSSTs associated to the NST. See section 4.2.2 for more details.

sapList It is the list of slice access points for the NST, i.e. the logical endpoints that
allow to access or interconnect the network slices created from the NST.
Each slice access point is identified by:

 name of the access point
 type of the access point (access, external)
 a list of allowed peering NST providers (i.e. NSPs) for end-to-end

composition constraints

nssLinkList It is a list of logical links that describe how the network slice subnets
composing the NST can be interconnected. In includes references to the
NSST endpoints defined in section 4.2.2.

ppFunctionList List of Plug & Play control functions that are supported for the network slice
in the NSP management domain, in accordance with P&P principles defined
in D6.3 [28]. Each function is expressed with its name, exposure level (e.g.
slice) and type (e.g. control, monitoring, management).
NB. This attribute is not exposed to DSPs as part of the slice offer.

cognitiveFunctionList List of additional cognitive management and QoE optimization functions
that are supported for the network slice in the NSP management domain.
These map to specific SliceNet optimization functions developed and
reported in D5.5 [29] and D5.6 [30].

actuationList List of actuations offerings that the NSP exposes (i.e. allows to invoke
through the dedicated APIs) to the DSP for runtime optimization of network
slices created from the NST. Each actuation is identified by:

 a name, matching the network slice optimization or actuation
function exposed to the DSP

 a description, to specify the main purpose of the actuation list of
key/value pairs describing the actuation parameters required to
invoke the actuation on the NSP Slice Orchestrator

This maps to the multi-domain FCAPS actuation capabilities and NSP
actuation offering model defined in D6.7 [27].

4.2.2 Network Slice Subnet Template

The NSST represents the network slice subnet descriptor and details the capabilities and requirements
of the individual components of the network slices offered by a given NSP.
The NSST is created and maintained by the NSP, and used by the Slice Orchestrator as the baseline to
manage the lifecycle of the NSSIs created starting from it. Therefore, the whole set of NSSTs associated
to an NST, including their attributes and characteristics, regulates the logic for the management of
network slices.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 47 of (128)

The NSSTs are also exposed to the DSPs, but only as part of the whole network slice offers (i.e. within
the master NSTs). Individual NSSTs are not offered to DSPs and cannot indeed be activated and
provisioned as standalone NSSIs.
Following the 3GPP approach, network slice subnets can be implemented as NFV Network Services
when the related network functions are provisioned in the virtualized infrastructure. For this, the NSST
can include information about Network Service Descriptors to be used to implement the given network
slice subnet. Table 15Table 17 describes the NSST information model.

 Table 17: NSST information model

Attribute Description

nsstId It is the identifier of the NSST.

nsstName It is the name of the NSST.

nsstDescription It provides a short description of the network slices that can created from the
NSST

nsstType It identifies the type of NSS that can be created from the NSST, e.g. RAN slice
subnet, core slice subnet, etc. or specific application related slices, e.g. eHealth
Telestroke slice subnet.

constituentNsstList Following the 3GPP NRM approach, each network slice subnet can recursively
be associated to other constituent subnets. This attribute provides the list of
constituent NSSTs, if any.

endpointList It is the list of logical endpoints associated to the network slices created from
the NST. These endpoints are those referenced in the NST to describe how
network slice subnets forming a network slice are interconnected. Each
endpoint is identified by a name and a type (internal, external). External
endpoints are those that maps to a slice access point.

maxPerfReq This attribute describes the maximum performance capabilities that network
slice subnets created from the NSST can support. It is a list of objects that
depends on the “sst” attribute of the related NST. In particular:

 If sST is eMBB, it is a list of eMBBPerfReq objects (ref. 3GPP 28.541),
which include among the other attributes maximum uplink and
downlink data rate, maximum user density

 If sST is uRLLC, it is a list of uRLLCPerfReq objects (ref. 3GPP 28.541),
which include among the other attributes maximum end-to-end
latency, maximum jitter, maximum expected data rate.

 If sST is mMTC, it is a list of mMTCPerfReq objects

This attribute is inherited from the “perfReq” attribute defined in the 3GPP
NRM [31].

maxNumberOfUEs It identifies the maximum number of UEs that simultaneously can access
network slice subnets created from the NSST

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 48 of (128) © SLICENET consortium 2019

sharingLevel It identifies if the resources of network slice subnets created from the NSST
can be shared with other subnets. It can be: shareable, not-shareable

nsdInfo If the network slice subnet is related to a NFV Network Service, this attribute
provides a summary of the NFV NSD as maintained by the NMR-O. It is
composed by:

 A Network Service Descriptor identifier
 A Network Service Descriptor name
 A Network Service Descriptor type

The NSD type identifies the type of service implemented through the Network
Service (e.g. vEPC, eHealth Telestroke, eHealth BlueEye, etc.)
This attribute allows to link the network slice subnets implemented as NFV
Network Services with the NMR-O catalogue where full information about the
NSD is kept.

kpiList List of QoS and application metrics that the network slice subnets created from
the NSST can provide through monitoring. These metrics are mapped to
available metrics defined in the NSP FCAPS catalogue, as defined in D6.6 [26].

actuationList List of actuations offerings that the NSP exposes (i.e. allows to invoke through
the dedicated APIs) to the DSP for runtime optimization of network slice
subnets created from the NSST. Each actuation is identified by:

 a name, matching the network slice optimization or actuation function
exposed to the DSP

 a description, to specify the main purpose of the actuation
 a list of key/value pairs describing the actuation parameters required

to invoke the actuation on the NSP Slice Orchestrator
This maps to the multi-domain FCAPS actuation capabilities and NSP actuation
offering model defined in D6.7 [27].

4.2.3 Network Slice Instance

The NSI represents a provisioned network slice in a given NSP domain that has been instantiated based
on an existing NST. Therefore, starting from an NSP slice offer (i.e. the NST), the DSP requests for the
provisioning of an NSI. The NSI information model is based on the 3GPP NRM network slice definition
[31], and includes attributes and characteristics that describe a network slice that is instantiated in a
given NSP domain. Figure 17 shows how the main components of the NSI object relate to each other.
In particular, an NSI is composed by one NSSI, and is described in terms of characteristics and
capabilities by a Service Profile. The NSSI is a recursive object that can therefore include in it more
NSSIs. This is useful to model network slice instances that are composed by multiple subnet slice
instances, e.g. by one or more RAN slices and one or more NFV Network Services (for vEPC or 5GC
services, as well as for vertical specific applications).
This relationship is inherited from the 3GPP NRM and is used as-is in SliceNet. The NSIs are managed
at the NSP Slice Orchestrator level and related information is stored in its inventory, and exposed to
the DSP Service Orchestrator.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 49 of (128)

Figure 17: Network Slice objects relationships (ref. 3GPP)

The following table describes the NSI information model. As said the attributes are mostly inherited
from the network slice object specified in the 3GPP NRM [31]. The SliceNet extensions are clearly
identified in the table. Table 18 describes the NSI information model.

Table 18: NSI information model

Attribute Description

operationalState It is the operational state of the NSI, and indicates whether the slice resources
are actually provisioned and working (ref. 3GPP 28.541)

administrativeState It is the administrative state of the NSI, and indicates the permission to use
the NSI (ref. 3GPP 28.541)

serviceProfileList A list of ServiceProfile objects (see Table 19) which identify the NSI
requirements and runtime attributes (ref. 3GPP 28.541)

nSSIId It is the identifier of the NSSI associated to this NSI (see Figure 17). Therefore,
it links the NSI with the NSSI implementing it (ref. 3GPP 28.541)

nstId The identifier of the NST used to provision the NSI. This attribute is added in
SliceNet to keep a proper reference with the NST from which the NSI has been
created. This enables the proper implementation of arbitration and
translation functions described in section 5.2.

 Table 19: ServiceProfile information model (ref. 3GPP 28.541)

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 50 of (128) © SLICENET consortium 2019

Attribute Description

serviceProfileId The unique identifier of the ServiceProfile object describing the NSI
requirements (ref. 3GPP 28.541)

pLMNIdList The list of Public Land Mobile Network (PLMN) identifiers associated and
used by the NSI (ref. 3GPP 28.541)

perfReq It describes the performance requirements associated to the NSI, and that
have been requested by the DSP when requesting its creation. It is a list of
objects that depends on the sST attribute of this ServiceProfile. In particular:

 If sST is eMBB, it is a list of eMBBPerfReq objects (ref. 3GPP 28.541),
which include among the other attributes expected uplink and
downlink data rate, user density, coverage.

 If sST is uRLLC, it is a list of uRLLCPerfReq objects (ref. 3GPP 28.541),
which include among the other attributes end-to-end latency, jitter,
expected data rate.

 If sST is mMTC, it is a list of mMTCPerfReq objects

Full details are provided in [31].

maxNumberofUEs It identifies the maximum number of UEs that simultaneously access the NSI,
as requested by the DSP when requesting its creation (ref. 3GPP 28.541)

latency It identifies the packet transmission latency (in millisecond) through the
RAN, core, and backhaul segments of the NSI, as requested by the DSP when
requesting its creation (ref. 3GPP 28.541)

uEMobilityLevel It identifies the mobility level of UEs accessing the NSI. It can be: stationary,
nomadic, restricted mobility, fully mobility (ref. 3GPP 28.541)

resourceSharingLevel It identifies if the NSI resources can be shared with other NSIs. It can be:
shared, not-shared (ref. 3GPP 28.541)

sST It is the slice Service Type, as defined by 3GPP and requested by the DSP
when requesting the creation of the NSI. Allowed values are therefore:
eMBB, URLLC, mMTC.

availability It identifies the availability requirement for the NSI, expressed as a
percentage (ref. 3GPP 28.541).

sNSSAIList This attribute present in the 3GPP NRM network slice information model is
not supported by the NSP Slice Orchestrator.

coverageAreaTAList This attribute present in the 3GPP NRM network slice information model is
not supported by the NSP Slice Orchestrator.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 51 of (128)

4.2.4 Network Slice Subnet Instance

The NSSI represents a constituent logical component of an NSI. Each NSI has at least one NSSI that
actually implements the network slice itself. There are cases where an NSI is composed by multiple
NSSIs, e.g. when an NSI in an NSP domain is the combination of a RAN slice and a NFV Network Service
implementing a 4G LTE vEPC service.
The NSSI information model is also based on the 3GPP NRM network slice subnet definition [31], and
includes attributes and characteristics that describe a network slice subnet that is instantiated in a
given NSP domain. As depicted in Figure 17, an NSSI is composed by a set of Managed Functions (which
can be VNFs and PNFs) and optionally an NFV Network Service, and it is characterized by a Slice Profile
(which mostly provides the reference to the performance requirements).
In the SliceNet context, a slice subnet can be implemented as NFV Network Services (and thus
provisioned through the NMR-O), as well as RAN, core and WAN slices which are enforced through the
SliceNet Control Plane services. In general, a NSSI can be reused and shared across different NSIs.
The NSSIs are managed at the NSP Slice Orchestrator level and related information is stored in its
inventory, and exposed to the DSP Service Orchestrator.
Table 20 describes the NSSI information model. Its attributes are mostly inherited from the network
slice subnet object specified in the 3GPP NRM [31], and the SliceNet extensions are clearly identified
in the table.

 Table 20: NSSI information model

Attribute Description

nSSIId It is the identifier of the NSSI, as assigned by the Slice orchestrator. This
attribute is added in SliceNet.

nSSTId The identifier of the NSST used to provision the NSSI. This attribute is added
in SliceNet to keep a proper reference with the NSST from which the NSSI
has been created. This enables the proper implementation of arbitration and
translation functions described in section 5.2.

mFIdList It is the list of Managed Functions (i.e. VNFs and PNFs) instances identifiers
that are associated with the NSSI. Some of them may have been reused from
other NSSIs. This list allows to map the NSSI with the NMR-O inventory
where full information about provisioned VNFs and PNFs is kept (ref. 3GPP
28.541)

constituentNSSIIdList It is the list of identifiers of NSSIs which are associated to this NSSI. It is used
when an NSI is composed by multiple NSSIs. If an NSI is built by a single NSSI
this list is empty (ref. 3GPP 28.541)

operationalState It indicates the operational state of the NSSI, and indicates whether the slice
subnet resources are actually provisioned and working (ref. 3GPP 28.541)

administrativeState It is the administrative state of the NSSI, and indicates the permission to use
the NSSI (ref. 3GPP 28.541)

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 52 of (128) © SLICENET consortium 2019

nsInfo If the NSSI is implemented in the virtualized NSP infrastructure as an NFV
Network Service, this attribute provides a summary of the NFV Network
Service instance as provisioned by the NMR-O. It is composed by:

 A Network Service instance identifier
 A Network Service instance name
 A Network Service instance description

This attribute allows linking the NSSI implemented as an NFV NS with the
NMR-O inventory where full information about the provisioned NS is kept.

sliceProfileList A list of SliceProfile objects (see Table 21) which identify the NSSI
requirements and runtime attributes (ref. 3GPP 28.541)

monitoring It is the list of network and application KPIs that are monitored for the NSSI.
This attribute contains the KPI types as requested by the DSP when
requesting for the provisioning of the NSI (and related NSSIs). This attribute
is added in SliceNet to keep a proper reference of the set of NSSI KPIs which
are monitored through the FCAPS framework.

 Table 21: Slice Profile information model (ref. 3GPP 28.541)

Attribute Description

sliceProfileId The unique identifier of the SliceProfile object describing the NSSI
requirements (ref. 3GPP 28.541)

pLMNIdList The list of PLMN identifiers associated and used by the NSSI (ref. 3GPP
28.541)

perfReq It describes the performance requirements associated to the NSSI. It is a list
of objects that depends on the sST attribute of this ServiceProfile. In
particular:

 If sST is eMBB, it is a list of eMBBPerfReq objects (ref. 3GPP 28.541),
which include among the other attributes expected uplink and
downlink data rate, user density, coverage.

 If sST is uRLLC, it is a list of uRLLCPerfReq objects (ref. 3GPP 28.541),
which include among the other attributes end-to-end latency, jitter,
expected data rate.

 If sST is mMTC, it is a list of mMTCPerfReq objects

Full details are provided in [31].

maxNumberofUEs It identifies the maximum number of UEs that simultaneously access the
NSSI (ref. 3GPP 28.541)

latency It identifies the packet transmission latency (in millisecond) requirement in
the NSSI segment (ref. 3GPP 28.541)

uEMobilityLevel It identifies the mobility level of UEs accessing the NSSI. It can be: stationary,
nomadic, restricted mobility, fully mobility (ref. 3GPP 28.541)

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 53 of (128)

resourceSharingLevel It identifies if the NSSI resources can be shared with other NSSIs. It can be:
shared, not-shared (ref. 3GPP 28.541)

sNSSAIList This attribute present in the 3GPP NRM network slice information model is
not supported by the NSP Slice Orchestrator.

coverageAreaTAList This attribute present in the 3GPP NRM network slice information model is
not supported by the NSP Slice Orchestrator.

4.3 Resource information model
The Resource Orchestrator information model is based on the ETSI NFV specifications to provide the
network services that will compose the upper level network slices. In this regard, the Resource
Orchestrator uses the NSD and VNFD specifications defined in ETSI NFV-IFA015 [33] to model the
network services that will be offered to the Slice Orchestrator. Hence, these descriptors become the
information unit used between the two levels of orchestration, namely slice and resource, to
instantiate the network services at resource level that will be part of the upper layer slice. The
interfaces to implement such communication are also specified by ETSI-NFV-IFA013 [34]. In particular,
a set of CRUD operations over network services and the associated VNFs is defined. The NSD and VNFD
are the basic transfer units in such operations and, thus, the main components of the information
model of the SliceNet Resource Orchestrator. It is worth noting here that Open Source MANO, which
is the core element of the Resource Orchestrator, is fully aligned with this information model as well
OSM information model [35].
The NSD defined by OSM contains the information needed to deploy the network service. More
specifically, the NSD contains references to the descriptors of the VNFs (VNFDs) conforming the
service. These VNFs are interconnected by virtual links, and the descriptors of such virtual links (VLDs)
are contained in the NSD as well. Additional connection points can be defined to provide external
access to the network service. Table 22 summarizes the most relevant attributes of the NSD.

 Table 22: NSD Information Model

Attribute Description

id Unique identifier for the NSD.

name NSD name.

description Description of the NSD.

connection-point A list of references to network service connection points.

constituent-vnfd List of VNFDs that are part of this network service.

ip-profiles-list List of IP profiles. Allows establishing specific IP configurations to the network
service.

vnf-dependency List of VNF dependencies.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 54 of (128) © SLICENET consortium 2019

vld List of Virtual Link Descriptors (VLDs).

monitoringparam List of monitoring parameters at the network service level.

The VNFD defined by OSM contains the attributes that allow for the instantiation and lifecycle
management of a particular network function. To do this, the Virtual Deployment Unit (VDU) is
defined. The VDU contains the images to be used by the VNF, its network configuration, which includes
the connection points to be assigned to the VNF for both internal (between the VNFs associated to the
network service) and external communications. The physical resources required by the VNF, in terms
of computing, storage and memory are defined here as well. Table 23 highlights the most relevant
attributes of the VNFD.

Table 23: VNFD Information Model

Attribute Description

id Identifier for the VNFD.

name VNFD name.

description Description of the VNFD.

connectionpoint The list for external connection points.

mgmtinterface Interface over which the VNF is managed.

internal-vld List of Internal Virtual Link Descriptors (VLD).

ip-profiles List of IP profiles. An IP profile describes the IP characteristics for the virtual-link.

vdu List of virtual deployment units (VDUs).

vdudependency List of VDU dependencies, from which the orchestrator determines the order of
startup for VDUs.

vnfconfiguration Information about the VNF configuration for the management interface.

monitoringparam List of monitoring parameters for the VNF.

Some efforts have been done in the framework of ETSI and 3GPP to provide network slicing (as defined
by 3GPP TS 28.541 [31]) over the NFV-based infrastructure. The compatibility between these two
paradigms is presented in ETSI NFV-IFA024 [36] and further analyzed in [37]. Figure 18 depicts the
touch points between the network slicing model provided by 3GPP and the ETSI NFV model that
supports the Resource Orchestrator. As shown in the figure, a NS or NSS at NSP level can be associated
to a network service, which is in turn a composition of VNFs, configured in that NSP. Similarly, the
figure also illustrates the association between the VNFs composing a network service and the managed
functions that compose a NSS in the 3GPP NS model. As a matter of fact, the managed function object

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 55 of (128)

is defined by 3GPP TS 28.622 [4], which was sent for transposition to ETSI TS 128 622 [38], as a function
that can be either realized by software running on dedicated hardware or software running on NFV
infrastructure.

Figure 18: ETSI-3GPP: Touch points between the NFV information model and the Network Slicing

information model

Hence, the above-mentioned association between the network slicing provided by the network
resource model from 3GPP and the NFV information model provided by ETSI paves the way for the
multi-level (slice and resource) NSP orchestration proposed for the SliceNet orchestration plane.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 56 of (128) © SLICENET consortium 2019

5 Orchestration Logical Architecture
This chapter provides a detailed description of the SliceNet orchestration logical architecture, as the
cross-layer combination of Service Orchestrator at DSP level with Slice Orchestration and Resource
Orchestration at NSP level. The overall design and development of this SliceNet orchestration is based
on the existing work from the 5G-Transformer project [17], in particular on the Vertical Slicer. In the
SliceNet context, the Service and Slice Orchestrators architecture design (and prototype
implementation) is an evolution of the 5G-Transformer Vertical Slicer towards a multi-domain where
the SliceNet principles for DSP and NSP split are supported.

The following sections describe each of the three main components in the SliceNet Orchestration
architecture, introduced by a brief summary of the 5G-Transformer Vertical Slicer.

5.1 Reference Baseline: The 5G-Transformer Vertical Slicer
The 5G-Transformer Vertical Slicer (5GT-VS) is the common entry point for all verticals into the 5G-
Transformer system, being part of the OSS/BSS of the administrative domain of a 5G- Transformer
service provider (TSP). The 5GT-VS coordinates and arbitrates the requests for vertical services. Vertical
services are offered through a high-level interface focusing on the service logic and the needs of
vertical services. It allows defining vertical services from a set of vertical-oriented service blueprints,
which, along with instantiation parameters, will result in Vertical Service Descriptors (VSD). Then, the
5GT-VS maps the vertical service descriptions and requirements defined in the VSD onto a network
slice. We describe network slices with extended ETSI NFV Network Service Descriptors (NSD), which
define forwarding graphs composed of a set of Virtual Network Functions (VNF) or Virtual Applications
(VAs) connected with Virtual Links (VL), where some of them have the specific characteristics and
constraints of MEC applications. Importantly, the 5GT-VS allows mapping several vertical service
instances to one network slice, handling vertical-dependent sharing criteria and taking care of the
necessary capacity changes in pre-established slices. In conclusion, the most fundamental tasks of the
5GT-VS are to provide the functionality for creating the vertical service descriptions, and to manage
the lifecycle and the monitoring of vertical service instances and of the corresponding network slice
instances.

In addition to such tasks, the 5GT-VS provides arbitration among several vertical service instances in
case of resource shortage in the underlying infrastructure and based on global budgets for resource
utilization, as defined in the SLAs. The arbitration component in the 5GT-VS maps priorities of services
and SLA requirements to ranges of cardinalities of resources. These cardinalities are used by the 5GT-
SO while deploying the NFV network services (NFV-NS) and, in case of actual resource shortage, to
assign resources to the most important vertical service instances.

The architecture of the 5GT-VS is shown in Figure 19, as part of the service provider’s OSS/BSS. It
interacts with the vertical (or the M(V)NO) through its northbound interface (NBI) and with the service
orchestrator through its southbound interface (SBI). The full description of the 5GT-VS architecture
can be found in the 5G-Transformer deliverable D3.1 [22].

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 57 of (128)

Figure 19: 5G-Transformer Vertical Slicer: high-level architecture and mapping to SliceNet SS-O re-
use

The 5GT-VS NBI, is based on a REST API and implements the Ve-Vs reference point between the 5GT-
VS and the vertical/MVNO, as well as the Mgt-Vs reference point between the 5GT-VS and the OSS/BSS
Management Platform (as shown in Figure 20). In particular, the Ve-Vs reference point provides
mechanisms for VSB queries and operation (e.g. instantiation, termination, queries and update) or
monitoring (e.g. queries and subscriptions-notifications) of vertical services. The Mgt-Vs reference
point provides management primitives, related to tenants, SLAs and VSBs.

For what concerns the 5GT-VS Monitoring Service and the 5GT-VS SBI, they can be considered out of
scope for the work described in this document. Indeed, in the SliceNet management and orchestration
approach the monitoring infrastructure is based on the FCAPS principles described in deliverables D6.6
[26] and D6.7 [27], while the SBI is completely re-designed to support the DSP and NSP split.

Figure 20: 5GT-VS reference points

5.2 Service Orchestrator Internal Architecture
The SS-O deployed at the DSP level provides orchestration of Vertical Services requested by verticals
and takes care to map these into end-to-end network slices which are composed by per-domain

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 58 of (128) © SLICENET consortium 2019

network slices offered by one or more NSPs. Therefore it implements the Service Orchestrator features
of the SliceNet SS-O, managing the lifecycle of end-to-end slices and being the coordinator of the whole
SliceNet cognitive management platform at the DSP level.

Figure 21: SliceNet Service Orchestrator functional architecture

Figure 21 shows the high level functional split of the Service Orchestrator, where the main service
coordination functions are identified along with their interactions with other SliceNet architecture
components. With reference to the 5GT-VS described in the previous section, this Service Orchestrator
reuses part of the Vertical Service coordination logics, and enhance them to implement the mapping
and translation of Vertical Services to end-to-end network slices spanning across several NSP domains.
In particular, the front-end components of the 5GT-VS are mostly reused by the Service Orchestrator
as they coordinate and manage the vertical service blueprints and descriptors which are very similar
in terms of models between 5G-Transformer and SliceNet. On the other hand, the 5GT-VS components
more related to network slice and NFV Network Service lifecycle management are widely enhanced
and improved to support the SliceNet multi-domain DSP/NSP reference scenario.

In summary, the Service Orchestrator provides the following functionalities concerning the vertical
service and end-to-end network slice management:

 Interaction with verticals for service offer exposure and customization, in terms of service
components and additional capabilities and functions exposed

 Onboarding and maintenance of VSBs and VSDs

 Collection of network slice offers from NSPs, in the form of NSTs

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 59 of (128)

 Lifecycle management of vertical services, which are mapped to end-to-end network slices
that are built as the composition of single domain network slices as offered by the given NSPs
in their exposed NSTs

 Maintenance of up to date vertical service and end-to-end network slice instances status and
characteristics

 Coordination of Plug & Play control instances deployment (through the Plug & Play manager
following the principles of D6.3 [28]), to expose to verticals the customized runtime control
functions as requested in their vertical service request

 Coordination of multi-domain actuation operations for runtime modification and QoE
optimization of end-to-end network slices across different NSP domains, following the multi-
domain FCAPS principles defined in D6.7 [27]

For what concerns the multi-domain actuation capabilities, the Service Orchestrator acts as the main
coordinator of the end-to-end network slice runtime actuations which are mostly driven by the QoE
optimization and cognitive management logic described in D5.5 [29] and D5.6 [30]. In particular, this
is implemented as part of the DSP to NSP interactions that occur between the Service Orchestrator
and Slice Orchestrator through the APIs defined in section Error! Reference source not found.. In
practice, the single domain NSP actuations exposed by the NSPs (as part of their slice offers in the
NSTs) are processed by the DSP administrator and combined in the form of multi-domain actuation
capabilities that are stored in the DSP Catalogue and offered to the DSP cognitive management and
QoE optimization logic. Indeed, as part of the FCAPS design phase at the DSP level and described in
D6.7 [27], part of these advanced QoE optimization functions may be designed and developed ad-hoc
by the DSP according to the available multi-domain actuation capabilities.

The following subsections provide a brief description of each functional component depicted in Figure
21, highlighting the main features provided and the mapping to equivalent 5GT-VS building blocks
(when applicable).

5.2.1 Vertical Service Manager

The Vertical Service Manager is the front-end component of the Service Orchestrator and is
responsible to collect the requests from the verticals and manage them according to their purpose. In
particular, the Vertical Service Manager presents the VSBs and the VSDs through the SS-O REST APIs
to allow verticals to select the vertical services to be instantiated. In this context, it manages the
parametrization process to obtain VSDs from VSBs upon specific vertical service characterizations.
Therefore, it mostly interacts with the VSB and VSD Catalogues to expose the service offers to the
verticals and to upload new descriptors and blueprints in them.

With respect to the 5GT-VS architecture, it maps to the Vertical Front-End component, augmented
with the Tenant Management and SLA Management functionalities. It is mostly reused as-is from the
5GT-VS apart from the management of the extended models of the VSBs and VSDs as described in
section 4.1.

5.2.2 Vertical Service and Network Slice Catalogue

The Service Orchestrator is equipped with a Catalogue service that stores the various blueprints and
descriptors used by the end-to-end network slice manager to coordinate the lifecycle of vertical
services and end-to-end network slices. This Catalogue, as shown in Figure 21, keeps up to date
information related to VSBs, VSDs and NSTs, each with different procedures. In particular, VSBs are
onboarded in the Catalogue as part of DSP admin operations following the model defined in section

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 60 of (128) © SLICENET consortium 2019

4.1.1. On the other hand, VSDs are onboarded in the Catalogue as a result of the vertical-driven
parametrization of VSBs, thus the trigger for the creation and storage of VSDs come directly from
verticals through the Service Orchestrator REST APIs. For what concerns the NSTs, the Service
Orchestrators collects them from the various NSPs with whom the given DSP has relationships,
following the onboarding procedures defined in section 6. These NSTs stored in the Catalogue
represent the per-domain network slice offers that NSPs offer to the given DSP for composing end-to-
end slices, and follow the model defined in section 4.2.

In practice the VSB/VSD/NST Catalogue is implemented as a database service which stores the VSBs,
VSDs and NSTs and is managed by the Vertical Service Manager to support the different logics
described above. Through the Vertical Service Manager and the REST APIs, other components in the
DSP cognitive management platform (e.g. the FCAPS Manager) can access the Catalogue to retrieve
information about vertical slice and end-to-end network slice offers and related capabilities as
described in the related descriptors and templates.

Moreover, as part of the P&P and monitoring related information included in VSBs, VSDs and NSTs, the
Catalogue provides to the end-to-end Network Slice Manager the required knowledge to coordinate,
beyond the lifecycle of network slice, the creation of additional artifacts and per-slice control and
management functions related to P&P control (according to the principles and logics described in
deliverable D6.3 [28]). In addition, the catalogue keeps track of the available multi-domain actuation
capabilities that are being collected from the various NSPs actuation offerings and combined by the
DSP administrator. Such actuation capabilities follow the model defined in D6.7 [27] for the actuation
offerings.

5.2.3 End-to-end Network Slice Manager

The end-to-end Network Slice Manager is the core lifecycle engine of the Service Orchestrator, and is
responsible for mapping and associating Vertical Service instances (VSIs) with end-to-end Network
Slice instances (NSIs), leveraging on the Translator and Arbitrator functionalities for composing the
end-to-end network slice from the different NSP network slice offers and regulating the sharing of
network slices among different vertical services.

In practice, the end-to-end Network Slice Manager handles the lifecycle of VSIs and end-to-end NSIs,
coordinating commands and events associated with them. The end-to-end NS management takes care
of instantiation, modification and termination operations of the corresponding per-domain NSs by
interacting with the different NSP Slice Orchestrators. The status and the current attributes and
capabilities of VSIs and end-to-end NSIs are stored and maintained in the Vertical Service and Network
Slice Inventory to enable other components within the SliceNet DSP cognitive management framework
to access it.

The Vertical Service Manager takes care to allocate a dedicated manager for each new end-to-end NSI
that implements a Vertical Service. Therefore each end-to-end NS associated to a VSI has its own end-
to-end Network Slice Manager, which takes care of the management of its lifecycle, including on the
one hand the decomposition into per-domain network slices, but also coordinating the P&P and FCAPs
functions to be activated within the DSP cognitive management platform in support of the advanced
SliceNet features. To fulfil this two-fold management approach, the end-to-end Network Slice Manager
retrieves the different vertical service and network slice capabilities from the Catalogue (in terms of
application, QoS and geographical constraints on the one hand, and KPI monitoring and vertical-driven
P&P features on the other) and applies the vertical-specific coordination logics to create, maintain and
terminate vertical services.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 61 of (128)

5.2.4 VSD/NST Translator

The Service Orchestrator during the coordination and management of each vertical service instance
has to implement some decision logics to associate different of kind of descriptors (e.g. VSDs to end-
to-end NSTs) and to decide whether some per-domain network slice instances can be reused for
multiple vertical services. Indeed, while the end-to-end Network Slice Manager is the actual
coordinator of the different steps and operations in the lifecycle of vertical services and end-to-end
network slices (i.e. it implements the various workflow logics to ensure vertical services are
instantiated, maintained and terminated in accordance with vertical requirements), the Translator and
Arbitrator provide the required decision logic of the Service Orchestrator.

In particular, the VSD/NST Translator maps the vertical requirements into more technical
characteristics and attributes that are required by the NSPs Slice Orchestrators to deploy per-domain
network slices. In practice, it selects the per-domain NSTs (as collected from the various NSPs) that
have to be composed for matching the requested vertical services constraints. The Translator identifies
the per-domain NST capabilities in terms of QoS capabilities, monitored KPIs, actuation capabilities,
geographical constraints, application requirements (i.e. specific type of NFV services offered by the
NSPs) most suitable to guarantee the performance and the capabilities defined in the VSD.

When deploying a vertical service, the vertical first selects a VSB, which contains (as defined in section
4) attributes that have to be filled by the vertical itself to express the fine-grained requirements it
demands. This makes the VSB becoming a VSD that is passed to the end-to-end Network Slice Manager
for being deployed. Here, the VSD/NST Translator is invoked to map the VSD into an end-to-end NST
following these steps:

1. the Translator queries the Vertical Service and Network Slice Catalogue to retrieve the VSD

2. the Translator queries the Vertical Service and Network Slice Catalogue to retrieve the per-
domain available NSTs, applying a preliminary filter if possible

3. the Translator filter-out those per-domain NSTs not matching the vertical QoS, geographical,
monitoring, actuation and application requirements

4. the Translator composes the set of per-domain NSTs into and end-to-end network slice chain
that is passed back to the Network Slice Manager for coordinating the vertical service
deployment

With respect to the 5GT-VS Translator, this SliceNet Service Orchestrator version is basically refactored
to support the mapping and translation from VSDs towards the end-to-end network slices following a
different information model with respect to the one used in 5G-Transformer.

5.2.5 Arbitrator

The Service Orchestrator Arbitrator is the other decision point of vertical services and network slices
lifecycle coordination logics, as it takes care of regulating the sharing of network slices among different
vertical services. In general, the vertical service and the network slice lifecycle operations are effective
when trade-offs are found among the specific vertical requirements (technical and non-technical) and
the overall status of the system where other services and slices are running. Accommodating new
services and slices, possibly reusing part of the existing ones, is a typical service deployment problem
requiring the management of such trade-offs.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 62 of (128) © SLICENET consortium 2019

The Arbitrator is the Service Orchestrator component that is in charge of resolving these trade-offs and
thus decide for each vertical service instance to be created if some of the already existing per-domain
network slices instances can be reused without affecting any of the involved service. As part of the
resolution of the trade-offs, some of the vertical services requests may be also refused. In particular,
the Arbitrator decides how to map new vertical service requests into network slice instances, enabling
vertical services to share one or more per-domain network slice instances. To do that, the Arbitrator
applies its decision logic mostly based on the QoS and geographical constraints expressed in the VSD
matching them against the information stored in the Vertical Service and Network Slice Inventory for
what concerns the actual status (and resource usage) of the existing vertical services and network
slices. A relevant example of network slice sharing and reuse could be the sharing of the same 4G or
5G core services and virtual functions (e.g. virtual EPC or 5G Core) among different vertical service
instances with similar requirements in terms of mobile access.

Upon invocation from the end-to-end Network Slice Manager, and starting from the available NSTs in
the Catalogue, the Arbitrator verifies if one or more existing network slice instances can be reused to
accommodate the new vertical service, or at least part of it. In the case of no suitable existing network
slice instances available, the Arbitrator decides to create new network slice instances for the whole set
of per-domain NSTs selected by the Translator. At this point, the end-to-end Network Slice Manager
can start with the vertical service deployment workflows and trigger the creation of the new per-
domain network slices in the given NSP domains. On the other hand, when the Arbitrator decides that
at least part of the end-to-end network slice can be covered by existing network slice instances, this is
passed-back to the Network Slice Manager to take care of the required actions for reusing them in the
new vertical slice deployment process.

Similar to the Translator, the SliceNet Service Orchestrator Arbitrator is a refactored version of the
5GT-VS one due to the substantially different logic to be implemented, mostly in terms of target
network slice instance model used in SliceNet.

5.2.6 Vertical Service and Network Slice Inventory

The Vertical Service and Network Slice inventory is the counterpart of the Service Orchestrator
Catalogue service component, as it stores and maintains up to date information for the provisioned
VSIs and end-to-end NSIs. Detailed information about vertical service characteristics, as well as per-
domain network slice attributes and service access points are persisted in the inventory. The Vertical
Service and Network Slice inventory is also implemented as a database following the vertical service
and network slice models described in section 4.

The information stored in this inventory component is mostly used by the Arbitrator for deciding upon
network slice reuse and share, as well as by the Vertical Service Manager to expose such information
to the vertical through the Service Orchestrator REST APIs and the One-Stop-API. In addition, other
SliceNet DSP cognitive management framework components (e.g. the FCAPS Manager) can access the
inventory through the REST APIs to retrieve VSIs and NSIs information to fulfill their management
logics.

5.2.7 Communication Service

The Communication Service regulates the interactions of the DSP Service Orchestrator with the
underlying NSP Slice Orchestrators, as it offers common internal APIs to other Service Orchestrator
components (mostly the end-to-end Network Slice Manager) to fulfill the vertical service and end-to-

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 63 of (128)

end network slice lifecycle coordination operations. The main rationale behind this Communication
Service is to expose a unified set of APIs for per-domain slice lifecycle management (i.e. create, modify,
terminate), including onboarding related operations for per-domain NSTs collection, and implement
through specific technology-specific clients the APIs of different slice orchestrators.

In the context of the SliceNet DSP Service Orchestrator, the Communication Service is equipped with
a REST client that implements the Slice management APIs exposed by the NSP Slice Orchestrators as
documented in section 7.2.

This component is newly introduced as part of the SliceNet, with respect to the 5GT-VS, and is one of
the key enhancements to implement the coexistence of both the single-domain and multi-domain
approaches of 5G-Transformer and SliceNet. In particular, the Communication Service for the 5GT-VS
implements a RabbitMQ client to support the internal 5GT-VS communications (i.e. between vertical
service and slice level management components).

5.2.8 P&P Driver

As part of the vertical service and end-to-end network slice lifecycle management, the Service
Orchestrator takes also care of coordinating the creation of the additional per end-to-end slice control
and management functions required for the SliceNet P&P features. For each vertical service, the end-
to-end Network Slice Manager interacts with the P&P Manager through the dedicated driver which
implements the related APIs described in deliverable D6.3 [28]. In accordance with the P&P
requirements expressed in the VSBs and VSDs, the end-to-end Network Slice Manager instructs the
P&P Manager to allocate the required per end-to-end slice control and management functions.

These interactions occur mostly as final steps during the vertical service instantiation and termination,
respectively to activate and deactivate the customized control and management functions.

5.3 Slice Orchestrator Internal Architecture
The Slice Orchestrator within the SliceNet cognitive management platform is responsible for the
coordination of per-domain slices lifecycle, thus interacting with different domain-specific controllers
and orchestrator for the actual creation and configuration of slice resources. The Slice Orchestrator is
deployed at the NSP level, and it manages single administrative domain slices, which are offered to the
DSPs for being composed in end-to-end multi-domain scenarios and deployments. In terms of
management logics, the Slice Orchestrator operates at a finer resource granularity with respect to the
Service Orchestrators within the DSPs, as it coordinates the actual resources in the NSP physical and
virtual infrastructure.

The Slice Orchestrator high level functional architecture is depicted in Figure 22. Here, the main slice
coordination functions are highlighted with their interactions and positioning with respect to other
SliceNet architecture components. Similarly to the Service Orchestrator, the Slice Orchestrator reuses
part of the 5GT-VS, mostly for what concerns the functionalities related to the network slice lifecycle,
including the NFV Network Services coordination and modelling, as well as the unified lifecycle
procedures and specific drivers towards technology-specific NFV orchestrators. These are anyway
enhanced to integrate the RAN control and slicing features of SliceNet, together with the QoS
enforcement through the SliceNet control plane.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 64 of (128) © SLICENET consortium 2019

Figure 22: SliceNet Slice Orchestrator functional architecture

The Slice Orchestrator provides the following functionalities for network slice management:

 Interaction with DSPs for single domain network slice offer exposure, in terms of slice
components, capabilities and actuation functions exposed

 Onboarding and maintenance of NSTs and NSSTs

 Lifecycle management of NSIs and NSSIs, including mapping and translation of network slice
requirements into resource provisioning constraints and operations in the RAN, core, backhaul
and NFV segments. Sharing of network slice resources is also a key fundamental feature
implemented as part of the lifecycle management

 Maintenance of up to date NSIs and NSSIs status and characteristics in dedicated inventories

 Coordination of Plug & Play control instances deployment (through the Plug & Play manager
following the principles of D6.3 [28]), to allocate per-slice control and management functions
(including SliceNet Control Plane Services – CPSs – and cognitive/QoE functions)

 Coordination of single-domain actuation operations for runtime modification and cognitive
optimization of network slices and network slice subnets, by interacting with SliceNet CPSs and
NMR-O for applying the actuations at the resource level

The Slice Orchestrator exposes dedicated APIs towards the NSP FCAPS framework (ref. D6.6 [26]), for
single-domain actuation purposes. Indeed, the Tactical Autonomic Language (TAL) Rule Engine in the
FCAPS framework captures optimization events as generated by NSP cognitive algorithms (D5.5 [29]
and D5.6 [30]), and invokes such network slice actuation APIs to apply the given actuation. All of the
single domain NSP actuations available for the Slice Orchestrator are maintained in the Slice
Orchestrator catalogue, following the model defined in D6.7 [27] for the NSP offerings and design
phase. And they can be offered to DSPs in the context for multi-domain actuation purposes by
including them in the NST slice offers, as defined in section 4.2

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 65 of (128)

The following subsections provide a functional description of the components depicted in Figure 22, in
terms of main features provided and mapping to equivalent 5GT-VS building blocks (when applicable).

5.3.1 Network Slice Front-end

The Network Slice Front-end represents the functional entry point of the SliceNet Slice Orchestrator
and it coordinates all the requests related single-domain network slices coming from the DSPs. On the
other hand, the Network Slice Front-end regulates the per-domain NSTs that have to be offered to the
DSPs as part of the multi-domain onboarding process. For this, it interacts with the NST Catalogue to
expose the slice offers to the peering DSPs through the Communication Service, as well as to upload
new NSTs as part of the single-domain onboarding process (i.e. when new slice offers are designed by
the NSP administrators).

The Network Slice Front-end also coordinates the per-slice Network Slice Lifecycle Managers (LCM),
allocating them and forwarding the related actions and operations as requested by the DSPs’ Service
Orchestrators or by other SliceNet NSP cognitive management platform components.

The Network Slice Front-end is not mapped to any of the 5GT-VS functional components, as it is
required upon the split in DSP and NSP orchestration functionalities in support of the multi-domain
network slice deployments. So, it is newly added and implemented from scratch as part of the SliceNet
SS-O.

5.3.2 Communication Service

The Communication Service within the Slice Orchestrator has a similar role with respect to the one in
the Service Orchestrator, as it provides a unified communication interface for the Slice Orchestrator
internal components towards the external world (i.e. other SliceNet architecture components). It is
basically the counterpart of the same Service Orchestrator component, and allows to support the
coexistence of both single-domain and multi-domain slice management.

In the Slice Orchestrator, the Communication Service is equipped with a REST controller that provide
the SliceNet technology specific implementation of the single-domain slice management APIs
described in section 7.2. It is linked to the Network Slice Front-end which regulates the access to other
internal Slice Orchestrator services, like the NST Catalogue and the lifecycle managers.

As in the Service Orchestrator, the Communication Service is a new component with respect to the
5GT-VS and allows integrating different technology-specific APIs from different slice orchestrators.

5.3.3 Network Slices Catalogue

The per-domain NSTs modelling the NSP slice offers are stored and maintained the Network Slices
Catalogue. The Catalogue content is exposed to the DSPs through the Network Slice Front-end and the
Communication Service in support of the composition of per-domain slice offers at the DSP level for
deployment of vertical services.

The NSTs stored in the Network Slices Catalogue follow the model defined in section 4.2, and provide
to the Network Slice Lifecycle Managers (LCMs) the required information to coordinate the lifecycle of
per-domain network slices. The NSTs are onboarded in the Catalogue as part of NSP administrator
operations, as the result of the network slice design process, which is out of the scope of this
document. The Catalogue itself is implemented as a database, and its access is regulated by the
Network Slice Front-end. In particular, other components in the NSP cognitive management platform

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 66 of (128) © SLICENET consortium 2019

(e.g. the FCAPS Manager within the FCAPS framework) can access the Catalogue (still through the
Communication Service) to retrieve information about NSTs and related capabilities.

Moreover, similarly to the Service Orchestrator Catalogue, as part of the P&P and monitoring related
information included in the NSTs, the Network Slice Catalogue provides to the Network Slice LCM the
required knowledge to coordinate, beyond the lifecycle of network slices, the creation of additional
per-slice control and management functions related to P&P control (according to the principles and
logics described in deliverable D6.3 [28]) by interacting with the P&P manager. In addition, the Service
Orchestrator Catalogue maintains the available single actuation capabilities that offered and
implemented by the SliceNet CPSs and the NMR-O mostly. Such actuation capabilities follow the model
defined in D6.7 [27] for the single domain NSP actuation offerings.

5.3.4 Network Slice Lifecycle Manager

The Network Slice LCM is the core component of the Slice Orchestrator, as it handles the lifecycle of
per-domain NSIs, applying the required management logics for instantiation, modification and
termination of network slices. As part of its lifecycle coordination duties, the Network Slice LCM
decomposes each of the network slices to be created into specific resource domain actions according
to the slice resource requirements expressed in the NSTs. To do that, it leverages on the Translator
and Arbitrator functionalities for selecting proper resources to create slices, and for deciding if reuse
and share part of the slice resources among different per-domain network slices.

The Network Slice LCM manages the lifecycle management requests coming from the Network Slice
Manager, and interacts with the technology specific resource orchestrators and controllers to create
and configure the required RAN resources, NFV Network Services and QoS in the different network
domains, according to the slice requirements in the NSTs. Therefore, the Network Slice LCM processes
the network slice requirements stored in the Catalogue, and upon per-domain network instantiation
and runtime management takes care to maintain into the Network Slice Inventory the information
related to NSIs.

A dedicated Network Slice LCM is allocated by the Network Slice Manager for each new per-domain
network slice. This allows to have isolated slice lifecycle management workflows, and also to apply the
coordination logics at scale as the management load is distributed among different logical entities. In
addition to these lifecycle management duties, the Network Slice LCM also takes care to drive the
activation of per-slice control and management functions for P&P purposes, still according to the
related requirements expressed in the NSTs. This is done through the P&P driver, which translate these
NST requirements into proper API calls to the P&P Manager following the specifications in D6.3 [28].

The Network Slice LCM in the SliceNet SS-O is a refactored version of the NSMF and NSSMF features
of the 5GT-VS that required enhancements to support the integration with the NSP slice management
approach and with the information model defined in section 4.

5.3.5 NST/NSD Translator

Similar to the Service Orchestrator, the Slice Orchestrator implements its decision logic with the
combination of an NST/NSD Translator and an Arbitrator, with the aim of mapping NST attributes and
characteristics into technology-specific resource requirements on the one hand, and of deciding if
reusing slice resources among different network slices.

The NST/NSD Translator is invoked by the Network Slice LCM, mostly at network slice instantiation
time, to map the network slice level requirements expressed into the NSTs into finer grain resource

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 67 of (128)

level requirements. In practice, the Translator associates an NST with a set of specific RAN slice
configurations, NFV Network Service Descriptors (NSDs) and QoS configurations (to be applied through
the SliceNet control plane) that are then used by the Network Slice LCM to enforce the slice resource
instantiation and configuration.

With respect to the 5GT-VS Translator, this Slice Orchestrator version is significantly enhanced in
support of the SliceNet NST model defined in section 4.2, as well as to include in the translation process
the specific RAN slice configurations and QoS enforcements.

5.3.6 Arbitrator

The Arbitrator in the Slice Orchestrator decision maker for regulating the slice resource sharing among
different network slices. In particular, it assists the Network Slice LCM when new network slices have
to be provisioned in the NSP domain, by evaluating if some of the existing (i.e. already provisioned and
configured) slice resources can be reused without affecting the running services and slices.

In practice, the Arbitrator applies its decision logic by matching, for each network slice to be
provisioned, the QoS and resource requirements expressed in the NST against the available NSIs in the
inventory and the related slice resources used and configured. As an example, as part of the
provisioning of a new per-domain network slice, the Arbitrator may decide to reuse an entire existing
RAN slice configuration as it may be evaluated as enough to accommodate the requirements of both
network slices (i.e. the new and the existing one).

When the Arbitrator decides that it is not possible to reuse existing slice resources, the Network Slice
LCM is informed that for the given new network slice instance to be created, new slice resources have
to be instantiated or configured in all the technology-specific domains (e.g. new NFV Network Services
and new RAN slices configurations). On the other hand, when the Arbitrator that at least some of the
slice resources can be shared, the information related to these slice resource instances is passed-back
to the Network Slice LCM to take care of the required actions for reusing them in the new network
slice instance deployment process.

As for the Translator, the SliceNet Slice Orchestrator Arbitrator is a widely enhanced version of the
5GT-VS one due to the substantially different decision logic to be supported, mostly in terms of
network slice model and RAN resources used in SliceNet.

5.3.7 Network Slice Inventory

The Network Slice inventory in the Slice Orchestrator is intended to store and maintain up to date
information related to the provisioned and running NSIs and NSSIs. The main relevant characteristics
and configurations of slice resources are kept into the inventory, in terms of RAN slices, used NFV
Network Service Instances, and reference to the instantiated Network Functions (NFs), either virtual
or physical. The Network Slice inventory is implemented as a database service, and the data stored
follows the network slice models described in section 4.

The Network Slice Inventory is mostly accessed by the Arbitrator for deciding upon slice resource reuse
and share, and by the Network Slice Manger to expose such information to other SliceNet NSP
cognitive management framework components (e.g. the FCAPS Manager in the FCAPS framework) that
may require it to fulfill their management logics.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 68 of (128) © SLICENET consortium 2019

5.3.8 P&P driver

As it happens in the Service Orchestrator, the Slice Orchestrator is also responsible for coordinating
the allocation of those per-slice control and management functions which provide additional
customized runtime features for P&P aspects. Indeed, in SliceNet, the regular per-domain slice
management is augmented with specific per-slice runtime control functions that are differentiated
from slice instance to slice instance according to the specific requirements included in the NSTs.

As a result, for each network slice instance, the Network Slice LCM interacts with the P&P Manager
through the dedicated driver that implement the APIs described in deliverable D6.3 [28]. This is done
to fulfil the P&P requirements expressed in the NSTs (as defined in section 4.2).

Being these P&P features specific and novel functionalities integrated in the SliceNet cognitive
management and orchestration framework, this driver is newly introduced with respect to the 5GT-
VS.

5.3.9 Southbound resource control drivers

As part of its lifecycle coordination workflows, the Network Slice LCM has to interact with various
technology-specific resource controllers and orchestrators to perform the slice resource instantiation
and configuration following the requirements described in the NSTs.

Following the SliceNet overall principles, and the NSP cognitive management and control platform
architecture, three main interactions are required for the Slice Orchestrator and external SliceNet
components:

i) the RAN controller for creating slices in the radio domain,

ii) the QoS controller for enforcing QoS configurations in the different NSP network domains at
runtime,

iii) the NFV Orchestrator for deploying and configuring Network Services and VNFs.

For each of these interactions, a southbound driver is included in the Slice Orchestrator to implement
the specific APIs exposed by the slice resource controllers and orchestrators selected in SliceNet to
implement the three features above:

 The RAN Adapter, on top of the Mosaic-5G FlexRAN controller, for the RAN slices creation
 The SliceNet QoS Control Plane Service, for runtime QoS configurations in RAN, edge, core and

WAN network segments

 The SliceNet NMR-O, on top of the ETSI OSM [15], for the NFV Network Services Orchestration
and VNF Management, in accordance with the functionalities described in section 5.3

5.4 NMR-O Internal Architecture
This section describes the functional split of the NMR-O to fulfill the functional requirements detailed
in section 3.2.3. As detailed in [25], the NMR-O stands for NFV, MEC, RAN Orchestrator and was
designed to act as the network domain orchestration, that is, the entity responsible for managing the
network services lifecycle and the resources associated with them. It is worth noting here that,

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 69 of (128)

although RAN slicing responsibility was assigned to the NMR-O during the design phase [25], it has now
been moved to the Slice Orchestrator. The reason behind this is that the Resource Orchestrator does
not have the view of the NS, so it should not have any slicing function. Hence, in its final design, the
NMR-O provides the functionalities listed below:

 Exposure of network service offers to the Slice Orchestrator
 Onboarding and maintenance of network service descriptors and VNF descriptors
 Lifecycle management of the network service instances and their associated VNFs
 Up-to-date maintenance of the status and characteristics of the network service instances and

their associated VNFs
 Enabling network service instances monitoring following the principles defined in D6.3 Error!

Reference source not found.
Figure 23 depicts the functional architecture of the Resource Orchestrator of the SliceNet
Orchestration plane. The main work element of the NMR-O is the Network Service, which is basically
a set of virtual and physical functions and configurations that are configured at the infrastructure of
the NSP and work in a coordinated way to provide a more complex functionality to the NS. Hence, the
NMR-O receives Network Service requests from the SS-O at NSP level through the NBI. These requests
are processed by the Network Service Orchestrator (NSO), which splits them into the lower level
configurations required by the NFV-O (which is implemented by Open Source MANO, OSM) and the
Extended Infrastructure Manager (EIM). The NMR-O relies on OSM as the enabler for the provisioning
of the VNFs that will compose the Network Service. In addition, the Extended Infrastructure Manager
component is responsible for the infrastructure configurations that are not supported by OSM, such
as some kinds of low level network configurations. The NMR-O maintains a catalogue of Network
Services that can be offered to the SS-O, and an inventory to keep track of the running ones.

Figure 23: NMR-O functional architecture

5.4.1 Northbound Interface

The NBI of the NMR-O provides a set of RESP APIs that allow for the allocation of the Network Services
associated to a slice. To this end, the NBI implements a set of operations to expose the available
Network Services offerings to the SS-O, which are stored in the catalogue. These services can be

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 70 of (128) © SLICENET consortium 2019

instantiated and configured through a set of operations offered by the NBI. The network service
instances, which are stored in the inventory, can be consulted, as well.

5.4.2 Network Service Orchestrator

The NSO collects the requests coming from the SS-O at NSP through the NBI and processes them. In
this regard, the NSO is responsible for orchestrating the network service lifecycle management, which
is mainly supported by OSM, and the additional configurations (by means of the EIM) that may be
needed to be done over the infrastructure to fulfill the request. In addition, the NSO also manages the
exposure of the network service offers that are stored in the catalogue and the network service
instances status that is tracked in the inventory.

5.4.3 Catalogue and Inventory

The NMR-O maintains a catalogue of the onboarded network services that can be instantiated by the
NSP. It is worth noting here that the network service onboarding is done in a previous phase and, in
the current version, manually. This catalogue is currently based on the one provided by OSM although
some extension can be needed to provide complete automated network service allocation. This is
expected to be analyzed and developed during the integration of the orchestration plane in WP8.
Similarly, the inventory maintained by the NMR-O, which contains the network services instantiated
over the infrastructure, is currently based on the one provided by OSM but further extensions will be
analyzed during the integration phase.

5.4.4 Open Source MANO

The core of the NMR-O is implemented by Open Source MANO [15]. OSM is based on the ETSI NFV
Architecture proposed in [39] and focuses on covering the VNF Manager component, which is related
to the VNF lifecycle management, and the NFV Orchestrator, which handles the general resource
orchestration and network service lifecycle. The main modules of OSM are the Resource Orchestrator
(RO), the Lifecycle Manager (LCM) and the VNF Configuration and Abstraction (VCA). The VCA is in
charge of configuring the VNFs associated to the network service, the LCM manages the instantiation,
maintenance and deletion of the VNFs and the network services and, finally, the RO acts as the
orchestration module providing blueprints, implementing methods and coordinating operations
between modules. It is worth noting here that OSM also provides a NBI module that enables REST-
based network service configuration. Inter-module communication in OSM is realized by means of a
message bus.
From release four on, OSM has been adding and extending monitoring capabilities as well as including
some policy-based actuations. Two new modules, namely Monitoring (MON) and Policy (POL) have
been introduced in the architecture for this purpose. In brief, monitoring parameters and associated
thresholds can be added to the VNFD. These parameters are collected by the POL which requests the
creation of a new alarm to the MON module through the message bus. The MON, in turn, creates the
alarm with the specified parameters and starts the monitoring process. In case the established
thresholds are surpassed, the MON raises an alarm, which is inserted in the message bus and detected
by the POL. Then, the POL triggers the actuation defined in the descriptor, which is applied by means
of the LCM. In the context of SliceNet, the monitoring mechanism (not the actuation) is connected to
the FCAPS management system [28]. In particular, the FCAPS system is connected to the message bus
of OSM to consume the monitoring information of the virtual infrastructure. For the actuation the loop
defined in the framework of SliceNet is used.
In NMR-O functional architecture, OSM is expected to provide the orchestration of the VNFs
composing the network services requested from the SS-O. In this regard, the NSO forwards the
network service related operations received through its NBI to the OSM NBI. The OSM Driver sub-

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 71 of (128)

module enables this communication. Such requests are based on the NSDs and VNFDs supported by
OSM, which are compliant with the ETSI standards as described in section Error! Reference source not
found.. Upon the reception of these requests, OSM contacts the Virtual Infrastructure Manager(s) of
the NSP to allocate and configure the computational and network resources to provide the network
service(s).

5.4.5 Extended Infrastructure Manager

As said in section 2.4.1, OSM still has some lacks to support end-to-end vertical-oriented cognition-
based service provisioning. The EIM aims at implementing the operations needed to configure the full
network service in support of the slices provided by the SS-O. For example, additional configurations
may be needed to interconnect independent network service instances associated to the same slice,
or to provide network service instances connectivity to services allocated in a different domain (shall
it be different VIM, operator, NSP, etc.). To do this, the EIM has to contact the infrastructure manager
of the NSP as depicted in Figure 23.

5.5 Cross-layer orchestration considerations
The SliceNet orchestration architecture lays its foundations on the business roles split described in
section 3, where verticals, DSPs and NSPs have clearly separated responsibilities and have access to
specific managed entities, which are respectively the vertical services, the end-to-end network slices
and the single domain network slices composed by technology and domain specific resources. Indeed,
dedicated orchestration functions are required to manage the lifecycle of these different managed
entities which identify three main management domains and scopes:

 Vertical services and end-to-end network slice orchestration domain

 Network slice orchestration domain

 Resource orchestration domain

This gives to the SliceNet orchestration approach a first cross-layer dimension, where three main
orchestration engines cooperate for the final aim of delivering to verticals tailored end-to-end services
provisioned as a combination of single domain network slices with added value capabilities and
functionalities like cognitive based QoE end-to-end optimization, Plug & Play, multi-domain actuation
and fault management. This is done by keeping logically separated the management logics for services,
slices and resources which natively require different logics with different granularities. In particular,
having the interactions among DSPs and NSPs at the network slice level (assuming the use of the
models in section 4), guarantees a proper resource abstraction in the exposure of management
capabilities and actions from NSPs to DSPs. The gluing and integration of these orchestration engines
(Service Orchestration at the DSP level, and Slice and Resource Orchestration at the NSP level) is driven
by the workflows defined in section 6 and by the APIs defined in section 7.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 72 of (128) © SLICENET consortium 2019

Figure 24 Cross-layer Slice Orchestration approach: interfaces and coordination actions

Besides this macroscopic cross-layer orchestration dimension, each of the Service, Slice and Resource
orchestrators in turn provide to the SliceNet cognitive management platform key cross-layer
coordination features within their domain scope that aim at gluing the lifecycle management
operations towards a seamless integration of various aspects of services, slices and resources
management including, among others, resource provisioning, FCAPS, Plug & Play, actuation, cognitive
optimization. Figure 24 provides an overview of how each of the SliceNet orchestration engine is
interfaced and integrates the different SliceNet cognitive management logics. The SS-O (as
combination of DSP Service and NSP Slice Orchestrators) and the NMR-O are therefore clearly
fundamental cross-layer coordination entities that make consistent heterogeneous logics enabling a
flexible and customizable approach. The different interactions and coordination sources of each of the
SliceNet orchestration engine are shown in Figure 24 with different colours, and can be summarized
as follows:

 DSP Service Orchestrator: coordinates end-to-end network slice provisioning, multi-domain
FCAPS, QoE optimization, Plug & Play

 NSP Service Orchestrator: coordinates network slice and slice subnets provisioning, single-
domain FCAPS, cognitive optimization, Plug & Play

 NSP NMR-O: coordinates the provisioning and actuation of NFV related resources in the
virtualized infrastructure

With respect to new emerging management and orchestration approaches, like those proposed and
under definition in ETSI ZSM (see section 2) for end-to-end service management automation, the

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 73 of (128)

SliceNet proposed orchestration architecture makes a first step towards flexible and scalable
coordination of different managed domains and entities. While ETSI ZSM proposes a pioneer approach
where all of the management domains are loosely coupled and coordinated by end-to-end service
management logics through a cross-domain integration fabric, SliceNet takes a more conservative
approach where at least part of the management interactions are occurring through traditional well-
defined interfaces and procedures (e.g. based on REST). However, SliceNet follows an architectural
approach compatible with the ETSI ZSM for what concerns the exposure of well-defined services
between DSPs and NSPs through the related orchestrator interactions for domain control (as
combination of provisioning and actuation), domain monitoring data collection, domain cognitive
functions. Moreover, the interactions between the DSP Service Orchestrator and NSP Slice
Orchestrator are enabled by the Communication Services defined in section 5.2 and 5.3 which offer a
flexibility in the implementation of various options for the orchestrator to orchestrator interfaces,
enabling solutions like an ETSI ZSM like approach based on publish/subscribe message bus
mechanisms.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 74 of (128) © SLICENET consortium 2019

6 Orchestration Workflows

6.1 Design, Onboard and Offer
This section describes the design, onboarding and offer workflows at the DSP and NSP levels. Basically
it includes services, network slices and resources. Figure 25 illustrates the design, onboarding and offer
workflow:

Figure 25: Service and Slice Design, onboarding and Offer workflow

Table 24 describes the workflow steps shown in Figure 25.

Table 24: Service and Slice Design, Onboard and Offer workflows

Step Workflow step description

1 Each NSP will manually design and onboard their NSTs in a catalogue.

2 The next step will be to offer their NSTs through an API (Communication Services) which will
be consumed by the DSPs.

3 Each DSP will manually design and onboard their VSBs in a catalogue.

4 Each DSP will manually design and onboard their end-to-end NSTs in a catalogue.

5 Each DSP will offer their services through an API which will be consumed by the Verticals.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 75 of (128)

6.2 Instantiation
This section describes the Vertical service request and the respective service/slices instantiation
workflow at DSP and NSP levels. It includes Vertical services, end-to-end NSs and NSs instantiations.
Figure 26 illustrates the instantiation workflow:

Figure 26: Service and Slice Instantiation workflow

Table 25 describes the workflow steps shown in Figure 26.

Table 25: Service and Slice Instantiation workflow

Step Workflow step description

1 The Vertical selects the appropriate VSB, taken into account his needs in terms of
requirements (latency, bandwidth, SLA, geography, etc.), providing all the information
necessary for the DSP to instantiate a VSD.

2 The Service Orchestrator maps this VSD into an end-to-end NST, describing the end-to-end
NS details for this specific Vertical service.

3 The Vertical Service Manager requests the instantiation of the end-to-end NST to the
Network Slice Manager.

4 The arbitrator decomposes the end-to-end NST and selects the appropriate NSs that comply
with the Vertical requirements. Finally it informs the end-to-end NS Manager to request the
network slices instances to the selected NSPs.

5 NSI request to the selected NSPs.

6 The NSI request is translated into the required NFV network services.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 76 of (128) © SLICENET consortium 2019

7 The arbitrator decomposes the NS and selects the appropriate resources (PNFs/VNFs) that
comply with the NSI request. Finally it informs the NS Manager of the selected resources.

8 The NS Manager will contact the NMR-O in order to provision the selected resources (see
Figure 27).

At the NSP level the NMR-O will be responsible for the orchestration of the resources involved in the
respective NS. Figure 27 describes the NMRO Slice instantiation workflow.

Figure 27: NMRO Slice instantiation workflow

Table 26 describes the workflow steps shown in Figure 27.

Table 26: NMRO Slice Instantiation workflow

Step Workflow step description

1 NSO provision request to OSM

2 OSM resource provisioning

3 Other Network Element configurations

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 77 of (128)

6.3 NSP NS Optimization
During runtime the NS can and will experience alarms and/or performance degradation. Some
performance degradation events, if not addressed carefully and in the correct time, will cause an alarm
that most likely will cause a NS downtime or severe degradation. The permanent monitoring of the
resources belonging to a specific NS can prevent this to occur, by performing an optimization in the NS
that “heals” the resource(s) causing the unwanted degradation. If this NS optimization is not done the
NSP will face a violation of the SLA agreed with the DSP, either in the form of requirements degradation
(bandwidth, latency, etc.) or even and more serious an out of service NS. Figure 28 shows the NSP
optimization workflow:

Figure 28: NSP NS Optimization workflow

Table 27 describes the workflow steps in more detail.

Table 27: NSP NS Optimization workflow

Step Workflow step description

1 Resources and traffic monitoring.

2 Feed a Data Lake with all this monitoring information which will be consumed by the Slice
Cognition module.

3 If a NS Optimization is necessary the Network Slice Manager is triggered in order to make all
the necessary actions in the NS to keep the SLA with the DSP.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 78 of (128) © SLICENET consortium 2019

6.4 DSP End-to-end NS Optimization
Also during runtime the end-to-end NS can and will experience alarms and/or performance
degradation in the same way as what happens in the NSP domain. Some performance degradation
events, if not addressed carefully and in the correct time, will cause an alarm that most likely will cause
an end-to-end NS downtime or severe degradation. The permanent monitoring of the DSP resources
and corresponding NSs belonging to a specific end-to-end NS can prevent this to occur, by performing
an optimization in the faulty/degraded NS. If this end-to-end NS optimization is not done the DSP will
face a violation of the SLA agreed with the Vertical, either in the form of requirements degradation
(bandwidth, latency, etc.) or even and more serious an out of service end-to-end NS. The following
figure shows the DSP end-to-end NS optimization workflow, where in the presented scenario we have
an end-to-end NS composed of 2 NS, one from NSP1 and the other from NSP2. At some point in time
the NSP2 NS violates the SLA and the DSP will replace this faulty NS by a healthy NSP3 NS that fulfills
the requirements and the SLA. Figure 29 shows the DSP end-to-end NS Optimization workflow.

Figure 29: DSP end-to-end NS Optimization workflow

Table 28 describes the workflow steps in more detail.

Table 28: DSP end-to-end NS Optimization workflow

Step Workflow step description

1 DSP is monitoring all the NSs that belongs to a particular end-to-end NS

2 This NSs monitoring information is fed into a Data Lake and will be consumed by the Slice
Cognition module at the DSP level

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 79 of (128)

3 If a given NS fails or is performing under the SLA an end-to-end NS Optimization is necessary.
Thus the end-to-end Network Slice Manager is triggered in order to make all the necessary
actions in the end-to-end NS to keep the SLA with the Vertical

4 The faulty NSP2 NS is informed that will be decommissioned

5 The NSP3 is requested to instantiate a NS with the required parameters

Figure 30 shows the new DSP end-to-end NS that fulfils the necessary service SLA, and is being
permanently monitored to verify the agreed SLA.

Figure 30: DSP end-to-end NS Optimization workflow (final state)

6.5 Vertical service reconfiguration through P&P
During the service lifetime the Vertical may want to change a specific requirement (e.g., latency,
bandwidth, etc.) or may want to add new vertical devices in new locations. This can have an impact in
the DSP and/or NSP and it must be checked whether the new reconfiguration is feasible or not. Two
considerations should be taken into account, the first one is related with the requirements and it
should be checked if the DSP/NSP can deal with the new requirements reconfiguration, the second
one is related with the new vertical location devices as this cannot be done in the actual end-to-end
NS, for instance if the new devices falls out of the domain of the existent NSPs, and thus new NSPs
should contacted to provision the necessary NSs to fulfil the new end-to-end NS. This later
reconfiguration scenario may, and most certainly will, have an impact in the Vertical service as this
involves new hardware to be installed. Figure 31 shows the Vertical service reconfiguration through
P&P workflow.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 80 of (128) © SLICENET consortium 2019

Figure 31: Vertical reconfiguration through P&P workflow

Table 29 describes the workflow steps in more detail.

Table 29: DSP end-to-end NS Optimization workflow

Step Workflow step description

1 The Vertical selects the appropriate VSB, and makes the necessary modifications according
to his needs in terms of requirements (latency, bandwidth, SLA, geography, etc.).

2 The Service Orchestrator maps the new reconfigured VSD into an end-to-end NST,
describing the end-to-end NS details for this specific Vertical service.

3 The Vertical Service Manager requests the reconfiguration of the new end-to-end NST to
the Network Slice Manager.

4 The arbitrator decomposes the new end-to-end NST and informs the end-to-end NS
Manager to request a NSI reconfiguration to the selected NSPs. If additional NSPs are
required the DSP shall contact them and send a NSI request for each one.

5 NSI reconfiguration request to the selected NSPs.

6 The NSI reconfiguration request is translated into the required NFV network services.

7 The arbitrator decomposes the NS and selects the appropriate resources (PNFs/VNFs) that
comply with the NSI reconfiguration request. Finally it informs the NS Manager of the
selected resources.

8 The NS Manager will contact the NMR-O in order to provision the selected resources (see
Figure 32).

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 81 of (128)

At the NSP level the NMR-O will be responsible for the orchestration of the resources involved in the
respective NS. Figure 32 shows the NMRO Slice reconfiguration workflow.

Figure 32: NMRO Slice reconfiguration workflow

Table 30 describes the workflow steps shown in Figure 32.

Table 30: NMRO Slice reconfiguration workflow

Step Workflow step description

1 NSO reconfiguration request to OSM

2 OSM resource reconfiguration

3 Other Network Element configurations

6.6 Vertical service decommission
If the Vertical wants to end the service contracted with the DSP it will ask for a Vertical service
decommission request. The DSP will act accordingly, e.g. removing the vertical service and the end-to-
end NS from the respective inventories among other internal actions, and will also inform, via an NSI
decommission request, each of the involved NSPs in the end-to-end NS. Figure 33 shows the Vertical
service decommission workflow.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 82 of (128) © SLICENET consortium 2019

Figure 33: Vertical service decommission workflow

Table 31 describes the workflow steps in more detail.

Table 31: Vertical service decommission workflow

Step Workflow step description

1 Vertical initiates a service decommission request

2 The DSP VS Manager delivers the notification to the end-to-end NS Manager. The VS
Inventory is updated accordingly.

3 The request is then delivered to all the NSPs, involved in the end-to-end NS, informing that
the respective NS should be decommissioned. The end-to-end NS Inventory is updated
accordingly.

4 The NSP NS Manager will make decommission of all the resources involved in the respective
NS. The NS Inventory is updated accordingly.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 83 of (128)

7 SliceNet Orchestration Interfaces

7.1 Service-level interfaces
The Service Orchestrator at the DSP level exposes its northbound interface through a set of REST APIs
based on the HTTP protocol and JSON messages, offering different kind of features towards the
verticals (through the One Stop API framework) and the DSP administrator. In particular, the following
two set of APIs are defined at the northbound of the Service Orchestrator:

 Vertical service management APIs, which provide a set of endpoints exposed towards
verticals (through the One Stop API) for vertical service lifecycle management aspects,
including retrieval of VSBs, management of VSDs and operational actions VSIs
(instantiation, termination, modification, etc.).

 Management and administrative APIs, which are offered to the DSP system
administrators and allow managing tenants and VSBs. They are intended to be used
internally to the DSP (i.e. not exposed to third parties)

The Service Orchestrator implements the REST server side of these APIs, while the verticals (through
the One Stop API) and the DSP OSS platform provide REST client sides. These APIs also support
asynchronous notifications generated by the Service Orchestrator as defined in the following
subsections.

Authentication and authorization functionalities over the Service Orchestrator REST APIs will be
provided by the One Stop API framework.

With respect to the 5GT-VS northbound interface, these Service Orchestrator APIs are enhanced to
support the SliceNet vertical service model (described in section 4) and to fulfil the requirements of
the whole DSP cognitive management platform.

7.1.1 Vertical service management APIs

The Vertical service management APIs offered by the Service Orchestrator implement the following
list of vertical service lifecycle management operations:

 Query VSBs
 Create, query, update, and delete VSDs
 Instantiate, query, modify and terminate VSIs
 Actuation for end-to-end NSI optimization
 Notifications about vertical service lifecycle events

 The following subsections detail how these operations translate into REST resources and methods in
the form of tables.

7.1.1.1 Query Vertical Service Blueprints

 Table 32: Service Orchestrator REST APIs: Get all VSBs

Endpoint /vs/catalogue/vsblueprint/

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 84 of (128) © SLICENET consortium 2019

HTTP Verb GET

Description Retrieve all the VSBs (associated to a given vertical) from the Service Orchestrator
catalogue. The blueprints can then be used by the vertical to create the VSDs for
the vertical services to be instantiated.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)

Response List of VSBs (following the format specified in section 4)

Response
Codes

 200 - VSBs retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

 Table 33: Service Orchestrator REST APIs: Get VSB

Endpoint /vs/catalogue/vsblueprint/<vsb_id>

HTTP Verb GET

Description Retrieve an individual VSB (associated to a given vertical) from the Service
Orchestrator catalogue. The blueprint can then be used by the vertical to create the
VSD for the vertical service to be instantiated.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)
 VSB ID

Response VSB matching the issued VSB ID (following the format specified in section 4)

Response
Codes

 200 – VSB retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.2 Create Vertical Service Descriptor

 Table 34: Service Orchestrator REST APIs: Create VSD

Endpoint /vs/catalogue/vsdescriptor/

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 85 of (128)

HTTP Verb POST

Description Create a new VSD to be added into the Service Orchestrator catalogue. The VSD is
built by parameterizing an existing VSB. The VSD can then be used by the vertical to
request the instantiation of a new vertical service.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)
 VSD (following the format specified in section 4.1)
 Is Public (set to true if the VSD can be shared to other verticals)

Response VSD Identifier

Response
Codes

 201 – VSD created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.3 Query Vertical Service Descriptor

 Table 35: Service Orchestrator REST APIs: Get all VSDs

Endpoint /vs/catalogue/vsdescriptor/

HTTP Verb GET

Description Retrieve all the VSDs (owned by a given vertical) from the Service Orchestrator
catalogue. The descriptors can then be used by the vertical to request for the
instantiation of vertical services

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)

Response List of VSDs (following the format specified in section 4)

Response
Codes

 200 - VSDs retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

 Table 36: Service Orchestrator REST APIs: Get VSD

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 86 of (128) © SLICENET consortium 2019

Endpoint /vs/catalogue/vsdescriptor/<vsd_id>

HTTP Verb GET

Description Retrieve an individual VSD (owned by a given vertical) from the Service Orchestrator
catalogue. The blueprint can then be used by the vertical to create the VSD for the
vertical service to be instantiated.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)
 VSD ID

Response VSD matching the issued VSD ID (following the format specified in section 4)

Response
Codes

 200 – VSD retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.4 Update Vertical Service Descriptor

 Table 37: Service Orchestrator REST APIs: Update VSD

Endpoint /vs/catalogue/vsdescriptor/<vsd_id>

HTTP Verb PUT

Description Update an individual VSD (owned by a given vertical) into the Service Orchestrator
catalogue. A VSD can be updated only if there are no VSIs created based on it. The
updated VSD will have a new VSD ID, and the previous version will be available with
the old VSD ID.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)
 Updated VSD (following the format specified in section 4.1)
 Is Public (set to true if the VSD can be shared to other verticals)

Response New VSD ID

Response
Codes

 201 – VSD updated successfully
 4xx – Bad request conditions
 5xx - Internal server problems

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 87 of (128)

7.1.1.5 Delete Vertical Service Descriptor

 Table 38: Service Orchestrator REST APIs: Delete VSD

Endpoint /vs/catalogue/vsdescriptor/<vsd_id>

HTTP Verb DELETE

Description Delete an existing VSD from the Service Orchestrator catalogue. A VSD can be
deleted only if there are no VSIs created based on it.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)
 VSD ID

Response None

Response
Codes

 204 – VSD deleted successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.6 Create Vertical Service Instance

 Table 39: Service Orchestrator REST APIs: Create VSI

Endpoint /vs/basic/vslcm/vs

HTTP Verb POST

Description Create a new VSI, given its reference VSD. The Service Orchestrator starts the
instantiation procedure and returns the VSI ID that can be used by the vertical to
retrieve information about the status and the attributes of the VSI, using the Query
VSI operation. In parallel, lifecycle notifications are generated asynchronously
towards the vertical / One Stop API in case a suitable notification endpoint was
provided at the request time.

Caller Vertical / One Stop API

Request Vertical ID
 VSI name
 VSI description
 Reference VSD ID
 Notification endpoint, where the Vertical / One Stop API can receive

notifications about the lifecycle or failure events of the VSI)
 VSI configuration parameters set by the vertical (and referred in the VSB

following the model specified in section 4.1)

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 88 of (128) © SLICENET consortium 2019

Response VSI Identifier

Response
Codes

 201 – VSI resource created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.7 Query Vertical Service Instance

 Table 40: Service Orchestrator REST APIs: Get all VSIs

Endpoint /vs/basic/vslcm/vs/

HTTP Verb GET

Description Retrieve all the VSIs (owned by a given vertical) from the Service Orchestrator
inventory. This operation can be invoked also by any other SliceNet DSP cognitive
management platform component to fulfil their specific logic.

Caller Vertical / One Stop API / SliceNet DSP cognitive management platform components

Request Vertical ID (i.e. tenant identification)

Response List of VSIs and related information (following the format described in the next
table for individual VSI retrieve operation)

Response
Codes

 200 - VSIs retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

 Table 41: Service Orchestrator REST APIs: Get individual VSI

Endpoint /vs/basic/vslcm/vs/<vsi_id>

HTTP Verb GET

Description Retrieve an individual VSI (owned by a given vertical) from the Service Orchestrator
inventory. This operation can be invoked also by any other SliceNet DSP cognitive
management platform component to fulfil their specific logic.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)
 VSI ID

Response VSI ID

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 89 of (128)

 VSI name
 VSI description
 VSD ID
 VSI status and attributes (i.e. instantiating, instantiated, under modification,

terminating, terminated, failed)
 per-domain NSI status and attributes (according to the model specified in

section 4.2)

Response
Codes

 200 – VSI retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.8 Terminate Vertical Service Instance

 Table 42: Service Orchestrator REST APIs: Delete VSI

Endpoint /vs/basic/vslcm/vs/<vsi_id>

HTTP Verb DELETE

Description Terminate an existing VSI, given its VSI ID. The Service Orchestrator starts the
termination procedure and returns an HTTP code. In parallel, VSI termination
notification is generated asynchronously towards the vertical / One Stop API when
the VSI is deleted, in case a suitable notification endpoint was provided at the VSI
creation time.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)
 VSI ID

Response None

Response
Codes

 200 – VSI termination procedure started successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.9 Modify Vertical Service Instance

 Table 43: Service Orchestrator REST APIs: Optimize e2e NSI

Endpoint /vs/basic/vslcm/vs/<vsi_id>

HTTP Verb PUT

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 90 of (128) © SLICENET consortium 2019

Description Modify an already instantiated VSI, providing a new VSD. This VSI modification
procedure is conceived to enable the vertical to manually modify a running VSI by
providing a full new VSD configuration. This means that starting from the same VSB,
the vertical needs to first produce multiple VSDs to characterize different options of
the same vertical services (e.g. different number of UEs, different geographical
locations, etc.). The Service Orchestrator starts the modification procedure and
returns an HTTP code. In parallel, VSI modification notification is generated
asynchronously towards the vertical / One Stop API when the VSI is modified, in case
a suitable notification endpoint was provided at the VSI creation time.

Caller Vertical / One Stop API

Request Vertical ID (i.e. tenant identification)
 VSI ID
 New VSD ID

Response None

Response
Codes

 200 – VSI modification procedure started successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.10 Actuation for end-to-end Network Slice Instance optimization

 Table 44: Service Orchestrator REST APIs: end-to-end NSI actuation

Endpoint /vs/basic/vslcm/e2ens/<e2e_nsi_id>/actuate

HTTP Verb POST

Description This operation is used by the QoE optimizer to request for an end-to-end network
slice actuation, in response to the outcome of a DSP cognitive optimization process
(as defined in D5.5 [29] and D5.6 [30]). The Service Orchestrator starts the end-to-
end NSI actuation procedure and returns an HTTP code. In parallel, the actuation
notification is generated asynchronously towards the caller when the actuation is
applied, in case a suitable notification endpoint was provided in the request.

Caller QoE Optimizer

Request end-to-end NSI ID
 Actuation name (matching one of the actuations available in the DSP Catalogue

and mapped to NSP actuation offerings in NSTs)
 Actuation parameters ((according to the parameters defined for the actuation

in the DSP Catalogue, and mapped to those from NSP actuation offerings in
NSTs)

 Notification endpoint, where the caller can receive notifications about the
actuation result

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 91 of (128)

Response None

Response
Codes

 200 – end-to-end NSI actuation procedure started successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.1.11 Notification of Vertical Service Instance lifecycle event

 Table 45: Service Orchestrator REST APIs: Notify VSI lifecycle event

Endpoint /<endpoint-provided-by-the-vertical-or-onestopapi>

HTTP Verb POST

Description This operation is used by the Service Orchestrator to notify the vertical (or the One
Stop API) about the results of VSI lifecycle operations that have been executed. The
notifications are asynchronous and provide the result of actions that have either
triggered by vertical (e.g. instantiation, termination, modification) or by
autonomous cognitive driven actuations.

Caller Service Orchestrator

Request VSI ID
 Notification type (e.g. instantiation result, termination result, modification

result)
 Result (success or failure)

Response None

Response
Codes

 200 – Notification received successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.2 Management and administrative APIs

The Management and administrative APIs offered by the Service Orchestrator implement the following
list of operations:

 Create, query and delete Tenants

 Create, query and delete VSBs

The following subsections detail how these operations translate into REST resources and methods in
the form of tables.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 92 of (128) © SLICENET consortium 2019

7.1.2.1 Create Tenant

 Table 46: Service Orchestrator REST APIs: Create Tenant

Endpoint /vs/admin/tenant/

HTTP Verb POST

Description Create a new tenant in the Service Orchestrator. A tenant corresponds to a vertical
who has established a business relationship with the DSP. Each tenant is able to
request VSIs.

Caller One Stop API

Request Tenant ID (which will be used as Vertical ID by verticals)
 Tenant name
 Tenant credential

Response None

Response
Codes

 201 – Tenant created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.2.2 Query Tenant

 Table 47: Service Orchestrator REST APIs: Query Tenant

Endpoint /vs/admin/tenant/<tenant_id>

HTTP Verb GET

Description Retrieve all the information associated with an existing tenant, including the IDs of
the VSDs created by the vertical and the VSIs instantiated for it. Detailed information
about each VSD, VSI and SLA can then be obtained through the related query
operations.

Caller One Stop API

Request Tenant ID

Response Tenant ID
 Tenant name
 Tenant credential
 List of VSD IDs
 List of VSI IDs

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 93 of (128)

Response
Codes

 200 – Tenant retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.2.3 Delete Tenant

 Table 48: Service Orchestrator REST APIs: Delete Tenant

Endpoint /vs/admin/tenant/<tenant_id>

HTTP Verb DELETE

Description Delete an existing tenant in the Service Orchestrator. A tenant can be removed
from only when all its VSIs have been terminated.

Caller One Stop API

Request Tenant ID

Response None

Response
Codes

 204 – Tenant deleted successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.2.4 Create Vertical Service Blueprint

 Table 49: Service Orchestrator REST APIs: Create VSB

Endpoint /vs/catalogue/vsblueprint/

HTTP Verb POST

Description On-board a new VSB in the Service Orchestrator catalogue, so that it can be used as
a baseline by the verticals to create their own VSDs. A VSB is typically designed (off-
line), and can include the definition of suitable translation rules between VSDs that
can be derived from the blueprint and the corresponding per-domain NSTs, i.e.
translation rules between QoS related parameters and NST parameters.

Caller One Stop API

Request VSB (following the model specified in section 4.1)
 List of translation rules

Response VSB Identifier

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 94 of (128) © SLICENET consortium 2019

Response
Codes

 201 – VSB created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.1.2.5 Delete Vertical Service Blueprint

 Table 50: Service Orchestrator REST APIs: Delete VSB

Endpoint /vs/catalogue/vsblueprint/<vsb_id>

HTTP Verb DELETE

Description Delete and existing VSB from the Service Orchestrator catalogue

Caller One Stop API

Request VSB ID

Response None

Response Codes 204 – VSB deleted successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2 Slice-level Interfaces
Similar to the Service Orchestrator, the Slice Orchestrator exposes its northbound interface through a
set of REST APIs based on the HTTP protocol and JSON messages, offering different kind of features
towards the DSPs (through the One Stop API framework) and the NSP administrator. In particular, two
set of APIs are defined at the northbound of the Slice Orchestrator:

 Network slice management APIs, which provide a set of endpoints exposed towards DSPs
(through the One Stop API) for network slice lifecycle management aspects, including retrieval
of NSTs, operational actions NSIs (instantiation, termination, modification, etc). Additional
endpoints exist also for network slice subnet lifecycle management (for operations on NSSTs
and NSSIs), but these are not exposed to the DSPs. They can be indeed accessed by other NSP
cognitive management platform components to apply their single domain optimization logic
(e.g. for runtime adaptation and actuation over individual network slice instances)

 Management and administrative APIs, which are offered to the NSP system administrators and
allow managing tenants, NSTs and NSSTs. They are intended to be used internally to the NSP
(i.e. not exposed to third parties)

The Slice Orchestrator implements the server side of these REST APIs, while the DSP Service
Orchestrators and the NSP OSS platform provide REST client sides. These APIs also includes

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 95 of (128)

asynchronous notifications that are generated by the Slice Orchestrator as defined in the following
subsections.

Authentication and authorization functionalities over the Slice Orchestrator REST APIs will be provided
by the One Stop API framework.

With respect to the 5GT-VS APIs, these Slice Orchestrator APIs are defined from scratch as part of the
explicit split of vertical service and network slice lifecycle management between the Service
Orchestrator (at the DSP) and the Slice Orchestrator (at the NSP).

7.2.1 Network slice management APIs

The network slice management APIs exposed by the Slice Orchestrator implement the following list
of lifecycle management operations:

 Query NSTs and NSSTs

 Instantiate, query, modify and terminate NSIs and NSSIs

 Notifications about NSIs and NSSIs lifecycle events

Subscriptions and notifications for NST related events These Slice Orchestrator REST APIs are based on
the RESTful HTTP-based APIs defined by 3GPP in [40] for provisioning of network slice and network
slice subnet instances. Apart from the resource URIs that are re-defined in SliceNet, the Slice
Orchestrator REST APIs makes use of the 3GPP approach of requesting the provisioning of NSIs and
NSSIs by using the Service Profile and Slice Profile data structures (see sections 4.2.3 and 4.2.4) to
express the slice and slice subnet performance requirements.

The following subsections detail how these operations translate into REST resources and methods in
the form of tables.

7.2.1.1 Query Network Slice Template

 Table 51: Slice Orchestrator REST APIs: Get all NSTs

Endpoint /ns/catalogue/nstemplate/

HTTP Verb GET

Description Retrieve all the NSTs from the Slice Orchestrator catalogue. The templates can then
be used by the DSP to request for the instantiation of new network slices

Caller DSP Service Orchestrator / One Stop API

Request DSP ID (i.e. tenant identification)

Response List of NSTs (following the format specified in section 4)

Response
Codes

 200 - NSTs retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 96 of (128) © SLICENET consortium 2019

7.2.1.2 Query Network Slice Subnet Template

 Table 52: Slice Orchestrator REST APIs: Get all NSTs

Endpoint /ns/catalogue/nsstemplate/

HTTP Verb GET

Description Retrieve all the NSSTs from the Slice Orchestrator catalogue. The templates can then
be used to request for the instantiation of new network slices subnets. This
operation is not allowed to be invoked by the DSP Slice Orchestrator, while can be
called by the NSP administrator or other SliceNet NSP cognitive management
platform component to fulfil their specific logic.

Caller NSP administrator / SliceNet NSP cognitive management platform components

Request DSP ID (i.e. tenant identification)

Response List of NSTs (following the format specified in section 4)

Response
Codes

 200 - NSTs retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

Table 53: Slice Orchestrator REST APIs: Get NSST

Endpoint /ns/catalogue/nsstemplate/<nsst_id>

HTTP Verb GET

Description Retrieve an individual NSST from the Slice Orchestrator catalogue. The template can
then be used to create new network slice subnet instances. This operation is not
allowed to be invoked by the DSP Slice Orchestrator, while can be called by the NSP
administrator or other SliceNet NSP cognitive management platform component to
fulfil their specific logic.

Caller NSP administrator / SliceNet NSP cognitive management platform components

Request NSST ID

Response NSST matching the issued NSST ID (following the format specified in section
4.2.2)

Response
Codes

 200 – NSST retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 97 of (128)

7.2.1.3 Create Network Slice Instance

 Table 54: Slice Orchestrator REST APIs: Create NSI

Endpoint /ns/basic/nslcm/nsi

HTTP Verb POST

Description Create a new NSI, given its reference NST. The Slice Orchestrator starts the
instantiation procedure and returns the NSI ID that can be used by the DSP and One
Stop API to retrieve information about the status and the attributes of the NSI, by
using the Query NSI operation. In parallel, lifecycle notifications are generated
asynchronously towards the DSP / One Stop API in case a suitable notification
endpoint was provided at the request time.

Caller DSP Service Orchestrator / One Stop API

Request DSP ID
 NSI name
 NSI description
 Reference NST ID
 Notification REST endpoint, where the DSP Slice Orchestrator / One Stop API

can to receive notifications about the lifecycle or failure events of the NSI
 NSI ServiceProfile attributes and performance requirements (according to the

data structure of section 4.2.3)

Response NSI Identifier

Response
Codes

 201 – NSI resource created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.4 Create Network Slice Subnet Instance

 Table 55: Slice Orchestrator REST APIs: Create NSI

Endpoint /ns/basic/nslcm/nssi

HTTP Verb POST

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 98 of (128) © SLICENET consortium 2019

Description Create a new NSSI, given its reference NSST. The Slice Orchestrator starts the
instantiation procedure and returns the NSSI ID that can be used by the caller to
retrieve information about the status and the attributes of the NSSI, by using the
Query NSSI operation. In parallel, lifecycle notifications are generated
asynchronously towards the caller in case a suitable notification endpoint was
provided at the request time. This operation is not allowed to be invoked by the DSP
Slice Orchestrator, while can be called by an NSP administrator or other SliceNet NSP
cognitive management platform component to fulfil their specific logic.

Caller NSP Administrator / SliceNet NSP cognitive management platform components

Request NSSI name
 NSSI description
 Reference NSST ID
 Notification REST endpoint, where the caller can to receive notifications about

the lifecycle or failure events of the NSSI
 NSSI SliceProfile attributes and performance requirements (according to the

data structure of section 4.2.4)

Response NSSI Identifier

Response
Codes

 201 – NSSI resource created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.5 Query Network Slice Instance

 Table 56: Slice Orchestrator REST APIs: Get all NSIs

Endpoint /ns/basic/nslcm/nsi

HTTP Verb GET

Description Retrieve all the NSIs from the Slice Orchestrator inventory. This operation can be
invoked also by any other SliceNet NSP cognitive management platform component
to fulfil their specific logic.

Caller DSP Slice Orchestrator / One Stop API / SliceNet NSP cognitive management
platform components

Request DSP ID (i.e. tenant identification)

Response List of NSIs and related information (following the format described in section
4.2.3)

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 99 of (128)

Response
Codes

 200 - NSIs retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

 Table 57: Slice Orchestrator REST APIs: Get individual NSI

Endpoint /ns/basic/nslcm/nsi/<nsi_id>

HTTP Verb GET

Description Retrieve an individual NSI from the Slice Orchestrator inventory. This operation can
be invoked also by any other SliceNet NSP cognitive management platform
component to fulfil their specific logic.

Caller DSP Slice Orchestrator / One Stop API / SliceNet NSP cognitive management
platform components

Request DSP ID (i.e. tenant identification)
 NSI ID

Response NSI attributes, according to the model specified in section 4.2.3

Response
Codes

 200 – NSI retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.6 Query Network Slice Subnet Instance

 Table 58: Slice Orchestrator REST APIs: Get all NSSIs

Endpoint /ns/basic/nslcm/nssi

HTTP Verb GET

Description Retrieve all the NSSIs from the Slice Orchestrator inventory. This operation is not
allowed to be invoked by the DSP Slice Orchestrator, while can be called by the One
Stop API or other SliceNet NSP cognitive management platform component to fulfil
their specific logic.

Caller One Stop API / SliceNet NSP cognitive management platform components

Request None

Response List of NSSIs and related information (following the format described in section
4.2.4)

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 100 of (128) © SLICENET consortium 2019

Response
Codes

 200 - NSSIs retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

 Table 59: Slice Orchestrator REST APIs: Get individual NSSI

Endpoint /ns/basic/nslcm/nssi/<nsi_id>

HTTP Verb GET

Description Retrieve an individual NSSI (belonging to a given DSP) from the Slice Orchestrator
inventory. This operation is not allowed to be invoked by the DSP Slice Orchestrator,
while can be called by the One Stop API or other SliceNet NSP cognitive management
platform component to fulfil their specific logic.

Caller One Stop API / SliceNet NSP cognitive management platform components

Request NSSI ID

Response NSSI attributes, according to the model specified in section 4.2.4

Response
Codes

 200 – NSSI retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.7 Terminate Network Slice Instance

 Table 60: Slice Orchestrator REST APIs: Delete NSI

Endpoint /ns/basic/nslcm/nsi/<nsi_id>

HTTP Verb DELETE

Description Terminate an existing NSI, given its NSI ID. The Slice Orchestrator starts the
termination procedure and returns an HTTP code. In parallel, NSI termination
notification is generated asynchronously towards the DSP Service Orchestrator /
One Stop API when the NSI is deleted, in case a suitable notification endpoint was
provided at the NSI creation time.

Caller DSP Service Orchestrator / One Stop API

Request DSP ID (i.e. tenant identification)
 NSI ID

Response None

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 101 of (128)

Response
Codes

 200 – NSI termination procedure started successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.8 Terminate Network Slice Subnet Instance

 Table 61: Slice Orchestrator REST APIs: Delete NSSI

Endpoint /ns/basic/nslcm/nssi/<nssi_id>

HTTP Verb DELETE

Description Terminate an existing NSSI, given its NSSI ID. The Slice Orchestrator starts the
termination procedure and returns an HTTP code. In parallel, NSSI termination
notification is generated asynchronously towards the caller when the NSSI is
deleted, in case a suitable notification endpoint was provided at the NSSI creation
time. This operation cannot be invoked by the DSP Slice Orchestrator, while can be
called by an NSP administrator or other SliceNet NSP cognitive management
platform component to fulfil their specific logic

Caller NSP Administrator

Request NSSI ID

Response None

Response
Codes

 200 – NSSI termination procedure started successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.9 Multi-domain actuation of Network Slice Instance

 Table 62: Slice Orchestrator REST APIs: Multi-domain actuation of NSI

Endpoint /ns/basic/nslcm/nsi/<nsi_id>/actuate-md

HTTP Verb POST

Description This operation is used by the DSP Service Orchestration to request for a multi-
domain actuation over an NSI, in accordance with the multi-domain FCAPS principles
and actuation workflows defined in D6.7 [27]. The Slice Orchestrator starts the NSI
modification procedure for multi-domain actuation and returns an HTTP code. In
parallel, the modification notification is generated asynchronously towards the
caller when the actuation is applied, in case a suitable notification endpoint was
provided in the NSI creation request.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 102 of (128) © SLICENET consortium 2019

Caller DSP Service Orchestrator

Request DSP ID (i.e. tenant identification)
 NSI ID
 Actuation name (matching one of the actuations listed in the NST related to the

NSI and exposed to the DSP)
 Actuation parameters (according to the actuation parameters required as

defined in the corresponding NST)

Response None

Response
Codes

 200 – NSI modification for multi-domain actuation procedure started
successfully

 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.10 Single-domain actuation for Network Slice Instance optimization

 Table 63: Slice Orchestrator REST APIs: Single-domain actuation for NSI optimization

Endpoint /ns/basic/nslcm/nsi/<nsi_id>/actuate-sd

HTTP Verb POST

Description This operation is used by the TAL Rule Engine (part of the NSP FCAPS framework) to
request for a single-domain actuation over an NSI, in response to the outcome of a
NSP cognitive optimization process (as defined in D5.5 and D5.6). This is therefore
an internal NSP actuation part of the cognitive management logics. The Slice
Orchestrator starts the NSI actuation procedure and returns an HTTP code. In
parallel, the actuation notification is generated asynchronously towards the caller
when the actuation is applied, in case a suitable notification endpoint was provided
in the request.

Caller FCAPS TAL Rule Engine

Request NSI ID
 Actuation name (matching one of the actuations listed in the NSP actuations

catalogue)
 Actuation parameters (according to the actuation parameters defined in the

NSP actuations catalogue)
 Notification endpoint, where the caller can receive notifications about the

actuation result

Response None

Response
Codes

 200 – NSI actuation procedure started successfully
 4xx – Bad request conditions
 5xx - Internal server problems

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 103 of (128)

7.2.1.11 Single-domain actuation for Network Slice Subnet Instance optimization

 Table 64: Slice Orchestrator REST APIs: Single-domain actuation for NSSI actuation

Endpoint /ns/basic/nslcm/nssi/<nssi_id>/actuate-sd

HTTP Verb POST

Description This operation is used by the TAL Rule Engine (part of the NSP FCAPS framework) to
request for a single-domain actuation over an NSSI, in response to the outcome of a
NSP cognitive optimization process (as defined in D5.5 and D5.6). This is therefore
an internal NSP actuation part of the cognitive management logics. The Slice
Orchestrator starts the NSSI actuation procedure and returns an HTTP code. In
parallel, the actuation notification is generated asynchronously towards the caller
when the actuation is applied, in case a suitable notification endpoint was provided
in the request.

Caller FCAPS TAL Rule Engine

Request NSSI ID
 Actuation name (matching one of the actuations listed in the NSP actuation

catalogue)
 Actuation parameters (according to the actuation parameters defined in the

NSP actuations catalogue)
 Notification endpoint, where the caller can receive notifications about the

actuation result

Response None

Response
Codes

 200 – NSSI actuation procedure started successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.12 Notification of Network Slice Instance lifecycle event

 Table 65: Slice Orchestrator REST APIs: Notify NSI lifecycle event

Endpoint /<endpoint-provided-by-the-dsp-or-onestopapi>

HTTP Verb POST

Description This operation is used by the Slice Orchestrator to notify the DSP Service
Orchestrator (or the One Stop API) about the results of NSI lifecycle operations that
have been executed. The notifications are asynchronous and provide the result of
actions that have either triggered by vertical (e.g. instantiation, termination,
modification) or by autonomous cognitive driven actuations.

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 104 of (128) © SLICENET consortium 2019

Caller NSP Slice Orchestrator

Request NSI ID
 Notification type (e.g. instantiation result, termination result, modification

result, actuation result))
 Result (success or failure)

Response None

Response
Codes

 200 – Notification received successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.13 Notification of Network Slice Subnet Instance lifecycle event

 Table 66: Slice Orchestrator REST APIs: Notify NSSI lifecycle event

Endpoint /<endpoint-provided-by-the-original-caller>

HTTP Verb POST

Description This operation is used by the Slice Orchestrator to notify the original caller about the
results of NSSI lifecycle operations that have been executed. The notifications are
asynchronous and provide the result of actions that have either triggered by vertical
(e.g. instantiation, termination, modification) or by autonomous cognitive driven
actuations.

Caller NSP Slice Orchestrator

Request NSSI ID
 Notification type (e.g. instantiation result, termination result, modification

result, actuation result)
 Result (success or failure)

Response None

Response
Codes

 200 – Notification received successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.14 Subscription to Network Slice Template related events

 Table 67: Slice Orchestrator REST APIs: Subscription to NST related events

Endpoint /ns/catalogue/subscription

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 105 of (128)

HTTP Verb POST

Description This operation is used by the DSP Service Orchestrator or the One Stop API to
subscribe to notifications for NST related events, including onboarding of new NSTs,
modification of existing NSTs and deletion of NSTs. This allows the DSP and NSP
catalogues to be synchronized.

Caller DSP Slice Orchestrator / One Stop API

Request DSP ID
 Notification endpoint, where the caller can to receive notifications about the

lifecycle or failure events of the NSSI

Response None

Response
Codes

 201 – Subscription created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.1.15 Notification of Network Slice Template event

 Table 68: Slice Orchestrator REST APIs: Notification of NST event

Endpoint /<endpoint-provided-by-the-dsp-or-onestopapi>

HTTP Verb POST

Description This operation is used by the Slice Orchestrator to notify the DSP Service
Orchestrator (or the One Stop API) about the events occurred to NSTs. These
notifications are sent under the condition that a subscription for this type of events
has been issued.

Caller NSP Slice Orchestrator

Request NST ID, being either the identifier of an existing NST (modified or deleted) or
the identifier of a newly created NST. The caller can use this identifier to issue
a query to retrieve full details about the related NST

 Notification type (e.g. NEW, UPDATE, DELETION)

Response None

Response
Codes

 200 – Notification received successfully
 4xx – Bad request conditions
 5xx - Internal server problems

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 106 of (128) © SLICENET consortium 2019

7.2.2 Management and administrative APIs

The Management and administrative APIs exposed by the Slice Orchestrator implement the following
REST operations:

 Create, query and delete Tenants

 Create and delete NSTs and NSSTs

The following subsections detail how these operations translate into REST resources and methods in
the form of tables.

7.2.2.1 Create Tenant

 Table 69: Slice Orchestrator REST APIs: Create Tenant

Endpoint /ns/admin/tenant/

HTTP Verb POST

Description Create a new tenant in the Slice Orchestrator. A tenant corresponds to a DSP who
has established a business relationship with the NSP. Each tenant is able to request
NSIs.

Caller One Stop API

Request Tenant ID (which will be used as DSP ID by DSPs)
 Tenant name
 Tenant credential

Response None

Response
Codes

 201 – Tenant created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.2.2 Query Tenant

 Table 70: Slice Orchestrator REST APIs: Query Tenant

Endpoint /ns/admin/tenant/<tenant_id>

HTTP Verb GET

Description Retrieve all the information associated with an existing tenant, including the IDs of
the NSTs created by the DSP and the NSIs instantiated for it. Detailed information
about each NST and NSIs can then be obtained through the related query
operations.

Caller One Stop API

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 107 of (128)

Request Tenant ID

Response Tenant ID
 Tenant name
 Tenant credential
 List of NST IDs
 List of NSI IDs

Response
Codes

 200 – Tenant retrieved successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.2.3 Delete Tenant

 Table 71: Service Orchestrator REST APIs: Delete Tenant

Endpoint /ns/admin/tenant/<tenant_id>

HTTP Verb DELETE

Description Delete an existing tenant in the Slice Orchestrator. A tenant can be removed only
when all its NSIs have been terminated.

Caller One Stop API

Request Tenant ID

Response None

Response
Codes

 204 – Tenant deleted successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.2.4 Create Network Slice Template

 Table 72: Slice Orchestrator REST APIs: Create NST

Endpoint /ns/catalogue/nstemplate/

HTTP Verb POST

Description On-board a new NST in the Slice Orchestrator catalogue. The NST is typically
designed off-line and include the list of constituent NSSTs.

Caller NSP Administrator

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 108 of (128) © SLICENET consortium 2019

Request NST, following the model specified in section 4.2.1

Response NST Identifier

Response
Codes

 201 – NST created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.2.5 Create Network Slice Subnet Template

 Table 73: Slice Orchestrator REST APIs: Create NSST

Endpoint /ns/catalogue/nsstemplate/

HTTP Verb POST

Description On-board a new NSST in the Slice Orchestrator catalogue, so that it can be used as
a baseline by the NSP administrator to build the slice offers in the form of NSTs. The
NSST is typically designed off-line.

Caller NSP Administrator

Request NSST, following the model specified in section 4.2.2

Response NSST Identifier

Response
Codes

 201 – NSST created successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.2.6 Delete Network Slice Template

 Table 74: Slice Orchestrator REST APIs: Delete NST

Endpoint /ns/catalogue/nstemplate/<nst_id>

HTTP Verb DELETE

Description Delete an existing NST from the Slice Orchestrator catalogue

Caller NSP Administrator

Request NST ID

Response None

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 109 of (128)

Response Codes 204 – NST deleted successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.2.2.7 Delete Network Slice Subnet Template

 Table 75: Slice Orchestrator REST APIs: Delete NSST

Endpoint /ns/catalogue/nsstemplate/<nsst_id>

HTTP Verb DELETE

Description Delete and existing NSST from the Slice Orchestrator catalogue

Caller NSP Administrator

Request NSST ID

Response None

Response Codes 204 – NSST deleted successfully
 4xx – Bad request conditions
 5xx - Internal server problems

7.3 Resource-level APIs
The NBI module of the Resource Orchestrator implements a REST API that enables the configuration
and management of the offered network services. This API is mainly used for the Slice Orchestrator at
the NSP to manage the low level components of the slice. The operations exposed by this API are aimed
to fulfill the requirements that have been detailed in section 3.2.3 and supported over the information
model described in section 4.3. In addition, following the approach of the Service and the Slice
Orchestrators, a second set of API operations has been defined for the management and
administration of the Resource Orchestrator. These operations are aimed to provide the network
service on-boarding (through the creation of the corresponding NSDs and VNFDs) and the internal
administration of the NSP infrastructure.

7.3.1 Network service management APIs

7.3.1.1 List Available Network Services

 Table 76: Network service management: List available network services

Endpoint /nmro/catalogue/ns/

HTTP Verb GET

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 110 of (128) © SLICENET consortium 2019

Description Retrieve the list of network services available to be instantiated over the
infrastructure

Caller SS-O at NSP

Request None

Response List of NSD IDs

Response
Codes

 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.1.2 Get network service information

 Table 77: Network service management: Get network service information

Endpoint /nmro/catalogue/ns/<nsd_id>

HTTP Verb GET

Description Retrieve all the information associated with an existing network service

Caller SS-O at NSP

Request NSD ID

Response NSD information

Response Codes 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.1.3 List network service instances

 Table 78: Network service management: List network service instances

Endpoint /nmro/inventory/ns/

HTTP Verb GET

Description Retrieve the list of network services currently instantiated over the
infrastructure

Caller SS-O at NSP

Request None

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 111 of (128)

Response List of network service instances

Response
Codes

 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.1.4 Get network service instance information

 Table 79: Network service management: Get network service instance information

Endpoint /nmro/inventory/ns/<nsi_id>

HTTP Verb GET

Description Retrieve all the information associated with an existing network service instance

Caller SS-O at NSP

Request Network Service Instance ID

Response Network Service Instance information

Response
Codes

 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.1.5 Network Service instantiation

 Table 80: Network service management: Network service instantiation

Endpoint /nmro/ns/lcm

HTTP Verb POST

Description Create a new network service instance from the provided network service
descriptor reference

Caller SS-O at NSP

Request Network Service Descriptor ID

Response Network Service Instance ID

Response
Codes

 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 112 of (128) © SLICENET consortium 2019

7.3.1.6 Modify Network Service instance

 Table 81: Network service management: Modify network service instantiation

Endpoint /nmro/ns/lcm/<nsi_id>

HTTP Verb PUT

Description Create a new network service instance from the provided network service
descriptor reference

Caller SS-O at NSP

Request Network Service Instance ID
 Parameter / value list

Response None

Response
Codes

 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.1.7 Notification of Network Service Instance lifecycle event

Table 82: Network Service Management: Notify Network Service Instance lifecycle event

Endpoint /<endpoint-provided-by-the-original-caller>

HTTP Verb POST

Description This operation is used by the Resource Orchestrator to notify the original caller
about the results of Network Service instances lifecycle operations that have been
executed. The notifications are asynchronous and provide the result of actions
done over the network services instances as part of higher-level actuations that
have been triggered by either vertical (e.g. instantiation, termination,
modification) or by autonomous cognitive driven actuations.

Caller NMR-O

Request Network Service Instance ID
 Notification type (e.g. instantiation result, termination result, modification

result, actuation result)
 Result (success or failure)

Response None

Response
Codes

 200 – Notification received successfully
 4xx – Bad request conditions
 5xx - Internal server problems

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 113 of (128)

7.3.1.8 Terminate network service instance

 Table 83: Network service management: Terminate network service instance

Endpoint /nmro/ns/lcm/<nsi_id>

HTTP Verb DELETE

Description Terminate the network service instance with the provided identifier

Caller SS-O at NSP

Request Network Service Instance ID

Response None

Response Codes 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.2 Management and administrative APIs

7.3.2.1 Add VIM

 Table 84: Management and administrative APIs: Add VIM

Endpoint /nmro/admin/vims

HTTP Verb POST

Description Register a new VIM account to the Resource Orchestrator

Caller NSP Administrator

Request Name
 Description
 Type
 URL

Response VIM ID

Response Codes 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 114 of (128) © SLICENET consortium 2019

7.3.2.2 Delete VIM

 Table 85: Management and administrative APIs: Delete VIM

Endpoint /nmro/admin/vims/<vim_id>

HTTP Verb DELETE

Description Unregister an existing VIM account from the Resource Orchestrator

Caller NSP Administrator

Request VIM ID

Response None

Response Codes 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.2.3 Add WIM

 Table 86: Management and administrative APIs: Add WIM

Endpoint /nmro/admin/wims

HTTP Verb POST

Description Register a new WIM account to the Resource Orchestrator

Caller NSP Administrator

Request Name
 Description
 Type
 URL

Response WIM ID

Response Codes 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.2.4 Delete WIM

 Table 87: Management and administrative APIs: Delete WIM

Endpoint /nmro/admin/wims/<wim_id>

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 115 of (128)

HTTP Verb DELETE

Description Unregister an existing WIM account from the Resource Orchestrator

Caller NSP Administrator

Request WIM ID

Response None

Response Codes 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.2.5 Create VNF

 Table 88: Management and administrative APIs: Create VNF

Endpoint /nmro/admin/vnfs

HTTP Verb POST

Description Create a new VNF that can be used by a Network Service by uploading the VNFD

Caller NSP Administrator

Request VNFD

Response VNFD ID

Response
Codes

 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.2.6 Delete VNF

 Table 89: Management and administrative APIs: Delete VNF

Endpoint /nmro/admin/vnfs/<vnfd_id>

HTTP Verb DELETE

Description Delete an existing VNFD

Caller NSP Administrator

Request VNFD ID

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 116 of (128) © SLICENET consortium 2019

Response None

Response Codes 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.2.7 Create Network Service

 Table 90: Management and administrative APIs: Create Network Service

Endpoint /nmro/admin/nss

HTTP Verb POST

Description Create a new Network Service that can be instantiated over the virtual
infrastructure of the NSP.

Caller NSP Administrator

Request NSD

Response NSD ID

Response
Codes

 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

7.3.2.8 Delete Network Service

 Table 91: Management and administrative APIs: Delete Network Service

Endpoint /nmro/admin/nss/<nsd_id>

HTTP Verb DELETE

Description Delete an existing NSD

Caller NSP Administrator

Request NSD ID

Response None

Response Codes 200 – Success
 4xx – Bad request conditions
 5xx – Internal server problems

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 117 of (128)

8 Software Prototype

8.1 Service and Slice Orchestrators Prototypes

The SliceNet SS-O is composed by the combination of the Service Orchestrator at the DSP level and the
Slice Orchestrator at the NSP level, as detailed and specified in section 5.

From a software perspective, the SliceNet SS-O prototype is an enhanced and extended version of the
Vertical Slicer (5GT-VS) [41] developed in the 5G-Transformer project.

This means that original 5GT-VS software has been enhanced to split the service and slice orchestration
logic according to the SliceNet principles. In practice, two distinct orchestration applications are now
embedded in the 5GT-VS. This refactoring exercise has been carried out considering backward
compatibility with the original 5GT-VS approach as key, with the aim of not disrupting the 5G-
Transformer single domain vertical slice paradigm.

The new enhanced version of the 5GT-VS, i.e. the SliceNet SS-O, which is now split into Service
Orchestrator and Slice Orchestrator applications, reuses part of the vertical service management logic
and source code, as described in section 5.2, and introduces a standalone network slice management
application which interfaces with the vertical service management through a well-defined set of REST
APIs (see section 7.2).

8.1.1 Implementation details

The SliceNet SS-O prototype is developed in Java and is based on the Spring framework [42], adopting
Apache Maven [43] as build automation tool. The internal software design is based on a modular
approach that reflects the Service and Slice Orchestrators architectures depicted in section 5.2 and
5.3. The different internal SS-O modules implement java interfaces to provide their functions towards
the other entities, and asynchronous interactions between the software modules, where needed, are
handled through messages exchanged in JSON format over a message bus based on RabbitMQ [44].
Inventory persistency as well as the Service and Slice Orchestrator catalogues are managed through
PostgreSQL databases [45].

The REST APIs exposed by both the Service and Slice Orchestrators (defined in section 7) are developed
through a number of REST controllers which implement the server side of the different interfaces. The
requests received at the REST APIs are internally processed through the corresponding services.

The REST requests related management actions at both Service and Slice Orchestrator levels (e.g.
tenants, descriptors and templates onboarding) are processed through services which interact with
the associated databases in read/write mode. On the other hand, the REST requests related to
operational and lifecycle management actions (e.g. creation of a new VSIs and NSIs or an associated
runtime lifecycle command) are handled through the dedicated VSI and NSI operation Java services.
From here, the processing of each request is handled following an asynchronous approach,
coordinating the exchange of ordered messages between the involved software modules cooperating
for the execution of the given lifecycle command.

The Service Orchestrator interacts with the Slice Orchestrator through a specific driver which embeds
a REST-based implementation of the consumer side of the APIs described in section 7.2. On the other
hand, the interaction of the Slice Orchestrator with NMR-O is handled through a specific driver which

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 118 of (128) © SLICENET consortium 2019

embeds a REST-based implementation of the consumer side of the related APIs specified in section
7.3. However, the SS-O software architecture follows a modular approach, in order to support different
drivers and, thus, enable the possible interaction with other Slice Orchestrators and NFVOs.

8.1.2 Source code structure

The source code of the core SS-O components is available as open source, under the Apache v2.0
license [46], on the Nextworks public github at:

https://github.com/nextworks-it/slicer

Installation and usage instructions are described in the README.md file. The SEBASTIAN folder
contains all of the source code of the core engines of the Service and Slice Orchestrators prototypes,
with packages arranged in a standard maven style.

Table 92 shows the source code structure and map it to the Service and Slice Orchestrator
architectures depicted in section 5.2 and 5.3.

 Table 92: Source code structure

VS_MANAGEMENT/

VS_MANAGEMENT_APP/ Main application of the Service Orchestrator

VSMF_INTERFACES/
VSMF_SERVICE/

Vertical Service Manager
end-to-end Network Slice Manager
P&P Manager driver

ARBITRATOR_INTERFACES/
ARBITRATOR_SERVICE/

Arbitrator

VS_RECORD_SERVICE/
VS_RECORD_SERVICE_IM/

Vertical Service Instance information model

NS_MANAGEMENT/

NS_MANAGEMENT_APP/ Main application of the Slice Orchestrator

NSMF_INTERFACES/
NSMF_SERVICE/

Network Slice Front-End
Network Slice LCM
P&P Manager driver
RAN Control Driver
QoS Control Driver

ARBITRATOR_INTERFACES/
ARBITRATOR_SERVICE/

Arbitrator

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 119 of (128)

NS_RECORD_SERVICE/
NS_RECORD_SERVICE_IM/

Network slice and slice subnet information model

VNComService/

VNComService/ Communication Service at both Service and Slice Orchestrators

SEBASTIAN_COMMON/

CommonElements/ Common types and objects

For further details, documentation is available in the source code in the form of Javadoc comments.
Therefore, HTML files can be generated from those comments by running the following command in
the root folder:

mvn javadoc:Javadoc

Besides the core engines of the Service and Slice Orchestrators, the following additional code
repositories provide key functionalities and are part of the whole SliceNet SS-O prototype (as Maven
dependencies):

 slicer-catalogue: https://github.com/nextworks-it/slicer-catalogue (Catalogue of blueprints
and descriptors for vertical services, including translation features)

 nfvo-drivers: https://github.com/nextworks-it/nfvo-drivers (Drivers to interact with NFV
Orchestrators (and NMR-O in SliceNet))

 slicer-identity-mgmt: https://github.com/nextworks-it/slicer-identity-mgmt (Service for
tenant management)

8.1.3 Software license and dependencies

The SliceNet SS-O prototype, in all its components, is released as open source software, under the
license Apache 2.0 [46]. It includes software developed in SliceNet, enhancing and reusing part of the
5GT-VS software developed by the 5G-Transformer project, and it uses external open source tools and
libraries to implement specific functionalities.

Table 93 table lists the SliceNet SS-O prototype software dependencies and related licenses.

 Table 93: SS-O prototype dependencies

Component Description Software License

Spring
framework

Application framework used for
the development of the Service
Orchestrator and Slice
Orchestrator cores

Apache-2.0
https://github.com/spring-projects/spring-
boot/blob/master/LICENSE.txt

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 120 of (128) © SLICENET consortium 2019

NFV IFA
libraries

Java libraries implementing
information models and
interfaces compliant with ETSI
NFV IFA specifications.

Apache-2.0
https://github.com/nextworks-it/nfv-ifa-
libs/blob/master/LICENSE

PostgreSQL Backend SQL database used for
the persistency of catalogues and
inventories data

PostgreSQL licence
https://opensource.org/licenses/postgresql

RabbitMQ Message broker used for
dispatching messages among the
internal modules of the Service
Orchestrator and Slice
Orchestrator

Mozilla Public License
https://www.mozilla.org/en-US/MPL/2.0/

8.2 Resources Orchestrator Prototype
As described in section 5, the core part of the Resource Orchestrator (NMR-O) is implemented by the
OSM. OSM is responsible for the configuration of the network services, which are associated with the
Network Slice. Such network services are implemented by a set of interconnected VNFs that are
deployed over the infrastructure of the NSP. In addition, the OSM is wrapped by a set of modules
aimed to interface with the other components of the SliceNet architecture, orchestration, monitoring
or control. In this section, a brief insight of the software, prototyping and related developments
associated to the Resource Orchestrator is given.

8.2.1 Implementation details

The functional modules of Open Source MANO (i.e. LCM, RO, VCA, NBI, etc.) are developed in Python
and containerized in linux-based Docker containers. Inter-module information exchange is held by a
unified message bus based on Kafka. The different modules of the architecture also rely on specific
database technologies for persistence (i.e. inventories and catalogues), logs, alarms and metrics. In
this regard, the LCM relies on MongoDB, while the RO uses MySQL.
The NMR-O software modules that surround the OSM are developed in Java and built by means of
Apache Maven. The internals of this part of the NMR-O are completely aligned with the functional
structure that has been explained in section 5.4. The Spring framework has been used to define and
implement the REST interfaces exposed by the NBI component. To enable the interaction of with the
OSM the QoE Rest Client Library has been extended. This library already implemented interfaces to
different technologies that are being used within the SliceNet project (such as OpenStack or InfluxDB),
as well as the interfaces to some SliceNet components (such as the SliceNet Control Plane and the
Policy Framework). In particular, this library is extended in the framework of the orchestration to
enable the configuration of OSM from the OSM Driver module of the NMR-O.

The list below shows the source code repositories for the different parts of the NMR-O:
 Open Source MANO: https://osm.etsi.org/gitweb

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 121 of (128)

 NMR-O wrapping modules: https://gitlab.com/SliceNet/nmro
 QoE REST Client Library: https://gitlab.com/SliceNet/qoe-rest-client

8.2.2 On-boarding phase prototyping

The onboarding phase at the Resource Orchestrator level consists on the design and uploading of the
NSDs and VNFDs into the catalogue. As explained throughout this document, this is a manual process
that is carried out by the NSP to build the offers afterwards exposed to the DSP. In this context, some
work has been realized in the framework of task 7.1 mainly related to the design and configuration of
the virtual network infrastructure associated to a network slice. More specifically, the virtual Evolved
Packet Core (vEPC) virtual infrastructure has been packaged into a network service that can be
instantiated at the network slice deployment time.

To do this, a disk image based on Ubuntu 16.04 containing the vEPC software was created. In this case
the vEPC software provided by the Mosaic5G project was used [47]. A VNFD was then created to
package the vEPC software into a VNF that could be instantiated by means of OSM over the virtual
infrastructure manager, which in this case is OpenStack.

Table 94 depicts the YAML file that describes the VNFD packaging. In addition, a cloud-init file was
created and included in the VNFD packaging to parameterize the vEPC deployment with the specific
attributes of the infrastructure (e.g. IP addresses, host name, etc.). In the last step, the NSD that
packages the VNFD into an instantiable network service was created. Table 95 depicts the YAML file
that describes the NSD packaging. A preliminary integration of this onboarding in the SliceNet testbeds
that implement the three use cases tackled by the project (i.e. SmartGrid, eHealth and SmartCity) was
reported in [48].

Table 94: VNFD YAML file

vnfd:vnfd-catalog:
 vnfd:
 - connection-point:
 - name: vnf-cp0
 description: Generated by UPC
 id: mosaic5g-allinone_vnfd
 mgmt-interface:
 cp: vnf-cp0
 name: mosaic5g-allinone_vnfd
 short-name: mosaic5g-allinone_vnfd
 vdu:
 - cloud-init-file: cloud-config-mosaic5g.txt
 count: 1
 description: mosaic5g-allinone_vnfd-VM
 id: mosaic5g-allinone_vnfd-VM
 image: SliceNet-oai-epc-NMRO
 interface:
 - external-connection-point-ref: vnf-cp0
 name: ens3

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 122 of (128) © SLICENET consortium 2019

 type: EXTERNAL
 virtual-interface:
 type: PARAVIRT
 name: mosaic5g-allinone_vnfd-VM
 vm-flavor:
 memory-mb: 6144
 storage-gb: 6
 vcpu-count: 2
 vendor: OSM-UPC
 version: '1.0'

 Table 95: NSD YAML file

nsd:nsd-catalog:
 nsd:
 - constituent-vnfd:
 - member-vnf-index: 1
 vnfd-id-ref: mosaic5g-allinone_vnfd
 description: Generated by UPC
 id: mosaic5g-allinone_nsd
 name: mosaic5g-allinone_nsd
 short-name: mosaic5g-allinone_nsd
 vendor: OSM-UPC
 version: '1.0'
 vld:
 - id: mosaic5g-allinone_nsd_vld0
 name: int-dpath-ovs-epc
 short-name: int-dpath-ovs-epc
 type: ELAN
 vim-network-name: eHealth_net
 vnfd-connection-point-ref:
 - member-vnf-index-ref: 1
 vnfd-connection-point-ref: vnf-cp0
 vnfd-id-ref: mosaic5g-allinone_vnfd

8.2.3 Software license and dependencies

Table 96 lists the SliceNet NMR-O prototype software dependencies and related licenses.

 Table 96: NMR-O prototype dependencies

Component Description Software License

Spring
framework

Application framework used for the
development of the Service
Orchestrator and Slice Orchestrator
cores

Apache-2.0
https://github.com/spring-
projects/spring-
boot/blob/master/LICENSE.txt

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 123 of (128)

QoE Rest
Client Library

Java library implementing several
communication interfaces for
different SliceNet software
components.

-

Open Source
MANO

NFV Management and Orchestration
framework

Apache Public License 2.0

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 124 of (128) © SLICENET consortium 2019

9 Conclusions
With the ongoing transformations in the service providers operational management systems, such as
coping with a totally new 5G network domain, managing and delivering Network Slices to vertical
industry players across single and multi-provider environments and integrating cognition-based
mechanisms to proactively improve the overall network efficiency, it’s imperative that actuation
mechanisms also evolve and follow this new trend. Actuation mechanisms are highly dependent on
orchestration procedures and their relationship with the architecture components handling the
services, slices and resources information. The main objective of this deliverable is to thoroughly
describe the SliceNet orchestration approach and its implementation.

The document starts with an analysis and description of the most relevant SDOs, OSCs, industry and
R&D projects that are working on the slice orchestration domain. As described in section 2, a significant
number of 5G orchestration-related activities are ongoing and therefore SliceNet decided to adopt and
create additional value on top of already existing solutions. SliceNet orchestration solution is based on
5GPPP 5G-Transformer R&D project, as well as on work being done at ETSI NFV and 3GPP
standardization bodies.

The SliceNet orchestration vision is also highlighted in this document, and in particular in section 3.
Before designing the architecture and the associated functional workflows, fundamental aspects that
impact the orchestration vertical were addressed: support for a new managed network domain (5G),
which represents a strong evolution from its predecessor (4G), support for network slices in single and
in multi-administrative domains, as well as integration of real time closed-loops based on cognition
produced AI models. These type of requirements impose orchestration to evolve and be able to
orchestrate “vertically” across different information elements (resources, slices and services), but also
to orchestrate “horizontally” across multiple administrative domains.

Based on the aforementioned high-level evolutions, an exhaustive list of requirements was described
to guide the definition of the orchestration procedures at the resource, slice and service level.
Additionally, the information model associated with each one of these entities was also described in
section 4: the vertical service information model, which is the basis of the vertical service lifecycle
management implemented by the SS-O at the DSP level; the slice information model, based on the
slice part of the 3GPP Network Resource Model [31], which is the basis of the NSP slice orchestrator
lifecycle management; finally, the resource orchestration information model based on the ETSI NFV
specifications to provide the network services that will compose the upper level network slices.

Following the requirements and information model, section 5 describes the orchestration logical
architecture. Herein is specified the service orchestration at the DSP-level and the slice and resource
orchestration at the NSP side. Existing work from 5G-Transformer project [17] was adopted, in
particular the Vertical Slicer software component, evolving it to deal with the SliceNet information
model, as well as with the multi-domain approach. Along with the logical architecture definition, a
functional description of the architecture is described in section 6, describing the most relevant
orchestration workflows: i) design, onboard and offer, ii) instantiation, iii) NS optimization, iv) E2E NS
optimization, v) vertical service reconfiguration and vi) vertical service decommission. Finally, a
detailed description of the orchestration APIs at the service, slice and resource level are given in section
7.

The document finishes with a set of considerations in section 8 related with the software
implementation of the SliceNet orchestration solution.

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 125 of (128)

References
[1] https://SliceNet.eu/ © SLICENET consortium 2017

[2] https://www.3gpp.org/news-events/1951-sa5_5g

[3] https://www.3gpp.org/DynaReport/28621.htm TS 28.621 - Generic NRM Integration
Reference Point (IRP); Requirements

[4] https://www.3gpp.org/DynaReport/28622.htm TS 28.622 - Generic NRM Integration
Reference Point (IRP); Information Service (IS)

[5] https://www.3gpp.org/DynaReport/28623.htm TS 28.623 - Generic NRM Integration
Reference Point (IRP); Solution Set (SS) definitions

[6] https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.p
df Multi-access Edge Computing (MEC); Framework and Reference Architecture

[7] https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/004/02.06.01_60/gs_NFV-
SOL004v020601p.pdf

[8] https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/001/01.01.01_60/gs_ZSM001v010101p.p
df ZSM; Requirements based on documented Scenarios

[9] https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.p
df

[10] https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/007/01.01.01_60/gs_ZSM007v010101p.p
df

[11] https://www.etsi.org/technologies/nfv/nfv-plugtests-programme NFV Plugtests Programme

[12] https://www.ericsson.com/en/portfolio/digital-services/automated-network-
operations/orchestration/ericsson-orchestrator Ericsson Orchestrator

[13] https://www.nokia.com/networks/solutions/cloudband/#solution-elements NOKIA CloudBand
Solution Elements

[14] https://www.nokia.com/blog/dynamic-network-slicing-wavefabrictm/ Dynamic network slicing
with WaveFabric

[15] https://osm.etsi.org/ Open Source MANO

[16] https://osm.etsi.org/images/OSM_EUAG_White_Paper_OSM_Scope_and_Functionality.pdf
OSM Scope, Functionality, Operation and Integration Guidelines, February 2019

[17] http://5g-transformer.eu/

[18] https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/012/03.01.01_60/gr_NFV-
EVE012v030101p.pdf NFV Release 3; Evolution and Ecosystem; Report on Network Slicing
Support with ETSI NFV Architecture Framework

[19] http://www.3gpp.org/DynaReport/28801.htm TR 28.801 - Study on management and
orchestration of network slicing for next generation network

[20] https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pd
f NFV: Architectural Framework

[21] https://www.onap.org/ Open Network Automation Platform

SLICENET H2020-ICT-2016-2/761913 Deliverable D7.1

Page 126 of (128) © SLICENET consortium 2019

[22] 5G-TRANSFORMER Deliverable D3.1 “Definition of vertical service descriptors and SO NBI” –
5G-TRANSFORMER Project – March 2018

[23] 5G-TRANSFORMER Deliverable D4.1 “Definition of service orchestration and federation
algorithms, service monitoring algorithms” – 5G-TRANSFORMER Project – March 2018

[24] 5G-TRANSFORMER Deliverable D2.1 “Definition of the Mobile Transport and Computing
Platform” – 5G-TRANSFORMER Project – March 2018

[25] SliceNet Deliverable D2.4: Management Plane System Definition, APIs and Interfaces

[26] SliceNet Deliverable D6.6: Single-Domain Slice FCAPS management

[27] SliceNet Deliverable D6.7: Multi-Domain Slice FCAPS management

[28] SliceNet Deliverable D6.3: Management for the Plug & Play Control Plane

[29] SliceNet Deliverable D5.5: Modelling, Design and Implementation of QoE Monitoring, Analytics
and Vertical-Informed QoE Actuators; Iteration I

[30] SliceNet Deliverable D5.6: Modelling, Design and Implementation of QoE Monitoring, Analytics
and Vertical-Informed QoE Actuators; Iteration II

[31] 3GPP TS 28.541, V16.2.0, Management and Orchestration; 5G Network Resource Model
(NRM); Stage 2 and stage 3 (Release 16), September 2019

[32] 3GPP TS 28.531 V16.3.0 , 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Management and orchestration; Provisioning; (Release 16)

[33] ETSI GR NFV-IFA-015, v3.1.1, Management and Orchestration; Report on NFV Information
Model, September 2018

[34] https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/013/02.01.01_60/gs_NFV-
IFA013v020101p.pdf ETSI GR NFV-IFA-013, v3.3.1, Management and Orchestration; Os-Ma-
Nfvo Reference Point - Interface and Information Model Specification, September 2019

[35] https://osm.etsi.org/wikipub/index.php/OSM_Information_Model

[36] ETSI GR NFV-IFA-024, v3.2.1, Network Functions Virtualisation (NFV) Release 3; Information
Modelling; Report on External Touchpoints related to NFV Information Model , April 2019

[37] C. Badulescu et. al., “ETSI NFV, the Pillar for Cloud Ready ICT Deployments”, Journal of ICT
Standardization, Vol 7, Issue 2, May 2019

[38] ETSI TS 128 622, V15.3.1, Universal Mobile Telecommunication System; LTE;
Telecommunication Management; Generic Network Resource Model (NRM); Integration
Reference Point (IRP); Information Service (IS) (3GPP TS 28.622 version 15.3.1 Release 15),
October 2019

[39] ETSI GS NFV 002 V1.1.1 NFV: Architectural Framework, October 2013

[40] 3GPP TS 28.531 V16.3.0 , 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Management and orchestration; Provisioning; (Release 16)

[41] https://github.com/5g-transformer/5gt-vs

[42] https://spring.io/

[43] https://maven.apache.org/

[44] https://www.rabbitmq.com/

Deliverable D7.1 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 127 of (128)

[45] https://www.postgresql.org

[46] https://www.apache.org/licenses/LICENSE-2.0

[47] http://mosaic-5g.io/

[48] SliceNet Deliverable D8.4: SliceNet System Integration and Testing (Iteration II)

[end of document]

