
© SLICENET consortium 2019 Page 1 of (74)

Deliverable D5.5

Modelling, Design and Implementation of QoE Monitoring,
Analytics and Vertical-Informed QoE Actuators

Iteration I

Editors: Dean Lorenz, IBM Research Haifa (IBM)
Salvatore Spadaro, Universitat Politècnica de Catalunya (UPC)

Deliverable nature: Report (R)
Dissemination level: (Confidentiality) Public (PU)
Contractual delivery date: 28/2/19
Actual delivery date:
Suggested readers: Network Administrators, Vertical Industries,

Telecommunication Vendors, Telecommunication Operators,
Service Providers

Version: 1.0
Total number of pages: 74
Keywords: Network Slicing, AIOps, Network Slice, 5G, SDN, Cognitive

management

Abstract

This document reports the design and prototype implementation of the foundation components that
enable SliceNet Quality of Experience (QoE)-aware slice management. These enable the embodiment
of the SliceNet Cognition Plane architecture described in deliverable D2.4. SliceNet QoE-aware slice
management combines the established MAPE (Monitoring, Analysis, Planning, and Execution)
autonomic control loop with state-of-the-art data-driven management and AIOPS (Artificial
Intelligence for IT Operations); enabling intelligent, adaptive end-to-end (E2E) 5G slice management
with respect to the use-cases (UCs) defined within the architecture of SliceNet. The components
included in this report provide Proof-of-Concept (PoC) implementations covering the entire Cognition
Plane; in particular, the required analytic methods, the machine-learning (ML) pipeline, QoE
optimization, and vertical-informed QoE Actuators.

Ref. Ares(2020)2699373 - 25/05/2020

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 2 of (74) © SLICENET consortium 2019

Disclaimer

This document contains material, which is the copyright of certain SLICENET consortium parties, and
may not be reproduced or copied without permission.

All SLICENET consortium parties have agreed to full publication of this document.

The commercial use of any information contained in this document may require a license from the
proprietor of that information.

Neither the SLICENET consortium as a whole, nor a certain part of the SLICENET consortium, warrant
that the information contained in this document is capable of use, nor that use of the information is
free from risk, accepting no liability for loss or damage suffered by any person using this information.

The EC flag in this document is owned by the European Commission and the 5G PPP logo is owned by
the 5G PPP initiative. The use of the flag and the 5G PPP logo reflects that SLICENET receives funding
from the European Commission, integrated in its 5G PPP initiative. Apart from this, the European
Commission or the 5G PPP initiative have no responsibility for the content.

The research leading to these results has received funding from the European Union Horizon 2020
Programme under grant agreement number 761913.

Impressum

[Full project title] End-to-End Cognitive Network Slicing and Slice Management Framework in
Virtualized Multi-Domain, Multi-Tenant 5G Networks

[Short project title] SliceNet
[Number and title of
work-package]

WP5 - Cognitive, Service-Level QoE Management

[Number and title of
tasks]

T5.3. Modelling, Design and Implementation of QoE Monitoring, Analytics
and Optimisation Engine; T5.4 Modelling, Design and Implementation of
Vertical-Informed QoE Actuators

[Document title] Modelling, Design and Implementation of QoE Monitoring, Analytics and
Vertical-Informed QoE Actuators; iteration I

[Editor: Name, company] Dean Lorenz, IBM Research - Haifa (IBM);
Salvatore Spadaro, Universitat Politècnica de Catalunya (UPC)

[Work-package leader] Dean Lorenz, IBM Research - Haifa (IBM)

Copyright notice

© 2019 Participants in SLICENET project

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 3 of (74)

Executive summary
The provisioning of network slices with proper Quality of Experience (QoE) guarantees is seen as one
of the key enablers of future 5G-enabled networks. However, it poses several challenges in the slices
management that need to be addressed for efficient end-to-end (E2E) services delivery, including
estimating QoE Key Performance Indicators (KPIs) from monitored metrics and reconfiguration
operations (actuations) to support and maintain the desired quality levels. SliceNet provides a design
and implementation of cognitive slice management that leverages Machine Learning (ML) techniques
to proactively maintain the network in the required state to assure E2E QoE, as perceived by the
vertical customers.

This deliverable defines the overall functional architecture of the SliceNet Cognition Plane, including
the interfaces with the other SliceNet architectural components. It specifies the mechanisms and
methodologies that allow the integration of cognitive methods into the SliceNet management and
control, enabling verticals-oriented, QoE-driven 5G network slicing across multi-operator domains.
The SliceNet Cognition Plane adds ML capabilities to the established Monitor-Analyse-Plan-Execute
governed by a Knowledge-base (MAPE-K) control loop to implement an autonomic E2E slice
management and control. The proposed architecture covers the entire loop, including cognition-
based monitoring to obtain QoE KPIs, a ML pipeline for the analysis phase, and an actuation
framework.

We report on the implemented Cognition Plane components and developed algorithms. In
anticipation of the prototyping of the vertical use cases (UCs) and the implementation of the SliceNet
management and orchestration components, we implemented several Proof-of-Concept (PoC)
workflows to validate the overall methodologies, infrastructure, and processes, and to demonstrate
the algorithms needed to support the UC scenarios. We exercise all phases of the cognition-enabled,
QoE-aware MAPE control loop – a ML pipeline, QoE estimation, proactive control, optimization, and
triggering of the actuations needed to maintain desired slice QoE properties.

It should be noted, that this deliverable is the first iteration of the overall Cognition Plane
implementation. It exercises the logical workflows and represents the first integration phase of the
different Cognition Plane components. The next iteration will integrate other SliceNet components
and refine the existing analytic methods.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 4 of (74) © SLICENET consortium 2019

List of authors
Company Author
Altice Labs SA, Portugal Rui Pedro, Guilherme Cardoso, Pedro Neves, Nuno Henriques
Eurecom Xenofon Vasilakos, Nasim Ferdosian
IBM Research – Haifa Dean Lorenz, Kenneth Nagin
Orange SA, France Marouane Mechteri, Yosra Ben Slimen
Universitat Politècnica
De Catalunya

Albert Pagès, Fernando Agraz, Salvatore Spadaro, Rafael
Montero

University of The West Scotland Antonio Matencio Escolar, Enrique Chirivella Perez, Jose M.
Alcaraz Calero, Qi Wang, Ricardo Marco Alaez, Zeeshan Pervez

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 5 of (74)

List of Reviewers
Company Reviewer
Creative Systems Engineering (CSE) Kostas Koutsopoulos
Cork Institute of Technology (CIT) Mark Roddy

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 6 of (74) © SLICENET consortium 2019

Table of Contents
1 Introduction .. 13

1.1 Scope ... 13

1.2 Document structure .. 13

1.3 Overview of SliceNet Cognition Plane .. 14
1.3.1 Motivation for using cognition .. 14
1.3.2 Technical approach to Cognitive management ... 15
1.3.3 Control (MAPE-K) loops deployment .. 16

2 Cognition Plane Architecture and Functional Components ... 18

2.1 Cognitive Control Loop ... 18

2.2 Knowledge & Monitoring .. 19

2.3 Analysis ... 20
2.3.1 Machine learning pipeline ... 20
2.3.2 Analysis tools and model training ... 21
2.3.3 Model application / inference ... 22
2.3.4 Data-Driven Network Control and Management .. 23

2.4 Planning & Execution .. 24
2.4.1 Actuation framework and vertical-informed actuators .. 24
2.4.2 Policy Framework .. 26
2.4.2.1 Policy administration operations……………………………………………………………………………29

2.4.3 QoE Optimizer ... 31
2.4.4 Short/cross-entity actuation loop ... 32

2.5 Cognition workflows ... 33

3 Analytic workflows .. 37

3.1 Scope and preliminary implementation ... 37

3.2 Reliable RAN slicing using NSP alarm data .. 38
3.2.1 Demonstrated functionality .. 38
3.2.2 Description of data .. 38
3.2.3 Scenario ... 40

3.3 Noisy neighbour detection .. 42
3.3.1 Demonstrated functionality .. 42
3.3.2 Scenario ... 43
3.3.3 Architecture and description of components ... 43

3.4 QoE classification from QoS metrics ... 45
3.4.1 Demonstrated functionality .. 45
3.4.2 Scenario ... 45
3.4.3 Architecture and description of components ... 46
3.4.4 QoE derived from Client Application Response Time ... 47

3.5 RAN optimization .. 47
3.5.1 Demonstrated functionality .. 47
3.5.2 Architecture and description of components ... 47

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 7 of (74)

3.5.3 Scenario ... 48

3.6 Anomaly detection .. 49
3.6.1 Demonstrated functionality .. 49
3.6.2 Scenario ... 49
3.6.3 Architecture and description of components ... 50

4 Vertical-informed actuators workflows .. 52

4.1 Scope and Preliminary Implementation ... 52

4.2 QoS Modification .. 53
4.2.1 Demonstrated functionality .. 53
4.2.2 Scenario ... 53
4.2.3 Architecture and description of components ... 55
4.2.4 Design of components ... 56

4.3 NSP Sequence Modification .. 57
4.3.1 Demonstrated functionality .. 57
4.3.2 Scenario ... 58
4.3.3 Architecture and description of components ... 59

4.4 OVS-based User Traffic Classification ... 61
4.4.1 Demonstrated functionality .. 61
4.4.2 Scenario ... 61
4.4.3 Architecture and description of components ... 62
4.4.4 Design of components ... 63

5 Interfaces and APIs .. 65

5.1 Policy Framework Interfaces ... 65

5.2 QoE Optimizer CP Interface .. 65

5.3 QoE Optimizer - QoE plugin Interface ... 66

6 Summary of software components .. 68

6.1 ElasticMon ... 68

6.2 SkyDive .. 69

6.3 Stresser for QoE-QoS experiment ... 69

6.4 Noisy neighbour experiment .. 69

6.5 Machine learning pipeline .. 70

6.6 Cognition Notebooks .. 70

6.7 QoE Optimizer ... 70

6.8 OVS-based user traffic classification actuator .. 70

7 Conclusions ... 72

References .. 73

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 8 of (74) © SLICENET consortium 2019

List of figures
Figure 1 Logical SliceNet components addressed by WP5 .. 13

Figure 2 Cognition Plane overview .. 15

Figure 3 Multiple MAPE-K loops .. 17

Figure 4 The Proactive Control Scheme ... 18

Figure 5 Data-Oriented operational analytics ... 19

Figure 6 ML pipeline architecture .. 21

Figure 7 ML pipeline - Model training ... 22

Figure 8 Cognition Plane entailing Data-Driven Control and Management loop 23

Figure 9 Schematic of the logical architecture of the actuation framework ... 25

Figure 10 SliceNet Policy Framework architecture .. 27

Figure 11 SliceNet PF architecture (instantiated at NSP) .. 28

Figure 12 SliceNet PF architecture (instantiated at DSP) .. 29

Figure 13 Policy creation/configuration operation ... 30

Figure 14 Policy deployment operation ... 30

Figure 15 Policy recommendation operation .. 31

Figure 16 QoE Optimizer logical architecture .. 32

Figure 17 Logical design and architecture of the short/cross-entity actuation loop 33

Figure 18 NSS cognition workflow (at NSP) ... 35

Figure 19 E2E service/NS cognition workflow (at DSP) ... 36

Figure 20 AlarmManager role in the Altice MEO OSS ... 38

Figure 21 Relationship between alarms instances and the recognition of a failure 39

Figure 22 Recognizing what alarms lead to failure allows a more accurate and faster detection of a
failure (or even preventively) .. 39

Figure 23 Dataset distribution over the different kind of alarm domains... 40

Figure 24 Relationship between the intended imminent fault prediction and the alarm data 41

Figure 25 Interrupted E2E service enabled through fault prediction and network slicing 41

Figure 26 Altice MEO dataset inclusion into SliceNet’s logical architecture ... 42

Figure 27 Experimental setup for the ‘noisy neighbour’ PoC .. 44

Figure 28 Actuation workflow for noisy neighbour detection .. 45

Figure 29 Experiment setup for QoS to QoE classification .. 46

Figure 30 QoE derived from Response Time ... 47

Figure 31 Integration of the DDCM with a RAN. (a) Architecture of cognitive RAN control and (b)
Example of DDCM integration in SliceNet testbed .. 48

Figure 32 Architecture of latency prediction model for eHealth UC ... 50

Figure 33 Actuation workflow for latency prediction for eHealth UC ... 51

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 9 of (74)

Figure 34 QoS Modification actuator general workflow ... 54

Figure 35 Experimental set-up for QoS Modification actuator ... 55

Figure 36 Software design and class diagram of the QoE Optimizer ... 56

Figure 37 NSP Sequence Modification actuator general workflow ... 59

Figure 38 Logical design for reliable NSP selection in NSP Sequence Modification actuator 60

Figure 39 Workflow sequence for the OVS-based traffic classification .. 62

Figure 40 Architecture and components of OVS-based traffic actuator ... 63

Figure 41 PAP notification example ... 65

Figure 42 Schematic of a QoEObject ... 66

Figure 43 Prototype implementation of ElasticMon monitoring Framework 68

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 10 of (74) © SLICENET consortium 2019

List of tables
Table 1 Example of actuators catalogue .. 26

Table 2 Summary of analytic prototype workflows ... 37

Table 3 Summary of developed actuators ... 52

Table 4 QoE feedback API details .. 66

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 11 of (74)

Abbreviations
5G Fifth Generation (mobile/cellular networks)
5G PPP 5G Infrastructure Public Private Partnership
AIOPS Artificial Intelligence for IT Operations
API Application Programming Interface
C-App Control Application
CN Core Network
CP Control Plane
CPSR Control Plane Service Registry
CPU Central Processing Unit
CRUD Creation, Read, Update and Delete
DDCM Data-Driven Control and Management
DP Data Plane
DSCP Differentiated Services Code Point
DSP Digital Service Provider
E2E End to End
ECA Event-Condition-Action
eNB Evolved Node B
EPC Evolved Packet Core
FaaS Function as a Service
FCA Flow Control Actuator
FCAPS Fault, Configuration, Accounting, Performance and Security
IED Intelligent Electronic Device
JSON Java Script Notation Object
KB Knowledge-Base
KPI Key Performance Indicator
LTE Long Term Evolution
MANO Management and Orchestration
MAPE-K Monitoring, Analysis, Planning and Execution governed by a

Knowledge-base
ML Machine Learning
NFV Network Function Virtualisation
NS Network Slice
NSaaS Network Slice as a Service
NSP Network Service Provider
NSS Network Sub-Slice
OAI OpenAirInterface
OSA One Stop API
OSM Open Source MANO
OSS Operations Support System
OVS Open Virtual Switch
P&P Plug & Play
PAP Policy Administration Point
PCI Policy Catalogue & Inventory
PCM Policy Context Manager
PCS Proactive Control Scheme
PCF Policy Control Function
PDP Policy Decision Point
PF Policy Framework

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 12 of (74) © SLICENET consortium 2019

PoC Proof of Concept
PR Policy Recommender
QoE Quality of Experience
QoI Quality of Information
QoS Quality of Service
RAN Radio Access Network
REST Representational State Transfer
RRM Radio Resource Management
SDK Software Development Kit
SDN Software Defined Networking
SLA Service Level Agreement
SliceNet End-to-End Cognitive Network Slicing and Slice Management

Framework in Virtualized Multi-Domain, Multi-Tenant 5G
Networks

SMA Spectrum Management Application
SNMP Simple Network Management Protocol
UC Use Case
UE User Equipment
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VoIP Voice over IP

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 13 of (74)

1 Introduction

1.1 Scope
The objective of WP5 is to define and prototype the framework for cognitive QoE-aware slice
management and control of the 5G network. WP5 embeds service-level cognitive abilities into the
SliceNet architecture, enabling intelligent, adaptive E2E 5G slice management; it harnesses ML
methods to allow 5G network slices that can support QoE requirements as demanded by the
verticals. In this document we describe our framework and methodology for integrating cognitive
methods into SliceNet’s management plane, as well as overall design of the software components
developed to validate the SliceNet approach and to support QoE-aware slice management. This
report covers the first iteration of the SliceNet Cognition Plane; it is intended to be updated as WP6
and WP7 materialize. Figure 1 highlights the logical SliceNet components addressed by WP5 as
described in WP2 deliverables (see D2.4, Section 5) [1].

DSP

Orchestration Sub-PlaneMonitoring Sub-Plane

Aggregation
(QoE Monitor) Service & Slice

Orch. (SS-O)

SliceNet Control Plane

P&P Control

Information Sub-Plane

Cognition Sub-Plane

Analyzer Policy
Framework

E2E Slice
Catalogue

E2E Slice
Inventory

P&P
Manager

QoE/SLA
Manager

NS/NSS Slice
Inventory

NS/NSS Slice
Catalogue

QoE
Optimizer

NS/NSS
Slice Data

E2E Slice
Data

NSP#1

Orchestration Sub-PlaneMonitoring Sub-Plane

Traffic
Monitor

Topology
Monitor

Resources
Monitor

Aggregation
(Slice Monitor)

Resource
Data

4G/5G Data and Control Plane
BBU

SG
W

PG
WRRH

...

MME

PCR
F

UE

NRF

NSS
F

UPFRAN
...

SMF
PCF

UEUEUE
4G 5G

WAN NS / NSS

NS/NSS
Slice Data

Service & Slice
Orch. (SS-O)

Resource
Orch. (NMR-O)

VNF Manager
(VNFM)

Virtual Infra
Manager (VIM)

SliceNet Control Plane

P&P Control

Information Sub-Plane

Cognition Sub-Plane

QoS Control IPC
Control NF Config

Analyzer Policy
Framework

Service & Slice
Catalogue

Service & Slice
Inventory

Backhaul
Adapter

MEC-Core
Ctrl.

RAN
Ctrl.

P&P
Manager

Resource
Inventory

Resource
Catalogue

Engine
Enforcer

NSP#2

RAN
Adapter

DPP
Adapter

WAN
Adapter

WAN
Ctrl.

DPP
Ctrl.

Backhaul
Ctrl.

MEC-Core
Adapter.

Figure 1 Logical SliceNet components addressed by WP5

1.2 Document structure
This document is structured as follows:

1. The rest of Section 1 provides an overview of the overall design principles of the Cognition Plane
architecture and the adopted MAPE-K approach.

2. Section 2 describes the functional architecture of the elements comprising the Cognition Plane
and the methodologies used.

3. Sections 3 and 4 describe concrete workflows exercising the functional architecture, providing
PoC implementations that validate the methodologies, algorithms, and feasibility. The detailed
workflows, and the software components are meant to evolve with the implementation of the
SliceNet Management Plane (WP6) and with the prototyping of the vertical UCs (WP7).

4. Section 5 documents the main interfaces that have been designed and implemented for the first
iteration of the Cognition Plane.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 14 of (74) © SLICENET consortium 2019

5. Section 6 summarizes the implemented software modules and PoCs, providing the links for their
source code.

6. Lastly, Section 7 contains the main conclusions of the deliverable.

1.3 Overview of SliceNet Cognition Plane
In this section we briefly describe the overall SliceNet approach for applying cognition to 5G slice
management and control, as introduced in Deliverable D2.4 [1]. A more detailed description of our
methodology is given in Section 2.

1.3.1 Motivation for using cognition

SliceNet envisions an intelligent cost-effective network management, control, and orchestration
framework that can cope with the challenges of multi-domain slicing over 5G networks, while
minimizing human intervention. Some of the main challenges include:

1. Flexibility – 5G networks support many configurations, which leads to a multitude of system
states. It is no longer possible to prescribe what needs to be done per every conceivable system
state, as there are too many options and heterogeneous cases. The management and control
mechanism must be able to flexibly handle states it has never encountered before and for which
there are no specific rules (e.g., by applying rules from similar states); thus, it must be able to
generalize rules and comprehend their intent.

2. Scale – the sheer scale of 5G networks makes it impractical (even from cost considerations alone)
to require human input in the control loop. The control must be autonomous and automated with
humans only prescribing desired behaviour (e.g., as policies).

3. Dynamicity – 5G networks support a combination of many types of workloads stemming from a
variety of UC. These workloads can come and go and may even change dynamically as needed by
the verticals. As a result, the derived requirement from the network may change often and these
changes may be significant. The management mechanism cannot focus only on the common case;
it must constantly adapt to and anticipate changes.

4. Abstraction – the 5G network is managed through several layers of abstraction. There are
multiple information owners providing multiple data sources, each with its own semantics;
moreover, depending on a specific role, only partial information may be available from some
layers. For example, a Network Service Provider (NSP) that implement a network sub-slice (NSS)
might provide only partial network information to the Digital Service Provider (DSP) that manages
the E2E network slice (NS).1 Thus, the management and control, per role, must be able to
combine multiple information sources, interpret their meaning, and fill in the gaps (“guess”) when
needed.

5. QoE and QoS – in order to support service-level E2E QoE, a collection of complex tasks is
required; these tasks must translate the vertical E2E UC requirements into network-level Service
Level Agreements (SLAs) and concrete KPIs, estimate and predict QoE KPIs from network-level
Quality of Service (QoS) metrics, and optimize the network resources to support the needs of
multiple NSes.

Cognitive network management addresses these challenges by utilizing ML to understand the
network behaviour and proactively steer that behaviour towards its desired state (see [2] for a more
detailed discussion). SliceNet advocates a declarative rather than an imperative approach to network
management, where cognition is used to learn the best actions to achieve declared goals; moreover,
the goals are abstracted in a user-centric manner to utilize the full potential of 5G slicing and fulfil
the “Verticals-in-the-loop” SliceNet vision.

1 Unless the SLA prescribes it, the NSP is not obliged to expose any details into its network.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 15 of (74)

1.3.2 Technical approach to Cognitive management

The SliceNet Cognition Plane embraces the MAPE-K approach for automated and autonomic
management; MAPE-K is a loop of Monitor-Analyse-Plan-Execute governed by a Knowledge-base
that encapsulates policies, rules, algorithms, etc. SliceNet is designed to support ML for the
Monitoring and Analysis steps, as well as for creating new Knowledge. SliceNet QoE Monitoring (as
described in D5.2 [3]), separates the acquisition of monitoring data from the processing of that data
and transforming it into NS QoE metrics. The Analysis step uses the acquired knowledge to assess the
NS QoE and possible impact on corrective actions; this is done by both inferring learned cognitive
models and by applying more traditional automated management methods. The Planning and
Execution steps (termed Actuation) are governed through a Policy Framework (PF).

SliceNet employs a Data-Driven Network Operations methodology, a.k.a. AIOPS (Artificial Intelligence
for IT Operations) [4]. Network analysis applications react to collected operations data (both raw and
processed) and generate new metrics and signals (e.g., QoE metrics and QoE-aware insights) that in
turn trigger network operation actions. With this methodology, most components interact only with
the data store, acting as consumers and producers. This approach minimizes the direct interfaces,
provides flexibility, and easier integration of cognitive tools. It also allows existing techniques to be
used with little change, as the outputs of the cognitive tasks can be treated as advanced sensor
metrics; indeed, this is how SliceNet’s QoE sensors are implemented.

The main components of the Cognition Plane and its relation to the other SliceNet planes are shown
in Figure 2. The figure details only the SliceNet logical components that have significant interaction
with the Cognition Plane; other components of the SliceNet logical architecture are hinted by empty
boxes.

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

4G/5G Data and Control Plane

Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring

Traffic
Monitoring

Topology
Monitoring

Resources
Monitoring

P&P Manager
&

QoE/SLA
Manager

Information

Persistency
& Aggreg. Inventory

QoE Analytics
and Optimization

Policy
FrameworkAggregation

Analytics

QoE
Optimization

QoE
Monitoring

QoEP&P

Policies &
Actuators Catalogues

Figure 2 Cognition Plane overview

Vertical informed sensors (as described in D5.2) provide QoE monitoring capabilities and prepare
aggregated data from the ML-based analytic processes. Although monitoring utilizes information
from several sources, it has direct interfaces only with the persistent data stores, simplifying the
interfaces and following a Data-Lake [5] approach (see Section 2.2).

Analytics and optimization tasks process the QoE sensor data to provide cognitive insights that
enable the vertical-informed actuation. Analysis is applied first to historical data to learn new models
and derive new policies and optimization parameters. At run-time, similar analysis is applied to verify
and refine the learned models. Finally, the learned models are inferred in near-real-time to provide
concrete input signals for actuation.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 16 of (74) © SLICENET consortium 2019

A policy framework governs the actuation, applying QoE optimization tasks that combine inferred
signals with measured KPIs to control vertical informed QoE actuators. Actuation may affect the
monitoring tasks (e.g., initialize more sensors) or may trigger new analysis. Actuation may be
triggered by feedback from the vertical and may invoke application-specific controls or deliver alerts
and SLA metrics to the vertical. These unique vertical-oriented capabilities are achieved through
SliceNet’s Plug & Play (P&P) framework.

1.3.3 Control (MAPE-K) loops deployment

The MAPE-K approach provides the logical buildings blocks for autonomous cognitive management.
SliceNet employs these loops multiple times at different layers of the architecture to achieve various
management tasks. Several loops are illustrated in Figure 3.

The first loop (Figure 3a) enables training of ML models – QoE monitoring and aggregation curates
the necessary data for the training phase, the results of the ML process are fed back into the
knowledge base (K) as policies to be applied in other loops. A similar process (Figure 3b) is the
refinement of existing models; this is done periodically (by policy) or may triggered by actuation (e.g.,
if there are indications that there is too much deviation from model assumptions). Actuation (Figure
3c and Figure 3d) can act “out” invoking external control tasks or act “in”, adjusting the Cognition
Plan components (e.g., change the monitoring configuration). The actuation can be triggered near-
real-time, directly from monitored KPIs (Figure 3c); or follow the full loop (Figure 3d), where
monitoring feeds a ML process that infers a previously learned model. The loop may include the
vertical (Figure 3e and Figure 3f), either as a source (e.g., providing feedback that may trigger an
action) or a destination (e.g., being alerted of imminent failure). The loop may be a real-time Fault,
Configuration, Accounting, Performance, and Security (FCAPS) management loop (Figure 3g), where
cognition is used to populate configuration and policy parameters; namely, it provides the “K” for
this short autonomic control loop.

Finally, it should be noted that the Knowledge may be federated (Figure 3h); for example, a DSP-level
E2E NS may combine information from the cognition functions that are implemented at the NSP-
level. Moreover, while the focus of WP5 is at the service-level (E2E QoE), cognition is applied at all
levels. (1) Cognition is applied at the NSP level to manage resources for multiple NSSes; in this case
QoS data is collected from shared resources and is analysed (utilizing ML methods) to determine the
optimal resource allocation. (2) Cognition is applied at NSP level for NSS management; in this case
NSS data is analysed to maintain the desired NSS SLA. (3) At the DSP level, cognition is applied to
infer the E2E QoE KPIs through both estimation and prediction; this can be done either in single
domain or multidomain configuration to maintain the E2E SLA and proactively manage the NS QoE.

The different options are further explored in the following sections. Section 2 provides further details
on the methodology and the main logical workflows (including the application of Cognition at both
NSP and DSP levels), while specific scenarios and workflow implementations are described in
Sections 3 and 4.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 17 of (74)

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

4G/5G Data and Control Plane

Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring

Traffic
Monitoring

Topology
Monitoring

Resources
Monitoring

P&P Manager
&

QoE/SLA
Manager

Knowledge

Persistency
& Aggreg. Inventory

QoE Analytics
and Optimization

Policy
FrameworkAggregation

Analytics

QoE
Optimization

QoE
Monitoring

Train

P&P QoE

Policies &
Actuators Catalogues

Train

(a)

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

4G/5G Data and Control Plane

Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring

Traffic
Monitoring

Topology
Monitoring

Resources
Monitoring

P&P Manager
&

QoE/SLA
Manager

Knowledge

Persistency
& Aggreg. Inventory

QoE Analytics
and Optimization

Policy
FrameworkAggregation

Analytics

QoE
Optimization

QoE
Monitoring

Refine

QoEP&P

Policies &
Actuators Catalogues

Refine

(b)

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

4G/5G Data and Control Plane

Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring

Traffic
Monitoring

Topology
Monitoring

Resources
Monitoring

P&P Manager
&

QoE/SLA
Manager

Knowledge

Persistency
& Aggreg. Inventory

QoE Analytics
and Optimization

Policies &
Actuators Catalogues

Policy
Framework

Actuate

Aggregation

Analytics

QoE
Monitoring

QoE
Optimization

QoEP&P

Actuate “out”

(c)

Actuation & Orchestration

P&P Manager
&

QoE/SLA
Manager

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

4G/5G Data and Control Plane

Network Slice

SliceNet CP

QoE Analytics
and Optimization

Infer

Aggregation

Analytics

QoEP&P

Policy
Framework

Monitoring

Topology
Monitoring

Resources
Monitoring

Traffic
Monitoring

Knowledge

Persistency
& Aggreg. Inventory

QoE
Optimization

QoE
Monitoring

Policies &
Actuators Catalogues

Infer “in”

(d)

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

4G/5G Data and Control Plane

Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring

Traffic
Monitoring

Topology
Monitoring

Resources
Monitoring

P&P Manager
&

QoE/SLA
Manager

Knowledge

Persistency
& Aggreg. Inventory

QoE Analytics
and Optimization

Policy
FrameworkAggregation

Analytics

QoE
Monitoring

QoE
Optimization

feedback

QoE

vertical view

P&P

Policies &
Actuators Catalogues

Vertical interaction

(e)

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

4G/5G Data and Control Plane

Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring

Traffic
Monitoring

Topology
Monitoring

Resources
Monitoring

P&P Manager
&

QoE/SLA
Manager

Knowledge

Persistency
& Aggreg. Inventory

QoE Analytics
and Optimization

Policy
FrameworkAggregation

Analytics

QoE
Monitoring

QoE
Optimization

feedback

QoEP&P

Policies &
Actuators Catalogues

Actuate

Vertical trigger

(f)

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

4G/5G Data and Control Plane

Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring

Traffic
Monitoring

Topology
Monitoring

Resources
Monitoring

P&P Manager
&

QoE/SLA
Manager

Knowledge

Persistency
& Aggreg. Inventory

QoE Analytics
and Optimization

Policy
FrameworkAggregation

Analytics

QoE
Optimization

Policies &
Actuators Catalogues

QoE
Monitoring

FCAPS management

QoEP&P

Short-Loop

(g)

4G/5G Data and Control Plane
Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring
Persistency
& Aggreg. Inventory Policy CatalogueKnowledge

4G/5G Data and Control Plane
Network Slice

SliceNet CP

Actuation & OrchestrationMonitoring
Persistency
& Aggreg. Inventory Policy CatalogueKnowledge

Vertically Informed
QoE Sensors

Vertically Informed
QoE Actuators

Knowledge

QoE Analytics
and Optimization

Policy
FrameworkAggregation

Analytics

QoE
Optimization

QoE
Monitoring

Federated K

(h)

Figure 3 Multiple MAPE-K loops

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 18 of (74) © SLICENET consortium 2019

2 Cognition Plane Architecture and Functional Components
In this section, we provide an in-depth description of the Cognition Plane methodology. First, we
explain the application of the MAPE-K control loop to proactive network management and control.
Then, we detail our approach to the different elements of the MAPE-K loop and their role in NS QoE
management. Finally, we highlight the relevant SliceNet architecture workflows (taken from the on-
going WP7 work) showcasing the Cognition Plane role at both DSP and NSP levels.

2.1 Cognitive Control Loop
As described above, SliceNet follows the MAPE-K for automated management of network QoE.
SliceNet employs a Proactive Control Scheme (PCS) in managing the run-time lifecycle of a NS, while
utilizing cognitive methods to maintain the desired SLA. The main control loop of the PCS is
portrayed in Figure 4. The model details how ML models can be integrated into a traditional control
loop. Note that this PCS is both reactive and proactive; it can address an already identified issue such
as congestion in the Core Network (CN) segment or in the Radio Access Network (RAN) (either at the
backhaul or the fronthaul) or it can address imminent or developing problems (e.g., utilizing anomaly
detection).

Monitor

State

Predict Action

Q
ueryRa

w
In

fo

Impact

Changes

Figure 4 The Proactive Control Scheme

Monitor and State generate the data required for analysis. The monitoring component is
continuously querying the current State, in order to extract raw data about the NS, including
resource telemetry, topology, and traffic metrics. For example, it can collect KPIs related to wireless
link quality, based on RAN network conditions. In addition to the raw metrics, the Monitor
component generates calculated KPIs by processing the data as network statistics and by applying
aggregations at different levels (e.g., per cell, per slice, etc.). Another important role of the Monitor
is to enrich its raw input data. One important enrichment example is labelling the raw data, e.g.,
adding identifiers mapping. The enrichment enables custom aggregations and other advanced
statistical methods by analytics tools further down the pipeline. Finally, the Monitor controls the
granularity of data capture and the aggregation bucket. There is a trade-off between monitoring at
the finest possible granularity (which provides the most accurate information) and the resources
required to compute, transport and store the data. Therefore, the level of granularity must support
dynamic adjustments, depending on the current needs of the cognition loop.

The analytics and ML are encapsulated in the Predict component. It further enriches the data, adding
insights, predictions, and impact analysis, to allow proactive management with better system
diagnostics and prognosis. The calculation applies (infers) already learned ML models, combining the
real-time monitored data with log data and historical data (e.g., NS behaviour under normal
operating conditions). The enrichment information is added to the monitored data as an extra source
for the Action component. This approach allows the Cognition Plane to support both real-time and

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 19 of (74)

near-real-time models, in which the Action component may react immediately to time-sensitive
metrics and utilize the results of more complex analytics for proactive actions. For example, a Virtual
Machine (VM) Central Processing Unit (CPU) load KPI may indicate that the Virtual Network
Functions (VNFs) for creating a slice are overloaded, and more resources are required to maintain the
slice SLAs; a predicted load KPI may suggest adding resources before the SLA is affected; and a QoE-
impact KPI may predict which resources will mostly affect the QoE as perceived by the vertical. In
another example, an anomaly detection alert such as for Evolved Node B (eNB) bandwidth
congestion may trigger finer grain monitoring to verify such a potential anomaly and monitor its
progress, allowing controlled remedial actions, while still being able to react immediately if needed,
such as by performing User Equipment (UE) handovers or turning on more eNBs.

The Action component has a dual role, as both (1) an internal ML control loop; and (2) a network
control loop for taking network actions. The ML control loop can imply actions such as (re-)validating
a ML model in use, e.g. the one used for resource allocation or the one used for predictions.
Following validation, it may choose to replace one ML model with another one that better fits the
current conditions (e.g. heavy congestion). Other possible actions include changing monitoring
granularity, (re-)starting learning, etc. Note that all of these actions are intertwined, therefore they
affect each other. Network control loop actions, on the other hand, include examples such as
adjusting the transmission power of an eNB, altering cell breathing (range of coverage), adding or
reducing CN resources (e.g., CPU cycles for serving packet queues), and so forth. These actions may
affect one slice or even all slices (such is the case when altering cell breathing). Finally, the changes
caused by actions are fed back to “Prediction” alongside raw data like logs and processed statistics in
order to maintain ML models, thus closing the loop and allowing for consecutive iterations of the
monitor-predict-action cycle.

2.2 Knowledge & Monitoring
SliceNet employs a Knowledge-Centric, Data-Driven approach to network operations (see Figure 5). A
logical Data-Lake data store acts as the Knowledge-base (KB) of the MAPE-K loop. All data sources are
logically merged into one data store and analysis outcomes are shared through the same data store.
This paradigm is used at the NSP level to manage NSSes deployed at its underlying infrastructures
(i.e., FCAPS and SLA), to offer a Network Slice as a Service (NSaaS) towards the DSP level. The DSP
constructs and manages E2E NSes and offers a NSaaS to its vertical customers, based on the QoE
defined and SLA. The combination of data-store and data processing applications supports several
roles within the SliceNet architecture and is implemented across both the Cognition and
Management planes.

Ops
Application

Run-time Env.

Data Lake

Monitor

Import

Feedback

Vertical / Application
Perception

Sensor Data

External Data
and insights

ops
App

ops
App

ops
App

Alert Query

Learn

Parse /
Transform

Infer
ML model Aggregate

Figure 5 Data-Oriented operational analytics

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 20 of (74) © SLICENET consortium 2019

Multiple data sources are logically merged to provide all the required information for QoE
management. Control Plane (CP) and Data Plane (DP) sensor outputs are collected and persisted to
support traditional monitoring through parsing, transformation, and aggregation. However, this data
is also used for ML model training and for extracting QoS metrics. Feedback from the vertical is
combined to allow the data processing application to assume the role of QoE sensors, learning and
estimating the vertical perspective. The data source may be fed from external data sources (both raw
and processed) that are not created within the SliceNet controlled system. Leveraging external data
sources enables the training of ML models by means of historical data of the infrastructure or other
deployed services. This allows for QoE NS management under practical limitations, where some
information must be curated to hide sensitive data or anonymize. For example, an NSP may not be
willing to provide some of its raw network metrics but may share processed alerts. As another
example, data from multiple NSes may be merged and provided as an external source, allowing
insights from one NS to be applied to another.

Our data-oriented approach, described above, is a continuation of the Monitoring Framework to
support QoE sensing, as described in D5.2 [3]. Data-operations applications may be deployed for
each NS/NSS to filter relevant data, apply security, add context, aggregate slice metrics, etc. This
addresses several of the design challenges related to the monitoring framework (for example, the
approach is scalable and allows attributing the cost of monitoring to each slice). Moreover, flexible
QoE sensors may be employed; from simple aggregation and transformation tasks to inference of
elaborate ML models. Several examples of such sensors are detailed in Section 3.

Ingesting data from external sources is a crucial part of the SliceNet knowledge acquisition process.
ML algorithms perform and learn more efficiently with massive amounts of data (Big data); this holds
almost independently of the objectives or UCs being addressed. It is unlikely that slices generate
enough operations data to support their own learning processes. Thus, there is a need to combine
multiple sources. However, data from other slices or data from the underlying slice infrastructure
may be subject to confidentiality or privacy limitations. Data ingestion must enforce governance rules
dictated by the data owner. In addition, external data may contain corrupt or partial data; thus, it
must be parsed, validated, and cleaned before it enters the SliceNet Data-Lake. Finally, the data
ingestion must receive the data on the sender’s “terms”; namely, it must handle the data volume and
maximal data rates. A detailed example of importing a (real) external data source is described in
Section 3.2.

2.3 Analysis

2.3.1 Machine learning pipeline

Having in mind the great degree of flexibility that network slicing brings to the network management
domain, we can foresee that dealing with such an environment, where NSes come and go, where
their monitoring can live in different time and resource domains, brings a new set of challenges while
we try to apply ML techniques to solve, for instance, network optimization scenarios. Due to the
presence of these challenges, the need for having an automated ML pipeline arises, not only to deal
with network dynamicity but also with the problem scopes that come from different business roles
(i.e. DSP and NSP).

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 21 of (74)

Discover
and Gather

data

Ingest data

Readers

Normalization
modules

Transform
data

Create
model

Deploy
model

Monitor and
maintain

model

Readers
Readers

1 3 4 5 6

2 Data
Analysis

Figure 6 ML pipeline architecture

Figure 6 depicts the ML pipeline defined for SliceNet’s Cognition Plane architecture. As a starting
point, and external to the pipeline, there is a data discovery and gathering phase, this is where input
for ML occurs. Logically, this step represents a data source from the pipeline point of view. Internally,
it is divided into six different functional areas, covering all phases from data collection to the ML
models’ lifecycle:

1. Ingest data: this module enables the pipeline to read data and its responsibility is divided into two
components:

a. Readers: data input can be multiple files containing observations or streaming data. Each
reader abstracts the medium source of the observations and their nuances;

b. Normalization modules: data normalization is the process of combining, merging, and
cleaning, according to the knowledge gathered from the data analysis. Includes removing
duplicate observations, removing invalid and/or badly formed data;

2. Data analysis: the initial analysis serves the purpose of gaining data insights and further problem
contextualization. This module runs statistical queries (i.e. counting, averaging, grouping), to
check if the dataset is balanced, incomplete or how to focus its modelling;

3. Transform data: data transformation depends on data analysis and problem objectives. This
module transforms the data into ML-ready. This is where features are extracted and their
normalization (e.g. ordinal, one-hot encoding) happens;

4. Create model: ML algorithms, which can cover the classification, prediction or clustering ML
areas, are applied in this phase. This is where models are effectively trained, optimized (i.e.
hyperparameter tuning) and their testing strategies are put in place: cross-validation, feature
importance analysis, dimensionality reduction and so on;

5. Deploy model: during the training/testing phase, if a model shows significant fitness metrics
values it can then be deployed into production and start being used to predict, classify or cluster
data in the real-time problem domain;

6. Monitor and maintain model: deployed models can lose their effectiveness over time, especially
when the data domain is too volatile and dynamic, this means that certain models may be unfit
for usage since they no longer properly represent the real world. When models show fitness
metrics that are below the configured acceptable values, they are archived, and a re-training task
is scheduled to update them. As identified in Figure 6, when such a situation occurs, the process
reverts back to step 4, the “Create model” phase.

2.3.2 Analysis tools and model training

Following the ML pipeline design presented in Section 2.3.1, this section delves further into the
model training process, also referred as the “Create model” phase as identified in Figure 6. In order
to further explore this process, Figure 7 zooms into phase 4 of the ML pipeline.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 22 of (74) © SLICENET consortium 2019

Figure 7 showcases the details regarding the “Create model” phase, as seen in Figure 6, which
handles all processes related to ML model training. Its design is specially focused on training several
models at the same time, enabling a way to compare different training strategies at run-time. This
allows the pipeline to be flexible enough to onboard different ML frameworks and approaches when
solving cognition problems. It also aligns the pipeline design with the emerging automated ML
concept in the ML community, which brings automation to the process.

Furthermore, Figure 7 also depicts a simple example in order to fully understand how the design
maps into the implementation. It showcases three different processes that use different frameworks,
algorithms and data structures to train ML models. After the training ends the best model is shipped
into phase 5, to be deployed.

Transformed
data

Example:
- SVM
- Time windows 1 hour
- Uses sckit learn

Example:
- Deep learning(LSTM)
- State snapshots
- Uses CNTK

Example:
- Decision tree
- Time windows 30 min
- Uses keras

1.... n Training processes

Transform
data 3

Deploy
model 5

4

Best model

Create model

Figure 7 ML pipeline - Model training

2.3.3 Model application / inference

The Cognition Plane architecture uses data processing applications not only to process data for
training, but also to infer the learned models at slice run-time. This approach provides a flexible run-
time environment that can support complex cognitive models as well as simple rule-based
optimizations. It also has the advantage that the processing resources required to build the analytic

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 23 of (74)

data pipeline can be attributed to the slice(s) that consume the resulting information. The
orchestration and life-cycle management of these cognition-plane applications has similarities with
the orchestration and management of the slice CP and DP VNFs, as exercised through the Network
Function Virtualization (NFV) Management and Orchestration (MANO) architecture [6]. Furthermore,
it requires functionalities of P&P, since these data processing applications are slice specific and
dynamic. Note that this run-time environment is only logically centric; actual deployment may be
distributed as needed on the slice infrastructure. The analytic models are just functions that process
data events and are thus compatible with a Function-as-a-Service (FaaS) execution environment.
Finally, more traditional control mechanisms (such as threshold-based triggers and rule-based
alarms) and management utilities (such as user-defined alerts and dashboards) can also be
implemented as data-processing applications.

2.3.4 Data-Driven Network Control and Management

To enable run-time execution of ML models and functions/operations/processes, SliceNet introduces
a Data-Driven Control and Management (DDCM) loop, which employs prediction-based decision
policies and network services, customized for slices. Figure 8 depicts the DDCM loop and illustrates
the process of cognitive and autonomic network control. It also shows how to apply the cognitive
control process pattern of PCS through the DDCM loop, focusing on the overall Cognitive Plane.
DDCM is a combination of analytic techniques and modelling approaches on top of SliceNet’s CP and
DP, making it possible to actuate over the physical network infrastructure domain (e.g. RAN, CN).
Various methods for supporting network slicing in the RAN and the CN segments have previously
been explained in deliverable D4.2 [7]. Here, network slicing over a cognitive control and
management-ready architecture allows operators to create customized control and management
models for different slices.

Figure 8 Cognition Plane entailing Data-Driven Control and Management loop

The steps of the DDCM loop over the Cognitive Plane, depicted in Figure 8, are described as follows:

1. Real-time network data & User session logs are monitored from DP and CP.
2. Monitoring and Mining consists of the Monitoring module that extracts and arranges raw data

from heterogeneous sources; and the Mining module that performs a chain of certain mining
operations on raw data, such as data cleaning, pre-processing and transformation, in order to
prepare data for a later analysis stage, for example in some data-set D.

3. Model Generation is a module that works on the previously obtained data-set D. This data-set is
the descriptor of the current network state used to discover new semantic rules and concepts
which will be added into a KB as new updates. It is worth noting that the discovered knowledge
can be encoded in a description model such as an ontology that is suitable for knowledge

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 24 of (74) © SLICENET consortium 2019

representation. Any proper statistical and analytics techniques can be used for this module to
select the most appropriate data features and their inter-relations. For example, the network
input variables which affect network KPIs (e.g., throughput) are defined and the most effective
ones are selected as the most appropriate data features out of the high dimensional (in terms of
number of features) dataset. Traditional supervised ML and statistical analysis algorithms can also
be used to define how the pre-defined effective network input variables affect network KPIs.

4. Current network state from the KB and desired state from Domain Expert and Human Plane are
sent to Customized Analytics. The desired state is deduced out of the services-based objectives,
policies and the linked knowledge from other network domains.

5. Reasoning module checks and determines if the current state of the network is following the
targeted optimization goal (network KPIs) and predefined policies. It goes through the updated
KB, and extracts the respective inferences, which define the future states of the network. In this
way, the decision maker is able to assess how far the current network state is from the desired
state (global network optimization goals).

6. After this, the Prediction module predicts the future impact of the inferred future state of the
network. By using proper ML algorithms, such as regression algorithm, the future states’ input
data variables can be mapped to some functions, which predict their future real impact.

7. Finally, the Decision-maker defines a vector of control actions including a set of network
configurations and parameter settings, and sends them to their respective controllers.

Control Applications (C-Apps), performing different network control operations (e.g. mobility
management, handover management, policy and charging), provide an abstraction layer over the
underlying network and controllers to facilitate the RAN and CN programmability, as well as the
interaction with SliceNet DP and CP [7]. Note that C-Apps, residing in C-App Base, includes all
“Reasoning”, “Prediction” and “Decision-maker” modules, having a set of predefined Application
Programming Interfaces (APIs) between them, and translates high-level/technology-agnostic policies
and service definitions to low-level/technology-dependent ones RAN and the Evolved Packet Core
(EPC).

The described Cognitive Plane involving DDCM loop can be followed, as a baseline approach, by all
centralized and distributed network management and control solutions (for slices and services) to
make global and local control decisions and satisfy network optimization goals.

2.4 Planning & Execution

2.4.1 Actuation framework and vertical-informed actuators

The Planning and Execution phases of the MAPE-K loop are responsible for planning required
(re-)configurations of the network infrastructure, deployment of new elements and functions on the
configured services to remedy undesired situations (faults, underperformance, etc...) and
performance optimization of the overall system.

The complexity and dynamicity of NSes require autonomous loops for enforcing concrete actions on
the underlying infrastructure and deployed services to ensure an optimal system performance.
Moreover, given the more user-oriented perspective of 5G networks, in which the delivery of quality
guarantees towards users/customers is a key aspect, both planning and execution phases must be
built around the concept of quality optimization at all levels.

SliceNet defines an actuation framework, which covers both planning and execution phases, with the
core goal of maintaining and optimizing the perceived QoE by vertical customers. To this goal, the
actuation framework focuses on determining the required changes to E2E NSes that support the
verticals’ services, while taking charge of enforcing such changes through the appropriate means. The
actuation framework is designed with two main components in mind.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 25 of (74)

1. The PF component is a rule-based policy engine, in which rules define what actions are executed
in response to system and NS events.

2. The QoE Optimizer component is responsible for all (re-)configurations necessary to maintain the
QoE of a specific E2E NS. Thus, given the rules specified by the PF, and monitoring data gathered
both from the SliceNet monitoring stack (specifically, the QoE Monitoring) and verticals’ feedback
(through the P&P controller), the QoE Optimizer triggers the necessary actions to carry out the
desired actuations.

Figure 9 depicts a schematic of the logical architecture of the actuation framework, also depicting the
main functional blocks of the SliceNet architecture with which it interacts. Main cross-module
interactions are also highlighted.

QoE
Optimizer

QoE/SLA
Manager

QoE
Monitoring

Policy
Framework

WP5 Service/Slice
Orchestrator

WP7

Plug & Play
Controller

Control Plane
Functions

WP4

Execute actuation
• Retrieve CP function from CPSR
• Execute CP action

Vertical-driven QoE actions
• Gather QoE feedback

QoE monitoring and sensor
management
• Gather QoE metrics

Policy management
• Gather actuators

catalogue

Execute actuation
• Retrieve E2E info from DSP

datastore/inventory
• Execute E2E action (e.g. modify NSP sequence)

Analytics

Cognitive policy creation
• Update of policies parameters

through ML

Policy distribution
• Disseminate new policy
• Update existing policy

(event, condition, action(s))
• Eliminate existing policy

Enforcer

WP6

Cross-layer actuation
• Notify DSP that NSP cannot maintain quality levels
• DSP to NSP actuation operation

Figure 9 Schematic of the logical architecture of the actuation framework

While the planning, decision and trigger of the actions is done within the core actuation framework
(PF and QoE Optimizer), the actual execution of the actions is carried out by specific functions at both
SliceNet CP and orchestration layer. The PF and QoE Optimizer get their input from both analytics
and external monitoring data to determine when and how actuations should be carried out. Then,
the actual actuation is triggered by timely collaborations across functions at different layers. The next
subsections elaborate on both the PF and QoE Optimizer as central parts of the whole actuation
framework.

In a nutshell, the rules defined by the PF are translated into operations that the QoE Optimizer can
trigger/execute. These trigger/executions are abstractions of the operations exposed by execution
points (mainly, CP and orchestration layers). A clear definition of the exposed operations, including
its context within a particular NS, is required to compose the policy rules. To this end, an actuator
catalogue is to be designed. This actuator catalogue is intended to provide all the details of the
abstracted actions regarding their type and main parameters that are accepted. Table 1 depicts an
example of the catalogue, providing descriptions for all the elements of the catalogue entries. Given
this, it will be possible to construct policies with a specific target action in mind, tailored to the
context of the NS for which they are intended, thus customizing the whole QoE optimization to the
type of service/slice deployed. The presented catalogue will reside on the information sub-plane as

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 26 of (74) © SLICENET consortium 2019

part of the SLA/QoE Manager entity at the orchestration plane, which is responsible for the
management of the lifecycle of QoE Optimizer instances, as well as maintaining the consistency of
the actuators repository, or directly as part of the repository maintained by the PF (explained later in
Section 2.4.2). For the present iteration, only the design details are presented. More specific details,
mainly, on the data model followed and the concrete structure of the table as well as the entity
responsible for it are tasks still under development and will be presented at later iterations of the
Actuation Framework.

Table 1 Example of actuators catalogue

Family Class Type Description Parameters

Family of the
actuator related to
the enforcement
point that will be
contacted [Control
Plane,
Orchestrator, …]

Class of the
actuator related to
function/operation
to influence [QoS,
IPC, NF Control, …]

Particular type of
action inside the
class (modifyBW,
modifyPriority, …)

String describing
the actuator scope
(optional)

List of variable
parameters that
the actuator
accepts
Parameter:
- Name
- Type
- Value

… … … … …

Control Plane QoS changeBW Changes the
bandwidth of the
stated segment(s)
by the stated value

Parameter1:
- Name: SegmentID
- Type: String
- Value: X

Parameter2:
- Name: Segment
Technology
- Type: String
- Value: Y

Parameter3:
- Name: Bandwidth
Change
- Type: Double
- Value: Z

2.4.2 Policy Framework

The traditional Operations Support Systems (OSS) are evolving towards more flexible, agile and
service-oriented management platforms, also known as Service Operations. The new Service
Operations are catalogue-driven, data-centric and cognitive-driven. Additionally, when dealing with
dynamic and programmable 5G network environments, it is required to guide system decisions to
achieve desired outcomes in a highly configurable way. This can be achieved through policies, which
can be seen as high-level directives that convey what the software components should do under
certain conditions, complementing the Service Operations key features with policy-driven
operational management. In fact, policies have always been present in software components - the
key aspect is to extract these rules/policies from the software allowing service designers and run-
time system operators to control the system behaviour.

The PF designed in SliceNet enables the project system architecture with policy-driven capabilities.
Figure 10 illustrates the high-level view of the PF. SliceNet’s PF design and software implementation
is partially aligned with ONAP Policy Subsystem [8]. Since ONAP is already working on a policy-driven

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 27 of (74)

operational management architecture and therefore developing a Policy Subsystem, it was decided
to experiment and adopt some of their software components. Other PF components that are not
under development in the ONAP Policy Subsystem are currently under development in SliceNet.
Further details about which policy components are being reused from ONAP Policy Subsystem and
which ones are being developed in SliceNet will be given in the following paragraphs.

Policy Manager

Policy
Recommender

Policy
Administration

Point

Policy
Catalogue

& Inventory

Policy Decision
Point# 1

Policy Context
Manager

Policy Decision
Point# 2

Policy Decision
Point# N

Policy Framework

Figure 10 SliceNet Policy Framework architecture

In detail, the PF enables the service designer and/or system operators to manage the entire policies
lifecycle, that is, allowing the policies Creation/Configuration, Read, Update and Delete (CRUD)
operations. Policies are stored in the Policy Catalogue & Inventory (PCI) logical component.

The second key feature of the PF is the policies administration capability. That is, after policies are
on-boarded to the PCI, the system operator should be able to activate the policies deployment on
the SliceNet architecture components that should run and execute them - in policy-related
terminology, these components are known as Policy Decision Points (PDPs). The policy
deployment/distribution capability is delivered by the Policy Administration Point (PAP) component.

The third feature of the PF is to run the deployed policies at the Policy Decision Points (PDPs). This
happens during runtime and will dictate the system behaviour as indicated in the policy parameters -
for example, Event-Condition-Action (ECA) policies that implement closed management/control
loops in the architecture (e.g. imminent faults mitigation).

Another key capability of the PF is the policies monitoring feature. Whenever a specific policy is
distributed by the PAP to be executed at a specific PDP, it should be collected information about the
policy application - e.g. number of times it was executed and when it was executed. This capability is
delivered by the Policy Context Manager (PCM) logical component.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 28 of (74) © SLICENET consortium 2019

Finally, the fifth key feature of the PF, and definitely one of the most challenging, is the capability to
analyse and evaluate the effectiveness and impact of the applied policies in the system architecture
components and, if necessary, recommend updates to the existing policies to improve their
efficiency in the overall system behaviour. This capability is delivered by the Policy Recommender
(PR) logical component. Such components may be enriched by insights provided by the analytics
components in the overall Cognition Plane, providing better ways to recommend a policy or some of
its parameters. Both PCI and PAP components are inherited from ONAP Policy Subsystem, whereas
the PDPs, PCM and PR are developed within SliceNet.

Since the PCI, PAP, PCM and PR logical components are responsible for the policies management,
they are grouped in the Policy Manager logical component. The Policy Manager is illustrated in
Figure 10. On the other hand, the policy execution components (PDPs), also illustrated in Figure 10,
are entities that can exist in different architectural locations - for example, PDPs at the virtual
infrastructure management (e.g. Virtual Infrastructure Manager - VIM as PDP) level, as well as at the
network control level (e.g. 5G Policy Control Function (PCF) as PDP). In this regard, the PF is designed
to work at different levels and roles (e.g. NSP and DSP), providing policies for different functional
components. With respect to the SliceNet architecture, at the NSP level, a PDP is required for
managing intra and inter slice aspects (e.g. FCAPS Engine as PDP). As they are different and
independent business entities, the Policy Manager entity and PDPs must be instantiated per each
SliceNet business role, with the responsibility to manage and execute policies in each business
domain, respectively. This is illustrated in Figure 11 for the NSP scenario.

Figure 11 SliceNet PF architecture (instantiated at NSP)

On the other hand, Figure 12 illustrates the DSP scenario. In this case, a PDP is required at DSP level
for managing E2E NSes (e.g. QoE Optimizer as PDP). A Policy Manager entity is also instantiated at
the DSP level to manage the domain-level policies. It is precisely this combination of Policy Manager
and PDPs at DSP level, for which the QoE Optimizer is central, which brings to fruition the SliceNet
vertically-informed actuation framework.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 29 of (74)

Figure 12 SliceNet PF architecture (instantiated at DSP)

2.4.2.1 Policy administration operations

Given the aforementioned PF architecture, this section elaborates on the main operations regarding
policy administration which is enabled through the interaction with the several PF internal
components and PDPs, namely:

1. Policy Creation
2. Policy Deployment
3. Policy Recommendation

The policy creation operation, illustrated in Figure 13, represents the on-boarding of new policies to
the SliceNet PF architecture. The system operator designs the policies and uses the PAP APIs to
deliver them to the system (step 1). The PAP stores the policies on the PCI (step 2). This operation
can also represent the policies’ CRUD operations.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 30 of (74) © SLICENET consortium 2019

Policy Manager

1

Policy
Recommender

Policy
Administration

Point

Policy
Catalogue

& Inventory

Policy Decision
Point# 1

Policy Context
Manager

Policy Decision
Point# 2

Policy Decision
Point# N

2

Policy Framework

Figure 13 Policy creation/configuration operation

The policy deployment operation, illustrated in Figure 14, describes the deployment of previously on-
boarded policies to the architecture’s PDPs. Summarizing, the system operator invokes operations
exposed by the PAP APIs to instruct the policy deployment (step 1). The PAP retrieves the policy to
be deployed from the PCI (step 2) and distributes it to the selected PDP(s) (step 3). After the policies
are deployed and running, the PCM collects information from the PDPs about the policies execution
(step 4).

Policy Manager

1

Policy
Recommender

Policy
Administration

Point

Policy
Catalogue

& Inventory

Policy Decision
Point# 1

Policy Context
Manager

Policy Decision
Point# 2

Policy Decision
Point# N

2

33

Policy Framework

34

Figure 14 Policy deployment operation

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 31 of (74)

Lastly, the third operation (illustrated in Figure 15) is the policy recommendation. This operation is
related with the continuous improvement of the created policies in the system. In summary, after
policies are deployed and running in the PDPs, the PR will be continuously receiving performance
metrics (step 1) from the analysis part of the Cognition Plane. Additionally, the PR will also collect
information about the running policies from the PCM (step 2). With the information collected in
steps (1) and (2), the PR will use ML techniques to learn which are the most appropriate policy
configurations and, if necessary, update the existing policies to improve their impact on the network
(measured through the KPIs). Finally, after a policy update is ready to be recommended, the PR
notifies the system operator (step 3). The latter will decide if he agrees with the proposed policy
recommendation and, if yes, will update it on the PCI and request its deployment on the PDPs.

Policy Manager

1 Policy
Recommender

Policy
Administration

Point

Policy
Catalogue

& Inventory

Policy Decision
Point# 1

Policy Context
Manager

Policy Decision
Point# 2

Policy Decision
Point# N

3

Analyzer

Policy Framework

2

Figure 15 Policy recommendation operation

2.4.3 QoE Optimizer

The QoE Optimizer is responsible for triggering the desired actions (Execution from the MAPE-K loop)
within the actuation framework. The actions are meant to maintain the quality of a particular E2E NS
deployed on the underlying infrastructure, which may encompass several NSPs/segments/domains.
As such, the QoE Optimizer is designed as a module that will be instantiated per E2E NS. A QoE
Optimizer instance will have a specific actuation scope tailored to its NS, at the DSP level, since it is
necessary to gain visibility of all elements/NSSes that intervene and may affect the quality of the
delivered NS.

To achieve this goal, the QoE Optimizer follows a simple approach. On the one hand, it listens to
monitoring data that carries information relevant to the quality of the NS under its responsibility. On
the other hand, actions are directed to different parts of the SliceNet ecosystem to enable
(re-)configurations at the underlying NS. These actions may be applied at concrete parts (thus,
enforced to specific NSPs) within the E2E NS or affecting the totality of the slice as a whole. These
two levels of actuation are both contemplated at the QoE Optimizer, for which the actual scope is
determined given the received monitoring data and the rules to be applied. As such, it covers the
several operations exposed by the main enforcement points (CP and orchestrator) and their
abstracted functions (e.g. QoS control).

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 32 of (74) © SLICENET consortium 2019

The QoE Optimizer behaviour is rule-based, with rules being the policies disseminated by the PF. The
aforementioned ECA model is applied in this context. For each of the monitoring events that the
concrete instance of QoE Optimizer is subscribed to, the policies define a specific condition that
should be checked periodically. When a condition is violated, a corrective action is applied. This
action is specified by the policy and the QoE Optimizer is responsible for coordinating the actuation
workflow that fulfils the desired (re-)configuration operation. As such, the QoE Optimizer assumes
the role of one of the PDPs in the context of the PF, giving the necessary means to decide and apply
the actions stated by the distributed policies.

Figure 16 depicts the functional architecture of the QoE Optimizer and its main logical components.
The specific software implementation of the QoE Optimizer will be discussed later on in Section 4.2.4
in the context of the QoS Modification actuator.

QoE Optimizer

Actuation Control
Control Plane-based

Actuation

Management Interface

Slice
PoliciesOptimizerMonitoring

Client(s)

Orchestration-based
Actuation

Monitoring events /
Feedback Policies

Actions

Figure 16 QoE Optimizer logical architecture

The Optimizer functional block is responsible for determining when and how conditions at the
policies are being violated. It also has some limited intelligence to determine the best way to enforce
the policy actions (e.g. the values of the parameters of the actions).

The Monitoring Clients are responsible for fetching the external information sources, i.e. sensors of
some type or feedback from the vertical, for consumption by the QoE optimizer as a whole.

The Slice Policies are the logical representation of the policies being disseminated from the PAP at
the PF. The Slice Policies dictate the actions that are to be triggered in the context of a managed NS.

The Actuation Control is responsible for triggering the operations (including its parameters) at their
enforcement points (Control Plane-based Actuations and Orchestration-based Actuations).

The Management Interface enables the deployment, activation and termination of the QoE
Optimizer instance.

2.4.4 Short/cross-entity actuation loop

Although the core of the actuation loops take place at the DSP level, there are some scenarios in
which performance related problems that affect the quality of the NS, thus, the E2E perceived QoE,
may be resolved at the NSP level. In this regard, the approach followed at the DSP is also applied for
the several NSPs involved. As such, a MAPE-K loop is also being exercised at NSP systems, in which a
monitoring stack gathers performance information of the different NSSes and resources being
deployed. Then, an Enforcer engine is responsible for enforcing actions at the infrastructure (e.g. via

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 33 of (74)

the CP). This Enforcer engine also acts as a PDP in the context of the PF, which, as described
previously, may cover both DSP level, for E2E wide rules, and NSP level, for more NSS-oriented/local
rules. If the detected anomaly/underperforming situation can be resolved at the NSP level, the
Enforcer will take charge of the necessary actions to correct the situation. In this case, the DSP QoE
Optimizer would not be conscious of the anomalous situations, since corrective measures have
already been taken. On the other hand, if the short actuation loop present at a given NSP is not able
to overcome the situation, two options arise: (1) The underperformance situation is reflected in the
collected and aggregated monitoring information at the DSP level, for which the DSP level QoE
Optimizer will react to. (2) Otherwise, the DSP level QoE Optimizer is notified of the specific anomaly
and will take the desired corrective action. Note: the notification mechanism may be enabled with a
plugin at the P&P controller at NSP level.

Figure 17 depicts the logical architecture of the elements involved in the cross-entity actuation loop,
ranging from the MAPE-K loop elements (e.g. Monitoring, QoE Optimizer, PF, ...) to elements that
facilitate the separation/communication between roles/entities (e.g. One Stop API (OSA), P&P). In
this regard, note that separation across DSP and NSP roles may be achieved thanks to an OSA entity
or through capabilities exposed by a P&P instance at the NSP, for which the figure depicts an
example. Specific interfaces between roles may also be implemented to achieve this purpose. The
concrete design and implementation of operations, as well as functional elements is an ongoing
work, for which the current logical and functional design is being presented, with some examples to
highlight the possible separation among roles. It will be further addressed in future iterations of the
actuation framework in WP5, as well as in WP6 and WP7, due to their close interaction with the
actuation framework as a whole.

Control Plane

Orchestrator
Enforcer

Policy Framework

Orchestrator

Policy
Framework

QoE Optimizer

Monitoring

Monitoring

OSA

P&PQoE FeedbackMonitoring

Analytics

Vertical

NSP

Analytics

P&PMonitoring NSP
Communication

DSP

Figure 17 Logical design and architecture of the short/cross-entity actuation loop

2.5 Cognition workflows
To summarize the capabilities and phases that have been explained during this section, herein are
described two high-level scenarios that exercise the cognition-related workflows, more precisely the
creation of the ML models by the Cognition Plane. The first scenario, illustrated in Figure 18,

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 34 of (74) © SLICENET consortium 2019

describes the cognition procedures at the NSP level - for example, predicting a RAN slice imminent
failure. In summary, the steps can be grouped into three phases:

1. Network (Raw) Data Monitoring: during this phase, network and infrastructure information
(counters) is collected from the network and infrastructure sensors, respectively. This includes
traffic/flows-related information. Push and/or pull models are supported and implemented
through dedicated monitors and thereafter persisted at the SliceNet NSP data store.

2. Network Slice Metrics/Indicators Calculation: in this phase the collected and persisted data is
pre-processed (cleaning, normalization, transformation, etc.) for further analytics. Additionally,
raw counters are aggregated to produce metrics about the network’s slicing performance.

3. Network Data Collection & Learning: finally, in this phase, data is fetched from the data store and
further processed for the ML algorithms. The outputs of this phase are the predictive models to
be deployed in the system architecture.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 35 of (74)

Network Data Cognition

Network Slice Monitoring (covered in an independent workflow)

NSP_1
Resource Sensor

NSP_1
Resource Sensor

NSP_1
Traffic Sensor

NSP_1
Traffic Sensor

NSP_1
Resource Monitor

NSP_1
Resource Monitor

NSP_1
Traffic Monitor

NSP_1
Traffic Monitor

NSP_1
Data Store

NSP_1
Data Store

NSP_1
Aggregator

NSP_1
Aggregator

NSP_1
Analyzer

NSP_1
Analyzer

Network (Raw) Data Monitoring
1 Push Resource Counters

Push mode example
Dynamic, catalog-driven
configurations

2 Persist Resource Counters

3 Push Traffic Counters

Push mode example
Dynamic, catalog-driven
configurations

4 Persist Traffic Counters

Network Slice Metrics/Indicators Calculation

Network raw data is
aggregated to network
slice metrics/indicators
according to initial,
catalog-driven configs

5 Counters Req

6 Counters Rsp

7
Calculate
Network
Slice Metrics

Produce network slice
metrics/indicators
based on batch and/or
streaming calculations.

8 Persist Network
Slice Metrics

Network Data Collection & Learning

Fetch network data
information to start
cognition procedures

9 Network Data Req

10 Network Data Rsp

NSP data store can also
notify the Analyzer when
configured thresholds are
crossed (e.g. through a
message bus)

11 Network Data Notification

Run cognition algorithms
over collected network data

12 Network Cognition

Network cogntion output results on
a model to be deployed

Figure 18 NSS cognition workflow (at NSP)

The second scenario, illustrated in Figure 19, describes the cognition process at the DSP level - for
example, predict the E2E NS latency degradation. The workflow phases in this scenario are similar to
those described in Figure 18, except that the nature of the information flowing is different. In
summary, the process is the following:

1. Network Slices Data Monitoring: during this phase, metrics are collected from each one of the
NSPs NSSes that compose the E2E NS managed by the DSP. The retrieved information is persisted
at the SliceNet DSP data store;

2. E2E Slice Metrics/Indicators Calculation: herein the collected information is further processed
(cleaning, normalization, transformation, etc.) and aggregated to produce E2E NS metrics and
evaluate its performance.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 36 of (74) © SLICENET consortium 2019

3. E2E Slice Data Collected & Learning: in this phase, the E2E NS data is collected from the data
store and used in the ML algorithms. As a result, the E2E NS prediction models are created and
ready for deployment.

E2E Service Cognition

E2E Service/Slice Monitoring (covered in an independent workflow)

NSP_1
Data Store

NSP_1
Data Store

NSP_N
Data Store

NSP_N
Data Store

DSP
Data Store

DSP
Data Store

DSP
Aggregator

DSP
Aggregator

DSP
Analyzer

DSP
Analyzer

DSP
Admin

DSP
Admin

dportal

dportal

Network Slice Monitoring (from NSPs)

Consume network slice
metrics/indicators from
each NSP

1 Consume NSP_1 Network Slice Metrics

2 Consume NSP_N Network Slice Metrics

E2E Service Metrics/Indicators Calculation

Network slice data is aggregated to
E2E Service metrics/indicators
according to initial, catalog-driven
configurations

3 Network Slice Metrics Req

4 Network Slice Metrics Rsp

5 Calculate E2E
Service/Slice Metrics

Produce E2E Service metrics/indicators
based on batch and/or streaming calculations.

6 Persist E2E Service Metrics

E2E Service/Slice Data Collection & Learning

Fetch E2E Service/Slice
data information to start
cognition procedures

7 E2E Service/Slice Data Req

8 E2E Service/Slice Data Rsp

DSP data store can also
notify the Analyzer when
configured thresholds are
crossed (e.g. through a
message bus)

9 E2E Service/Slice Data Notification

Run cognition algorithms
over collected E2E Service/Slice
data

10 E2E Service/Slice Cognition

E2E Service/Slice cognition results on a model to be
deployed in the architecture

11 E2E Service/Slice Cognition Notification

Figure 19 E2E service/NS cognition workflow (at DSP)

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 37 of (74)

3 Analytic workflows

3.1 Scope and preliminary implementation
The implemented analytic workflows demonstrate the logical SliceNet workflows responsible for
predicting NS QoE KPIs; including, obtaining the required data, learning, processing, and providing
the necessary information for actuation, to allow NS QoE management. As described above, these
workflows enrich the raw data from multiple sources (including the vertical), adding insights and
predictions to support Vertically-Informed Actuation (see Section 4 for actuation workflows).

Implementing ML analytics requires data. As most of the data source of SliceNet are not
implemented at this point of the project; the analytic workflows can only provide PoC
implementations. Following an agile approach, the analytic methods will be refined as data is being
gathered and the vertical UCs mature. In their current state, the workflows rely on external data
(when available) and simulated data (e.g., for modelling the vertical perceived QoE).

The implementations exercise several E2E logical workflows of SliceNet that interact with the
Cognition Plane (see Table 2). We demonstrate monitoring and cognition at both NSS and E2E
NS/service levels, providing the building blocks for the implementation of Vertically-Informed QoE
Sensors. The focus at this stage is on the learning phase of the cognitive pipeline, validating the
applicability of the analytic methods employed using external and simulated data.

Table 2 Summary of analytic prototype workflows

Name Short description

Reliable RAN slicing using NSP alarm data Demonstrate processing of external data
sources to support slice reliability; optimizing
resource selection during slice creation and
predicting imminent failures

Noisy neighbour detection Demonstrate the ability to provide a QoE
Sensor that monitors slice-level metrics and
applies cognitive methods to predict service
level degradation and pinpoint its origin
(application vs. provider)

QoE classification from QoS metrics Demonstrate the usage of vertical feedback at
the training stage to develop a model for
predicting E2E QoE from measured QoS KPIs

RAN optimization Demonstrate the application of cognitive
method for managing the RAN effectively and
optimizing its capacity to maintain high QoS for
multiple slices and meet their desired service-
based performance objectives

Anomaly detection Demonstrate a QoE sensor that predicts
anomalies in a Long-Term Evolution (LTE) RAN
and a model that realizes network slicing with
guaranteed network-layer QoS (latency)

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 38 of (74) © SLICENET consortium 2019

3.2 Reliable RAN slicing using NSP alarm data

3.2.1 Demonstrated functionality

The goal of this PoC is to demonstrate the ability to ingest external, processed data into SliceNet’s
Data-Lake and use it for creating and maintaining an E2E NS with the agreed SLAs, with regards to
reliability. This section details how MEO’s external data source is leveraged to define a UC closer to a
real-world scenario, where the network slicing provides a solution to deliver a continuous service to
the vertical. This capability will be integrated into the SliceNet’s SmartGrid vertical UC scenarios.

3.2.2 Description of data

SliceNet is fortunate to have a reasonable amount of network operations data upon which it can
base its studies. The data was granted by MEO, a Portuguese nation-wide telco operator, which
belongs to the Altice group. It spawns a complete 4-month period from May to September 2018, and
it is directly exported from their network operations production databases. It contains an
aggregation of all kinds of alarms generated by the network resources, with 31 million occurrences
across over 8000 different locations. The origin of the dataset is the AlarmManager, a tool that
receives and collects events from heterogeneous sources (Simple Network Management Protocol
(SNMP), log parsers, signals, etc.), managing them through parsing and aggregation. This layer
abstracts the different types of events (e.g. alarms) coming from network elements and keeps track
of which faults are new, active or closed. In Figure 20, the red square represents the AlarmManager
role.

Enrichment Interface
(RETA)

Network generates all kind
of heterogeneous events from
all kinds of equipments from

multiple sources

1.

Network Provider may
enrich events with location

tags, equipment source, etc

2.

Nokia Cell

Lisbon

Alarm
Instance

1

Alarm
Instance

2

Alarm
Instance

n

AlarmManager collects
from the network and

stores each one in its
respective

category

3.
events

alarm instance

Network Events
(SNMP, Log parsing, signals, Etc)

Figure 20 AlarmManager role in the Altice MEO OSS

Each alarm instance has a location, a start and end time, the number of times the signal was emitted
to the alarm manager, alarm severity and so forth. The dataset does not contain any type of
correlation between the alarms and has different kinds of inconsistency and noise (which is common

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 39 of (74)

in these kinds of datasets). However, it is relatively well structured, allowing an easier transition for
data exploration with data mining and ML. Further details of the attributes are available at [9].

The purpose of using such datasets is to represent as close as possible the signals that come from a
real in-service network. We expect to extract two types of knowledge from it:

1. Site reliability: considering the history for each location, what is the most probable one to keep
the expectations of the required SLA. The final output is a slice reliability metric, a score that
impacts the decision when deploying a slice. This metric acknowledges the overall ability of a
location being able to deliver the requested requirements.

2. Imminent fault prediction: considering the patterns on the network, given the actual running
state, how close is a site (composition of network resources) to failure. This is extracted via past
sequences, using ML as a tool to extract such hidden patterns. According to this analysis, the
network can emit a signal, but the current situation is prone to failure. This signal is used by the
NSaaS provider (NSP or DSP) in order to avoid a fault in the slice (NS or NSS).

The first objective is achieved by pure classical statistical analysis, which by definition is a required
step before the second objective. For the second objective, the data needs to be in a format
compatible with the algorithms, a process explained in Section 2.3.1, so that the models can learn
the underlying patterns. Currently, despite the fact that datasets can very efficiently keep track of the
current active alarms, it can barely distinguish which ones are just network noise from the ones that
are real failures impacting the network (Figure 21).

Alarm Instance N

t

Cell Failure
Alarm Instance N
Alarm Instance N

Figure 21 Relationship between alarms instances and the recognition of a failure

The intention is to discover the sequence or combinations of events associated with the failure. The
improved solution of the second objective leads to the ability to deliver the requested SLA to the
clients, hence transmitting a more precise situation awareness, as so:

Alarm Instance N

t

Cell FailureAlarm Instance N
Alarm Instance N

Alarm Instance N
Alarm Instance N

Alarm Instance N

Instance clustering

Enhanced
detection of Cell Failure

Figure 22 Recognizing what alarms lead to failure allows a more accurate and faster detection of a

failure (or even preventively)

Consequently, closing the loop is done pre-emptively. Changes to the slice can be from simple
resource reconfiguration through to the deployment of a completely new slice, and can be
performed before having an impact on the service. The next section contains the current conclusions,
made statistically over the data, which already fulfilled the first objective. Despite the fact the second
objective is still under research and development, the analysis performed so far holds very promising
expectations to the second objective.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 40 of (74) © SLICENET consortium 2019

3.2.3 Scenario

The Altice MEO dataset, as described in Section 3.2.2, passes through a process of discovering and
understanding what type of information the dataset contains. Typically, data ingestion and data
analysis work together in an incremental loop. For example, to know what type of data
inconsistencies exist in the dataset we need to understand in detail the dataset’s semantics and
actual intent, and to do the first pass over the data we also must know the actual mechanics of how
to ingest it. Prior to any model creation, there's a vicious cycle of exploration, measuring and
characterization.

In the case of the MEO Alarm dataset, we started to learn what each field contains and represents.
Per alarm instance (as explained above), the alarm metadata also contains the network resource
domain (if it is from the RAN or the core), its technology (if it is 2G, 3G, 4G, etc.), and most
importantly, the local site code. The last one allows us to aggregate the alarms (and its corresponding
network elements) not only by a location, but also by an installation point. This means that all the
devices under the same local code work together to fulfil a service. To build the NSP NSS reliability
metrics, we need to know which locations are more prone to failure. In this perspective, we need to
build a new metric, a failure-rate for each installation point. Since we are targeting RAN failures for
the SmartGrid UC, we first need to identify how to get this knowledge from the dataset. To do so, we
studied how sparse the alarms are by domain. Statistically speaking, we have segmented and
enumerated the attributes, to map how many different kinds of samples exist for each one. The
results are shown in Figure 23.

Figure 23 Dataset distribution over the different kind of alarm domains

Notice that the scale is logarithmic, meaning that most of the records are mostly from the
DSLCLIENT (core) domain, meaning that the RAN alarms (2G, 3G, and 4G) - the number of entities per
Local Code is under ten in average. The number of distinct problems is way less than the number of
records, suggesting that there are a lot of observations per domain, which is a good indicator: we
have many samples to each of them to learn from. As for the possible alarm types, as expected some
of them are limited to a domain or technology. The dataset is largely composed of faults coming from
the core and not the RAN, indicating that probably we can better evaluate an NSP reliability as a
whole (all its core elements) and not just by considering the RAN reliability performance. A full

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 41 of (74)

analysis is available at [10]. We expect to discover correlations and causality between past and future
alarms, and link the correlation to a prediction. This means that despite EFACEC IEDs in the
SmartGrid UC solely connect via RAN, the core alarm data can also signal an NSP fault. Having real-
world OSS data granted from Altice MEO operator is very useful for evaluating the scenario, where
slice deployments can secure service availability, like so:

t

Network Failure?

Figure 24 Relationship between the intended imminent fault prediction and the alarm data

Using ML, we believe that the pattern of the alarms preceding the network failure can be recognized,
therefore the fault can be predicted, and a new slice can be provisioned to maintain the E2E service.
Figure 25 is a high-level flow representation triggered by fault prediction.

Figure 25 Interrupted E2E service enabled through fault prediction and network slicing

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 42 of (74) © SLICENET consortium 2019

Currently, the slice reliability score is retrieved directly from the statistical analysis performed so far.
For online on-demand predictions, the cognition pipeline (discussed in Section 2.3.1) closes the loop
by reading events directly from the NSP network resources, as the dataset implies. The presented
PoC can be mapped onto the components of SliceNet’s logical architecture as follows (Figure 26): (1)
In the Monitoring sub-plane: data is gathered from the Altice MEO's dataset, an emulation of the
Resources Monitor and Aggregation. These two modules combined would generate internally the
same kind of data stream; (2) In the Cognition Plane: the data flow up to the Analyzer, where the
algorithms according to the current events generated from the network resources asset the current
slice condition.

NSP#1

4G/ 5GData and Control Plane B
B
U
S
G
W

P
G
W

R
R
H

...
M
ME

PC
RFU

E

N
RFN
SS
F

U
PF

R
A
N

...
SM
F

PC
FU

E
U
E

U
E

5
G WA

N

SliceNet Control Plane

Information Sub-Plane

Cognition Sub-Plane

Policy Framework

Engine Enforcer

NS / NSS

P&PControl

TrafficMonitor

MonitoringSub-Plane

Topology Monitor

Aggregation
(Slice Monitor)

Resource Data

NS/ NSSSlice
Data

Data Importer

Analyzer

ALB/ MEO
Dataset

Figure 26 Altice MEO dataset inclusion into SliceNet’s logical architecture

In other terms, the first half of the loop is supported by the dataset and ML pattern recognition. The
latest developments so far, including the alarms analysis source code, are available at the shared
cognition development environment.

3.3 Noisy neighbour detection

3.3.1 Demonstrated functionality

The goal of this PoC is to demonstrate the ability to apply cognitive methods to analyse QoS metrics
and to predict the status of the VNF running in an NFV environment. Our objective is to create noise
in virtualized environment in order to monitor the infrastructure and collect enough data, which can
help us to detect and predict the VNFs/VMs suffering from noise using supervised ML algorithms. The
problem of ‘noisy neighbour’ detection was described in the SliceNet deliverable D5.2 (Section 6.4.2)
[3]. In this deliverable, we will describe the process to generate data and produce the ‘noisy
neighbour’ detection model, the main components of the experiment setup, and foreseen
interactions with the QoE Optimizer to enable actuations to remedy the noisy situation. Note that
the ‘noisy neighbour’ approach is intended to be integrated within the SliceNet Smart City UC.
Moreover, the actuation part, although explained, will be elaborated in future iterations of the
Actuation Framework thus, as such, its implementation is not considered in Section 4.

The Smart City UC will implement the Intelligent Public Lighting system in the city Alba Iulia [11], in
Romania. This use case will be deployed as a NS composed by a set of network elements (VNFs),
components and specific applications. This NS ensures the connection of an enormous number of
devices, simultaneously across the network. On the other hand, the network functions composing
the NS will be deployed in virtualized environments.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 43 of (74)

In this context, the ‘noisy neighbour’ detection model will be used to detect if the perceived Quality
of Information (QoI) (that, is the quality of information received for the machine-to-machine
communication) is degraded due to the ‘noisy neighbour’ problem or not, since most elements of the
network interconnecting the devices will be deployed in a virtualized environment.

3.3.2 Scenario

The ‘noisy neighbour’ model aims to detect the status of the supervised VNF by observing a set of
QoS measurements and then applying ML algorithms to predict the VNF status. The process to
generate the ‘noisy neighbour’ model includes the following steps:

1. Measuring QoS: in order to generate and collect the dataset, we set up an environment on the
OpenStack platform where we measure QoS metrics of a specific VNF (e.g. a Voice over IP (VoIP)
application) using a monitoring system (i.e. Prometheus [12]).

2. Generating data of different experimentations: we experiment a situation where the VNF is
stressed by another VM located in some server in order to simulate the noisy case. Then we
experiment the situation where the VNF is stressed by another VM hosted in another server to
simulate the overload case. The normal case corresponds to the situation where the VNF is not
stressed.

3. Training Set: QoS metrics collected from each experiment were labelled according to the fixed
situation (e.g. noise, normal…). The training set was extended with new data by applying the
oversampling technique to avoid having an unbalanced dataset.

4. Learning and validation: a classification ML algorithm was applied on a learning dataset and we
validated the generated model using test data.

3.3.3 Architecture and description of components

To apply our approach, firstly we need enough data to achieve reliable predictions. To generate and
collect the dataset, we set up an environment on real cloud infrastructure running OpenStack
software [13]. For our testbed, we used two servers with three VMs. In one server, we deployed an
open source VoIP VNF-based application in a single VM with one core and 2 GB of memory. Another
VM acting as a noise generator was deployed in the same server as the VNF to stress and to generate
noise to the VoIP VM. The noise generator VM was deployed occupying the rest of the CPU of the
physical server. In the second server, a load generator [14] is deployed and configured to initiate calls
to the VoIP application (see Figure 27). The Prometheus server collects metrics from the QoS sensor
(node exporter) deployed in the VNF, and then stores them locally in a QoS metrics database. The
observed data will then be used, after applying pre-processing techniques, as a training data for the
training phase. Note that the pre-processing step used in our case consists in removing incorrect data
formats, missing data and errors while capturing the data. The pre-processing includes also the
oversampling to create synthetic observations of the minority class.

To evaluate the performance of the trained model, we use the following metrics: accuracy,
classification error, sensitivity, specificity, false positive rate and precision. The generated model is
then used for the run-time phase to predict the VNF status in real time. As depicted in Figure 27, the
‘noisy neighbour’ detection model retrieves periodically QoS metrics from the Prometheus server
and then requests for correction actions (actuation), based on the predicted VNF status. In this
regard, VNF scaling or migration are contemplated as potential actuations, for which the QoE
Optimizer would serve as the central point of coordination, contacting the Orchestration Plane to
perform the desired action.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 44 of (74) © SLICENET consortium 2019

Figure 27 Experimental setup for the ‘noisy neighbour’ PoC

Figure 28 provides a potential workflow for this, highlighting the interactions between the QoS
sensor, the ‘noisy neighbour’ model, the QoE Optimizer, and the orchestrator. The trained model for
the ‘noisy neighbour’ detection makes regular requests to obtain a sample of the QoS metrics from
the QoS sensor through the monitoring system. This data will be used as an input of the ML model to
predict the status of the VNF. Three cases are possible:

• If the predicted status is normal, the ‘noisy neighbour’ model continues to request samples from
the QoS sensor;

• If the predicted status is noise, the model requests, through the QoE optimizer, to migrate the
VNF to another server.

• If the predicted status is overload, the ‘noisy neighbour’ model asks the QoE optimizer to perform
the scale -up action and subsequently the actuator executes this action through the orchestrator.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 45 of (74)

Figure 28 Actuation workflow for noisy neighbour detection

3.4 QoE classification from QoS metrics

3.4.1 Demonstrated functionality

The objective of this PoC is to demonstrate the ability to estimate QoE, as perceived by the vertical
NS user, by applying cognitive methods to analyse network-level metrics collected by the slice
provider. The assumption is that the slice (service) provider can measure various QoS metrics;
however, does not have full information on the actual QoE the vertical is getting. Therefore, it must
estimate the QoE from the measured QoS metrics. We employ ML to learn the QoS relationship to
QoE through training with labelled examples. The learned data can be utilized at slice run-time to
predict probable SLA violations and trigger corrective measures. Following the SliceNet data-driven
operations approach, the model is deployed as part of the slice to generate an Estimated-QoE metric
from monitored QoS KPIs. This metric is then consumed by slice control functions to trigger control
and/or management actions required for proactively maintaining the service-level QoE, before any
degradation affects the vertical.

This approach is intended to be integrated into the SliceNet eHealth UC and exercises several
SliceNet workflows; including, E2E service cognition, monitoring, and QoE feedback. The PoC is
focused on the QoE KPI of E2E latency.

3.4.2 Scenario

The scenario for this PoC includes the following steps:

1. Measuring QoE – in order to develop our approach, we created a controlled environment, where
we can measure both network QoS parameters and application-level QoE, e.g. response time. We
use a web service (WordPress) and measure the service level from the client perspective. The QoE
is defined as a threshold on the average download time of the desired WordPress content. The
application is created on two Kubernetes (K8s) container clouds deployed through the IBM ICP

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 46 of (74) © SLICENET consortium 2019

service [15]; the client is on one cluster and the application on the other. The QoE was measured
using JMeter [16].

2. Generating different quality of experiences – we generate “other” network traffic on both
clusters using a stresser application that we have implemented. The stresser creates multiple
containers and generates controlled traffic between them using iperf [17].

3. Measuring QoS – under our simulation model assumptions, the slice service provider can only
measure local metrics within its slice. In our environment, we limited the QoS measurements to
the K8s cluster that runs the WordPress service; namely, there are no metrics from the client
cluster. The measurements are performed through SkyDive [18] flow capturing.

4. Training Set – QoS metrics from each experiment iteration are matched against the QoE
measurement by time (wall-clock). For each iteration, we collect measurements only in the
middle of the experiment window to remove the effect of end conditions (such as noise
associated with creating the stresser containers). A validation set is created in a similar way.

5. Learning – We apply classification ML to infer the measured QoE class from the collected SkyDive
metrics.

6. Model Validation – The model is validated against the validation set.

3.4.3 Architecture and description of components

ICP K8S Cluster 1 ICP K8S Cluster 2
WordPress

Service
WordPress

Client
request

response

Stress
Node

Stress
Node

Stress
Node

Stress
Node

JMeter

SkyDive

Training
Set

Validation
Set

Model
Training

Model
Validation

QoE
Metrics

QoS
Metrics

Stress
Node

Stress
Node

Figure 29 Experiment setup for QoS to QoE classification

The PoC experiment setup is described in Figure 29. K8s Cluster 2 corresponds to a managed slice,
where the slice provider collects QoS metrics (through SkyDive) in order to manage the slice QoE.
Stresser nodes generate controlled traffic to vary the E2E service behaviour; namely the QoE of the
client. Actual service-level E2E QoE metrics are collected (by JMeter) and provided by the vertical
(service user) for model training and validation. A ML classification process learns a QoE sensor
model that estimates E2E QoE from measured QoS metrics. The model is then validated.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 47 of (74)

3.4.4 QoE derived from Client Application Response Time

Figure 30 QoE derived from Response Time

The POC experimental set up derives the application level QoE metrics by monitoring the Wordpress
client’s response time with/without stress. Figure 30 illustrates that there is significant degradation
to the download time of Wordpress pages when the background stress is applied.

3.5 RAN optimization

3.5.1 Demonstrated functionality

The performance of sliced services significantly depends on the RAN capabilities and functionalities.
Managing the RAN effectively and optimizing its capacity to maintain high QoS for the slices requires
cognitive control and management decisions, customized to the network slices for meeting their
desired service-based performance objectives. The goal of the RAN optimization is to demonstrate
how to provide such cognitive control and management over SliceNet’s RAN to optimize its
functionalities. To this end, we apply the DDCM approach, described in Section 2.3.4, over the
SliceNet’s RAN to actuate cognitive control and management to the RAN domain, while it can be
extended to other domains too.

3.5.2 Architecture and description of components

To apply the cognitive plane containing the DDCM over the RAN, demonstrating how cognitive
network control and management can be achieved in the RAN control domain, a paradigm
architecture is depicted in Figure 31.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 48 of (74) © SLICENET consortium 2019

(a) (b)

Figure 31 Integration of the DDCM with a RAN. (a) Architecture of cognitive RAN control and (b)
Example of DDCM integration in SliceNet testbed

It can be seen that the NG-RAN [19] run-time operations and control decisions are instructed by the
RAN controller, which provides a first platform-dependent abstraction for a base station. This
abstraction is used by domain-specific C-Apps to perform slice-specific control logic (e.g. radio
resource allocation) and expose the monitored or measured RAN status (e.g. link quality). In order to
expose cross-domain C-Apps, a second-level of abstraction is exposed through a global network
controller to unify the monitoring, control and management operations across different technologies
and domains (e.g., RAN and CN). As a result, any single-domain C-Apps can open their data and API
towards the Cognition Plane via the global network controller, based on those the cognitive C-Apps
operate. Using the Cognition Plane as a third high-level of abstraction, cognitive C-Apps
autonomously derive monitoring and control decision actions to meet slice-specific optimization
goals, and actuate such actions in the network elements by means of local domain controllers, e.g.,
Software Defined Networking (SDN) controllers.

3.5.3 Scenario

We analyse the described cognitive RAN by considering a video streaming use-case on the top of the
OpenAirInterface (OAI) [20] and Mosaic5G [21] platforms (Figure 31 (b)). We will show how the
combination of knowledge of the radio resource and spectrum management information can be used
in a video optimizer that enforces the objective to maximize a user’s video quality while running in an
eNB in low-power mode. The policy is to maintain the SLA, i.e., a downlink stream of at least 10
Mb/s. For this, we use information from the Spectrum Management Application (SMA) [22] (namely
transmission power and operating frequency, and bandwidth) and Radio Resource Management
(RRM) C-Apps (namely downlink throughput). We also use real-time link quality parameters which
are monitored by using the ElasticMon (the monitoring framework described in Section 6.1).
Especially the first parameters from the SMA can easily conflict with other domains, like
administrative (the operating frequency of cells of another operator) or regulatory (maximum
allowed transmission power). The throughput represents the data reflecting user satisfaction and on
which network decisions are based, whereas the spectrum management parameters are control

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 49 of (74)

parameters to influence the network state. The aforementioned data and control parameters are fed
into the knowledge base. Through it, the video optimizer is able to track the network state and
predict new events. In particular, it will control the RAN through appropriate actions in order to
satisfy the active users.

3.6 Anomaly detection

3.6.1 Demonstrated functionality

In Deliverable 5.2 (Section 6.4) [3], a ML model for anomaly forecasting has been presented. The
model was proposed as an intelligent QoE sensor that allows prediction of future QoE using QoS
metrics. The model has proven its efficiency on external network data in order to predict future
anomalies in an LTE RAN. Apart from QoE prediction, the model also allows to guarantee a QoS-
aware slicing, which attempts to realize network slicing with guaranteed network-layer QoS.

As a next step, the forecasting model will be applied to the SliceNet eHealth UC. Within the eHealth
scenario, patient data are continuously collected and streamed once the emergency ambulance
paramedics arrive at the incident scene. In order to enable more intelligent decision tools for the
paramedics, the availability of real-time video streams to the emergency department is a
requirement. These real-time streams may enable clinical professionals to remotely monitor the
patient for conditions that are not easily sensed, such as skin pallor and patient demeanour. For this
reason, the videos to be delivered need to have an ultra-reliable low latency communication across
the network (30 ms to 100 ms latency E2E).

In order to maintain the low latency condition, the anomaly prediction model can be used. By
forecasting the latency, the network maintainers may be alerted in advance and the issue could be
solved before it occurs. For example, the QoE Optimizer may receive the outputs from the model and
trigger corresponding actuations to remedy the situation. On the one hand, this will allow
maintaining the perceived quality of the sliced services, while on the other hand, it can be used as an
intelligent QoE sensor for the eHealth UC since, in Deliverable 5.2, the perceived latency is defined as
a QoE indicator.

3.6.2 Scenario

The model aims to forecast the latency in the prediction horizon by observing a set of QoS
measurements. The latency prediction scenario for the eHealth UC is summarized by the following
steps:

1. Labelling the data according to a threshold on the latency attribute. Since in the requirements,
the latency should be between 30 ms and 100 ms, the threshold should be fixed to 100 ms. Thus,
latency that is bigger than 100 ms in the prediction horizon should generate an alert. The latency
is considered normal otherwise. The prediction horizon depends on the data and the
requirements for actuation.

2. Dealing with missing values by replacing each missing value by the mean of the corresponding
QoS metric over all the dataset.

3. Applying a standardization on data in order to change ranges of values for the different metrics.
4. Over-sampling the dataset in order to have more balanced data.
5. Applying smoothing for each QoS metric in order to transform them to functional data.
6. Applying a principal component analysis for multivariate functional data for the resulted

smoothed dataset in order to reduce the dimensionality of the data.
7. Classifying the training data composed of the principal components of each QoS metric by using a

random forest algorithm.
8. Validating the model by using with two techniques: (1) validation over a test data and (2)

validation with a cross-validation.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 50 of (74) © SLICENET consortium 2019

The implementation of the anomaly prediction model is achieved using R language [23].

3.6.3 Architecture and description of components

Figure 32 describes the architecture of the latency prediction model for the eHealth UC. The UE
collects measurements about the network. These measurements serve as training data. After the
labelling, the anomaly prediction model will learn the patterns of normal and of suspicious
behaviours of the QoS metrics regarding the latency. A trained model is produced. This model is
usable for the exploitation phase in order to forecast the latency for new measurements collected by
the UE. Depending on the prediction, the QoE Optimizer, as a client of the prediction data, may
solicit to the orchestrator or the CP corresponding re-configurations in order to correct the latency
issue in advance, which allows avoiding service degradation and a bad QoE perceived by the medical
multi-disciplinary team involved.

QoS/
UE Labelling

QoE sensor
(Anomaly

prediction model)
Trained
model

predictionTrained
model

Orchestrator

Control
plane

QoE optimizer
(actuator)

Real time
data

Training
data

Training phase

Exploitation phase

Actuation

Figure 32 Architecture of latency prediction model for eHealth UC

Such an actuation will take place only if the model has predicted a high latency in the prediction
horizon and the video to be transmitted in this prediction horizon is categorized as urgent content,
such as telemedicine. Normal video streams, such as a regular video call, may be more tolerable to
latency. Once the model predicts a high latency for an urgent video stream, three scenarios for
actuation are possible as illustrated by the workflow presented in Figure 33. If the RAN is congested,
some non-essential layers of the video may be dropped (for instance, re-configuring the video
encoding VNF through the CP functions). Hence, by consuming fewer resources, the QoE can be
maintained. However, if the RAN is not congested, the actuator may scale relevant VNFs in order to
enhance their resources allocation. Note that these describe potential actuations that may be
exercised thanks to the capabilities exposed by the QoE Optimizer module of the Actuation
Framework (see Section 2.4.3). Hence, a high-level design and a workflow are presented.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 51 of (74)

UE

UE

QoE_sensor

QoE_sensor

QoS_optimizer

QoS_optimizer

control_plane

control_plane

Orchestrator

Orchestrator

get sample (QoS metrics)

send sample

predict latency

if high latency and urgent video -- do actuation

if RAN congested -- drop non-essential video layers

drop layers

scale in VNF

scaling-in

scale up VNF

scaling-up

Figure 33 Actuation workflow for latency prediction for eHealth UC

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 52 of (74) © SLICENET consortium 2019

4 Vertical-informed actuators workflows

4.1 Scope and Preliminary Implementation
As mentioned previously, the scope of the actuators within the overall SliceNet architecture is the
maintenance of the QoE of deployed NSes. To achieve so, the actuators framework relies in
information gathered from both the monitoring sub-system and feedback from the verticals. Then,
after having analysed the gathered information, it triggers the necessary (re-)configurations of the
provisioned NS to achieve the desired quality levels. In this regard, two main levels of actuation have
been considered: actuations at the E2E level (E2E NS) and at the segment/NSP level (NSS). Thus,
depending on the monitoring data gathered, the actuation framework may enforce
(re-)configurations on specific NSSes within the E2E NS or at the provisioned NS as a whole.

To enforce the desired actions, the actuation framework follows a workflow-based approach, ruled
by a policy system, for which the actions are achieved through the collaborative efforts of multiple
components of the SliceNet architecture across multiple planes This approach is followed at both
DSP and NSP levels, with WP5 efforts being focused in the DSP level (E2E perspective). As such, only
in the case of actuation at traffic level, which relates to more NSP-oriented actuations, a specific
actuator has been developed, which directly operates with the traffic flowing through Open Virtual
Switch (OVS) instances at the provisioned data-path for the slices. Hence, while the generic actuator
framework works in a workflow-based approach, since actions need to cover multiple aspects across
the layered SliceNet architecture, for specific actions that require tight interactions with lower level
elements of the slice, dedicated functions working as actuators are being deployed.

In this regard, for the first preliminary implementation of the actuation framework, three different
actuators have been developed, exercising the different aspects of the actuation framework. While
for the generic workflow-based approach, two different actuators have been considered: QoS
modification and NSP sequence modification. For both of them, the QoE Optimizer and the PF are
the main components that enable their operations. Meanwhile, to consider specific function-based
actuators, an OVS-based traffic classification actuator has been designed and prototyped by
extending the functions in the standard OVS. In such a case, the actuator enforces specific traffic
control rules to the slices at the flow level thanks to the extended functions ingrained directly onto
the OVS instances along the provisioned data-paths of the concerned slices. Table 3 provides a
summary of the considered actuators, their scope and targeted scenario as well as the main involved
components across the logical architecture.

Table 3 Summary of developed actuators

Name Short description Approach Scope Main involved
components

QoS
modification

Modify QoS parameters
associated to the E2E NS or
specific NSSes

Workflow
-based

Slice;
sub-slice

QoE optimizer; Policy
Framework; QoE plugin;
QoS Control CP function

NSP
Sequence
Modification

Modify the sequence of NSPs
(thus, the NSSes) in which E2E
NS is being supported over

Workflow
-based

Slice QoE optimizer; Policy
Framework; QoE plugin;
Service/Slice
Orchestrator

OVS-based
traffic
classification

Control the user traffic on the
data plane, based on extensions
to OVS to enable the handling of
5G and multi-tenancy traffic

Function
-based

Flow;
(sub-)slice
(based on
aggregated
flows)

QoS Control CP function

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 53 of (74)

The following subsections will provide more details about the specific workflows and functionalities
exercised through these actuators, specifying also their architecture and current preliminary
implementation and how they relate to the overall SliceNet architecture and UCs.

4.2 QoS Modification

4.2.1 Demonstrated functionality

One of the main contributors to unsatisfactory QoE levels is the quality of the underlying
virtual/physical infrastructure supporting the NS, that is, the QoS of NSSes composing the E2E NS. For
instance, an insufficient amount of bandwidth provisioned in one or multiple segments spanning
across the E2E NS can degrade the perceived QoE. Under such circumstances, it is essential to re-
configure underlying QoS parameters to regain desired quality levels in the NS as a whole.

Given this goal, the QoS Modification actuator provides the necessary mechanisms to enforce QoS
modifications in both NSSes residing at different NSPs (in selected groups or all of them as a whole)
as well as the interconnectivity between the different NSSes. More specifically, the QoS Modification
actuator exploits the capabilities offered by the QoS Control SliceNet CP function [24] at the NSP
level, which allows for modifying the provisioned bandwidth and the configured priority of deployed
slices in specific network segments (e.g. modify the bandwidth allocated to a RAN NSS).

Such functionality is triggered on-demand by the QoE Optimizer, which acts as the central piece for
all workflow-based actuators. The actual trigger for the actuator relates to the conditions stated by
the policies disseminated from the PF, which tie the monitoring information received by the QoE
Optimizer (i.e. the event and condition) with the desired actuation (i.e. the action). When the stated
condition is met, the QoE Optimizer request for a QoS modification operation in the affected
NSPs/NSSes through the API exposed by the QoS Control at the SliceNet CP, prior retrieving the
specific instances of the function tied to each NSS through the CP Service Registry (CPSR). Another
contemplated source for the actuator trigger is the feedback provided by the vertical user, which
then becomes another source of monitoring to be contrasted with the conditions stated by active
policies. In this case, such feedback is gathered through a plugin developed in the context of the P&P
controller [25]. It allows the vertical to report its perceived QoE and, as a consequence, trigger the
actuator if any of the policies present in the QoE optimizer states as a condition a bad vertical’s QoE
and a QoS modification as action.

The QoS Modification actuator is intended to be integrated in the overall SliceNet framework as an
enabler for the E2E service/NS optimization loop, exercised across the layered management and
control architecture. Such loop will be then exploited for the vertical UCs that require modifications
on the provisioned QoS at the E2E NS or NSS level as means to guarantee optimal QoE levels for the
supported service. A preliminary PoC exercising such functionality has been presented in [26], also
demonstrating the interaction with an Opens Source MANO (OSM) orchestration framework.

4.2.2 Scenario

The general scenario that exercises the workflow of the QoS Modification actuator includes the steps
depicted in Figure 34. In summary, the steps are:

1. Network slice monitoring: the different counters and metrics that relate to the quality of the
multiple NSSes deployed across the different NSPs are gathered from their corresponding
monitoring systems and persisted at the DSP level data-store. Although not depicted, the
feedback gathered from the vertical through the QoE plugin follows the same treatment, that is, it
will be stored at the DSP data-store for its later consumption by other applications/modules.

2. End-to-end slice/service metrics/indicators calculation: following the Data-Lake approach
presented in Section 2.2, the persisted monitoring data coming from the different NSPs is
collected by an aggregator application (DSP aggregator), which utilizes the multiple single metrics

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 54 of (74) © SLICENET consortium 2019

to calculate E2E service/NS quality metrics. Then, the elaborated E2E metrics are stored back at
the Data-Lake (DSP data store). These metrics are the ones that will be later consumed by the QoE
Optimizer for deciding if an actuation is needed or not.

3. End-to-end QoS parameters modification: this third macro-step is the one involving the QoE
Optimizer as central point of the actuation workflow and thus, the QoS Modification action. Once
the metrics related to the quality of the E2E NS are received/consumed, the QoE Optimizer checks
the obtained metric against the events and conditions of currently configured policies for the NS.
If it matches with one of the events, the condition is being violated (e.g. bandwidth lower than
certain value) and the configure action for the policy is a modification on the QoS configured for
the NS, the QoS Modification actuator is triggered. This requires first to retrieve the information
of the NSPs which are affected/will need to enforce a QoS modification from the DSP
Orchestration system. More specifically, given the gathered information, the QoE Optimizer
requests for the contact point (i.e. the CPSR) and the identifier for the NSSes configured at the
NSPs for which the conditions of the policies are not met. Then, it requests in a loop, for each
NSP, the instance of the QoS Control CP function of the NSS. Once obtained, it requests for the
actual modification of the desired QoS parameter (bandwidth or priority).

E2E Service/Slice Optimization

E2E Service/Slice Monitoring
(covered in an independent workflow)

NSP_1
Data Store

NSP_1
Data Store

NSP_N
Data Store

NSP_N
Data Store

DSP
Data Store

DSP
Data Store

DSP
Aggregator

DSP
Aggregator

DSP
QoE Optimizer

DSP
QoE Optimizer

DSP
Service Orch.

DSP
Service Orch.

NSP
CPSR

NSP
CPSR

NSP
QoS Control

NSP
QoS Control

Network Slice Monitoring (from NSPs)

Consume network slice
metrics/indicators from
each NSP

1 Consume NSP_1 Network Slice Metrics

2 Consume NSP_N Network Slice Metrics

E2E Service Metrics/Indicators Calculation

Network slice data is
aggregated to E2E Service
metrics/indicators according
to initial, catalog-driven
configurations

3 Network Slice Metrics Req

4 Network Slice Metrics Rsp

5 Calculate E2E
Service Metrics

Produce E2E Service
metrics/indicators
based on batch and/or
streaming calculations.

6 Persist E2E Service Metrics

E2E Service/Slice Optimization Process: E2E QoS / QoE Parameters Modification

Change QoS parameter value
at E2E level (Whole NSS sequence)

7 Slice Metric Notification

Check if the notified metric (E)
matches a pre-configured
policy condition (C)

8 Check Policy List

Check the policy details
and enforce the correspondent
action (A)

9 Enforce Policy

E.g. A requires QoS parameter modification
in all the NSSs (along the NSP/Segment sequence)

loop [all NSPs]

CPSR location, etc.

10 Get NSP Information

11 Request QoS CPS

12 Modify QoS Parameter

Figure 34 QoS Modification actuator general workflow

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 55 of (74)

For the specific PoC being reported, the described workflow still applies, some simplifications to the
whole actuation workflow are made. First, the employed source of monitoring to trigger the
actuation is not gathered from any database/store but directly fetched through the QoE plugin. In
this regard, the trigger for the actuation is the feedback reported by an external user (i.e. the
vertical) through the capabilities exposed by said plugin. Note, however, that for the generic
actuation workflow, such feedback could be an integrated part to the DSP Data Store, serving as
input metric for the QoE Optimizer. A predefined policy stating that when the vertical’s feedback
reports a bad quality feedback (the feedback is reported in a String format), an increase of the
bandwidth of the underlying configured NS (i.e. a QoS modification) is needed has when already on-
boarded onto the QoE Optimizer instance. Lastly, a mock-up version of the QoS Control CP function is
utilized (no CPSR is assumed), which contacts directly with the controller of the segment in which the
NSS has been deployed. Aside from these differences, the generic workflow is exercised, achieving an
increase of the bandwidth on the NS, thus, modifying its configured QoS.

4.2.3 Architecture and description of components

The general architecture of the QoS Modification actuator follows up the functional/logical
architecture explained previously in Section 2.4, combining both the QoE Optimizer and the PF. To
demonstrate the functionality of the actuator, a simplified experimental set-up has been deployed,
for which Figure 35 depicts the main components and technologies employed.

Pod

QoE
plugin

P&P Controller
Instance

REST
Interface

Virtual Machine

Container

QoE Optimizer

Event

Static pre-configured policy

ActionCondition

QoE
feedback

Increase
Slice BW
in RAN

Feedback==
“Very Bad”

QoE Feedback

SliceNet CP
Emulated Infrastructure

QoS Control

FlexRAN

Figure 35 Experimental set-up for QoS Modification actuator

In essence, the experimental set-up consists in a Kubernetes pod in which an instance of the SliceNet
P&P controller has been deployed, together with an instance of the QoE plugin. Thanks to the
combination of both, the capacity to express the experimented QoE in regards of the NS deployed is
exposed towards an external user, which may indicate said quality ranging from “Very Bad” to “Very
Good”. This feedback is collected by an instance of the QoE Optimizer, which has been containerized
in a Docker container inside a VM. AS said previously, for the experimental evaluation of the
actuation workflow, a static pre-configured policy is present in this instance of the optimizer, with
the concrete details of the policy being depicted in the figure. The policy follows the aforementioned
ECA model explained in Section 2.4, dictating that if the received feedback matches a “Very Bad”

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 56 of (74) © SLICENET consortium 2019

value, an increase on the NS bandwidth at the RAN segment (NSS) must be performed. In this regard,
an emulated infrastructure consisting in a mock-up version of the QoS Control CP function plus a RAN
network segment based on Mosaic 5G FlexRAN [27], has been deployed. More specifically, in order
to emulate the behaviour of the Northbound API of FlexRAN, the Software Development Kit (SDK)
provided by Mosaic 5G Store has been employed. Through this emulated infrastructure, an initial
configuration of a RAN slice is performed. Then, once the external user provides a feedback and, in
the case that it matches with the value stated by the policy, the QoE Optimizer enforces an increase
on the RAN slice bandwidth contacting the QoS Control CP function.

4.2.4 Design of components

Having presented both the overall QoS Modification actuator workflow and the architecture
employed to exercise it, in this section we will elaborate about the internal design and
implementation of the QoE Optimizer module. Note that the implementation of the module is
common for all actuators that are exercised through the QoE Optimizer, with differences resting on
the source of the external stimulus that triggers the actuation, the concrete instance of the policies
that have been disseminated and are active and the type of actuation as well as its main enabler (CP
functions or orchestrator). Having said that, Figure 36 depicts a diagram of the software architecture
and design followed in the implementation of the QoE Optimizer module.

Slice (QoE) Optimizer

Optimizer

Sensor Policy

Event

Condition

Action

Actuator
Control

QoS IPC NF
Conf…Monitoring

DB

Query QoE

1

1

*
1

1

*

1

1

*

1

*

SliceNet CP

Policy
Framework

Set policies

CP configuration

P&P

QoE Feedback

Management &
Orchestration

CPF Control
*

1

Instantiation

NSP

Raise actuation
to DSP Orchestration

Control

1

E2E actuation
request

Figure 36 Software design and class diagram of the QoE Optimizer

The module has been developed as a Java application, with several classes implementing its main
functionalities. The core of the QoE Optimizer is the Optimizer class, which ties together the current
active policies for the NS, the actuation control and the external stimulus which trigger the
actuations. Specifically, a list of policies is stored in this class and in the case that an external stimulus
is received, the Optimizer will loop through all stored policies to determine if an actuation is needed.
In this regard, the Sensor class is the one that models such external stimulus, which may come from
three distinct sources: 1) monitoring information from one or multiple QoE/QoS sensors; 2) feedback
from the vertical; and 3) request/petition from one of the NSPs in which the E2E NS is sustained. For
each active policy, an instance of the Sensor class is created, which is the responsible to gather the
values associated to the stimulus, either being subscribed to a Data-Lake source or via a direct
interface, depending on the implementation approach followed by the external sources of

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 57 of (74)

information. For every gathered value, the Sensor generates an event which is captured by the
Optimizer class, passing down the value and the type of event. This becomes the source for the
comparison with the list of policies mentioned before.

Each policy is modelled by the Policy class, which, in turn, employs an instance of the Event,
Condition and Action classes to represent the elements of the policy, following the ECA model
mentioned previously during Section 2.4.2. Hence, when an event generated by a sensor is captured
by the Optimizer, this is checked by the corresponding Event in the Policy. If the type matches and
the value violates the condition stated by the Condition, then the Action contacts with the Actuator
Control, which is the responsible to coordinate all the actuations raised from triggered policies. Each
Action carries the type of actuation that is needed as well as its parameters. According to the type,
the Actuator Control then contacts the Orchestration Control, responsible for all actuations that
require the intervention of SliceNet Orchestration plane (e.g. modify the sequence of NSPs), or the
CPF Control, responsible for all actuations that require the intervention of SliceNet CP, as is the case
of the QoS Modification actuator. For this last group of actuations, several classes are employed to
model the different CP functions available (e.g. QoS, IPC, NF Conf). Each one of them has a list of the
possible operations that the corresponding CP function can implement as well as the types of
parameters that are expected. Moreover, they are also the responsible to contact the CPSR in order
to retrieve the CP function instance of the slice to enforce the desired action.

In terms of interfaces design, Figure 36 also depicts the expected interfaces with the main
components for which the QoE Optimizer requires a communication with them. In this regard, we
have several interfaces to gather the information related to the stimulus that trigger the policies as
well as an interface between the QoE Optimizer and the PF to allow for the
dissemination/update/deletion of policies. Moreover, interfaces between the QoE Optimizer with
the main points of enforcement for actions (i.e. the Orchestrator and the CP) are also designed.
Lastly, an interface between the QoE Optimizer and SliceNet management plane (particularly, with
the SLA/QoE Manager) is also designed in order to allow for the life cycle management of the QoE
Optimizer instance. Having said that, current version of the QoE Optimizer has implemented the
interfaces between the QoE plugin and the Optimizer as well as the interface with the control plane,
which are reported in Section 5. The rest of the interfaces will be developed in further iterations
following the progress of all involved components.

4.3 NSP Sequence Modification

4.3.1 Demonstrated functionality

An E2E NS, offered by a DSP, is usually composed by several NSSes which, in turn, may be supported
by different NSPs, each one having its own control and management system. Thus, each NSP is
responsible to maintain the quality and reliability of the NSSes deployed in its infrastructure.
Nevertheless, depending on the scenario, it may happen that despite the corrective measures
employed by the NSP to overcome a faulty or underperforming situation, it is not possible to
maintain the desired quality levels or the reliability of the NSS, thus affecting the DSP E2E NS. In such
an event, if the actual NSP cannot resolve the faulty/degraded NSS, it becomes necessary to replace
the actual NSP by another available NSP that can replace that faulty NSS by a healthy NSS, thus
maintaining the SLA of the E2E NS offered to the vertical. Such replacement should consider the
presence of important/sensitive data that was at the previous NSS before the abnormal situation. As
such, a transfer of this information (together with the re-provisioning of the NSS at another NSP),
may be also necessary to remedy the situation.

The NSP Sequence Modification actuator is intended to execute the necessary actions to enforce
changes on the sequence of underlying NSPs in which the E2E NS sustained. The trigger for such
action may come from monitoring information or an explicit trigger from a degraded NSP. It may be
also the action associated to a policy related to the feedback received from the vertical, gathered

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 58 of (74) © SLICENET consortium 2019

thanks to the QoE Optimizer. Regardless of the source, once triggered, the actuator will contact
SliceNet Orchestration plane requesting for a change on the sequence of employed NSPs, indicating
concrete NSPs to avoid or desired NSPs to be employed in the new sequence. Such parameters can
be inferred directly from the monitoring data or NSPs triggers; alternatively, can be the result of
some optimization algorithm, which determines the new sequence to be followed according to a
stated goal. The need to involve the Orchestrator in this actuator rises from the necessity of having a
detailed view of the overall picture, since changes on the sequence of NSPs are delicate actions
which can require the intervention of multiple elements at different layers in a
coordinated/orchestrated way. Note that such changes of involved NSPs may also happen in
scenarios which require mobility across the E2E NS (e.g. the eHealth UC). In such scenarios, it is also
necessary to involve the Orchestration plane so as to successfully enable the cross-over between
domains in an (almost) seamless way, rearranging the sequence of NSPs for the E2E NS.

The NSP Sequence Modification actuator is intended to be integrated in the overall SliceNet
framework as an enabler for the E2E service/NS optimization loop, exercised across the layered
management and control architecture. Such loop will be then exploited for the vertical UCs that
require high-reliability on the provisioned NS or the ones which require mobility of the NS end-
points, thus requiring on modifications of the NSPs that are being crossed by them.

4.3.2 Scenario

The general scenario that exercises the workflow of the NSP Sequence Modification actuator includes
the steps depicted in Figure 37. Since the principles of operation are the same in all workflow-based
actuators which have the QoE Optimizer as central piece, the workflow is also divided in three
macro-steps, similar to the QoS Modification actuator, for which the first two are in essence the
same, that is, monitoring from multiple NSPs and calculation of E2E service/NS metrics. Only the
third macro step has some slight differences, as the action to be enforced in this actuator is different.
Particularly, in this case, once a metric notification stating that a specific NSP is unreliable or that is
violating some performance requirements, the actuation is to modify the sequence of involved NSPs
on the E2E NS delivery, avoiding the NSPs which have been marked as faulty/underperforming. As
said before, to enforce such action, the QoE Optimizer contacts the Orchestrator at the DSP level,
which will take charge of orchestrating the sequence modification, taking charge of all cross-layer
dependencies.

As for the first iteration of the actuation system being reported, the overall functionality is not being
exercised, since the SliceNet Orchestration sub-system is currently being developed. In this regard,
the focus has been on the design of an algorithm to determine the choice of NSPs to be selected for
the modified NSP sequence. The designed algorithm will be integrated in next iterations of the QoE
Optimizer, with the final goal to be integrated in SliceNet Orchestrator, as to have an overall system
view instead of the per-NS view provided by the QoE Optimizer. Given that, next we detail the main
scenario, scope and goal of the designed algorithm.

In a scenario in which a reliable NS must be provided, it is essential to first determine the reliability of
each of the NSPs. The designed algorithm assumes that a reliability score is ready to be consumed
from the DSP inventory, with said metrics/score being gathered directly from the NSP or
calculated/predicted through some fault models (similar to techniques reported in Section 3.2).
Given such reliability scores, and the targeted reliability when the slice was requested, the algorithm
determines the set of NSPs for which the product of their reliability scores r (defined as the
percentage of how reliable is the NSP, e.g. 90%), is equal or greater than the targeted reliability,
subject to excluding the NSPs deemed as unreliable. This may be subject to some cost of choosing a
concrete NSP over another as well as neighbouring information among NSPs to guarantee
reachability when substituting an NSP by another. Lastly, the selection of the set is also restricted to
the number of NSSes that must be provisioned to deploy the E2E NS. All of this defines a knapsack

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 59 of (74)

problem, for which the algorithm finds the solution, which is the new NSPs to be employed in the E2E
sequence.

Aside from the abovementioned algorithm, note that the implementation of the core functionalities
of the QoE Optimizer which will allow for the execution of the NSP Sequence Modification actuator
has been carried out (as described in Section 4.2.4), with later iterations focusing on the design and
implementation of the interaction between the QoE Optimizer and the Orchestration plane.

E2E Service/Slice Optimization

E2E Service/Slice Monitoring
(covered in an independent workflow)

NSP_1
Data Store

NSP_1
Data Store

NSP_N
Data Store

NSP_N
Data Store

DSP
Data Store

DSP
Data Store

DSP
Aggregator

DSP
Aggregator

DSP
QoE Optimizer

DSP
QoE Optimizer

DSP
Service Orch.

DSP
Service Orch.

Network Slice Monitoring (from NSPs)

Consume network slice
metrics/indicators from
each NSP

1 Consume NSP_1 Network Slice Metrics

2 Consume NSP_N Network Slice Metrics

E2E Service Metrics/Indicators Calculation

Network slice data is
aggregated to E2E Service
metrics/indicators according
to initial, catalog-driven
configurations

3 Network Slice Metrics Req

4 Network Slice Metrics Rsp

5 Calculate E2E
Service Metrics

Produce E2E Service
metrics/indicators
based on batch and/or
streaming calculations.

6 Persist E2E Service Metrics

E2E Service/Slice Optimization Process: Slice NSS Sequence Modification from DSP Data Store (DSP Monitoring)

- NSP1 not reliable
- NSP1 violating QoS reqts

7 Slice Metric Notification

Check if the notified metric (E)
matches a pre-configured
policy condition (C)

8 Check Policy List

Check the policy details
and enforce the correspondent
action (A)

9 Enforce Policy

E.g. A requires the modification
of the NSS sequence

Avoid NSP X

10 Reconfigure E2E Slice

Figure 37 NSP Sequence Modification actuator general workflow

4.3.3 Architecture and description of components

In this section we will focus on detailing the logical structure and steps of the aforementioned
algorithm as well as the simulation setup employed for its initial validation. Figure 38 depicts the
approach followed by the algorithm to solve the aforementioned knapsack problem. In this regard,
for the first implementation, it is assumed that the goal of the algorithm is to select from a list of
available NSPs, a subset that, when combining their reliability scores, it reaches the targeted overall
reliability, without any consideration in terms of reachability between NSPs. Thus, the only
constraints are to avoid faulty NSPs and to match the size of the list of selected NSPs with the size of
the initial list.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 60 of (74) © SLICENET consortium 2019

Given such constraints, the steps of the algorithm are summarized as:

1. The algorithm reads from an external source the information related to available NSPs. The
assumed information is their identifiers, reliability score and a cost value associated to them. In
this regard, less costly NSPs are more desirable than others. Additionally, other considered inputs
of the algorithm are the targeted overall reliability score, the number of NSPs to be selected as
well as the ones to be avoided. With such information, the algorithm eliminates from the read set
the NSPs marked as unreliable. In general terms, the information related to the NSPs and other
inputs would be accessed from inventories and data-stores at the DSP level, but for the PoC, the
information is accessed by reading a text file where the information has been manually
introduced.

2. The algorithm then computes the ratio between the reliability of each NSP by their cost, since
more reliable options are more desirable as well as less costly ones.

3. The algorithm selects the first NSPs from the ordered set without surpassing the targeted size. In
this regard, the algorithm is designed as a pure greedy algorithm, selecting the solution elements
that have the largest contribution towards the desired goal.

4. As a last step, the algorithm checks if the product of the reliability scores of the selected NSPs is
equal or above the targeted overall reliability. If so, the details of the selected NSPs are exported
in a file text. Specific interfaces to pass the solution towards the Orchestrator for its consumption
will be designed in following iterations.

Algorithm

New NSP sequence:
NSPx, NSPy, NSPz

Input: targeted r
unreliable NSPs
targeted # of NSPsNSP1: id, r1, cost1

NSP2: id, r2, cost2
NSP3: id, r3, cost3

…
NSPn: id, rn, costn

Read and curate
NSP set

1

Compute
reliability per
cost: r/cost

2

Sort NSPs
descending
according to r/cost

3

Select first
NSPs from the

ordered set

4

Check if selected
NSPs can meet
targeted r

5

Figure 38 Logical design for reliable NSP selection in NSP Sequence Modification actuator

Future iterations of the algorithm will also refine the selection of the NSPs (e.g. multi-start,
metaheuristics) to provide a more optimized selection of NSPs, while also accounting for limitations
on the reachability between NSPs or maintenance of still reliable NSPs in the original sequence, that
is, only replacing the ones deemed as faulty.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 61 of (74)

4.4 OVS-based User Traffic Classification

4.4.1 Demonstrated functionality

A “Programmable Software Data-Path” together with a flexible definition of network slices, will allow
controlling traffic in 5G infrastructure, as a means to control the QoS of the slices. This is especially
important in architectures where user mobility and tenant isolation are essential requirements and
have to be supported both at the same time. From the NSP point of view, these requirements are key
aspects and they imply the use of nested encapsulation. It is also necessary to isolate the
performance of different 5G users belonging to different tenants and to isolate the performance of
the different tenants using the same physical infrastructure. In summary, in a 5G scenario, a
“Programmable Software Data-Path” has to offer fine-grained control over 5G flows, allowing slicing
at 5G user-level to provide simultaneous control of users, tenants, and infrastructure.

There are a number of "Programmable Data Paths" available such as FD.io [28], XDP [29],
PACKET_MMAP [30], PF_RING [31], SNABB switch [32] or DPDK [33] but none of these enable fine-
grained capabilities required in a 5G environment such as 5G flow queue isolation and tenant queue
isolation, among others. Meanwhile, OVS has become a de facto standard in SDN/NFV environments
and is the most widely used currently in 5G environments [34]. For this reason, we have chosen OVS
as the data-path software, and enhanced it through extending the source code of the OVS official Git
repository.

Given the above mentioned 5G requirements, the "OVS-based User Traffic Classification" provides
novel mechanisms designed and prototyped in the context of this project to contributing to
controlled performance in 5G traffic:

1. 5G flow specification: Low-level implementable and flexible specification of a 5G Network Slicing
definition according to different criteria such as Tenant or User identifier, and others.

2. QoS requirements: For each defined 5G Network Slice, QoS control is enforced to allow
performance tenant isolation and 5G user isolation.

3. Dynamic configuration of a slice: Change in real time any of the parameters of a 5G Network Slice
definition and its QoS associated, through actuations including setting new bandwidth, redirecting
traffic, dropping traffic, etc.

All these new 5G OVS functionalities have been designed, prototyped and empirically tested. The
OVS software component is ready to be integrated into SliceNet testbeds.

4.4.2 Scenario

This OVS extended software can be controlled by the control plane of the SliceNet framework,
specifically the QoS Control component. Therefore, the workflow for it until that point is similar to
what is presented in Section 4.2.2. The following sequence diagram shown in Figure 39 further
depicts the interactions between the OVS-based technology and primarily the CP modules in
particular the QoS Control for the specific technical UC of creating a new slice definition. As it can be
observed, the communication between the QoS Control (QoS for brevity in the figure) and the OVS
technology is implemented using the interface provided by the Flow Control Actuator (FCA) [24] for
such a purpose. All slice definitions inserted in the OVS actuator remain in the user space as
OpenFlow 1.2+ rules and only become kernel space flows when necessary, thereby achieving a great
improvement in performance in this way. When rules are implemented in the kernel space, they
enforce the slice in the software data path.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 62 of (74) © SLICENET consortium 2019

Figure 39 Workflow sequence for the OVS-based traffic classification

4.4.3 Architecture and description of components

The OVS software has been extended to create this new actuator that allows classification of 5G
traffic. Architecturally, the standard components and interfaces in the standard OVS remain the
same; however, almost all the components in the standard architecture have been extended in order
to allow the new 5G traffic classification capabilities introduced. Figure 40 depicts the extended
functionalities of the different OVS architectural modules and which components are extended with
patches to add the new 5G features.

The new 5G features have been added by extending code, data structures and protocols in each of
the modules required. The OVS architecture is composed of 3 layers: Kernel space, User space and
Management space.

• Kernel Datapath: It keeps both flow and action tables. This module receives packets and performs
actions associated with each flow. If a flow does not match in the flow table, it is sent to user
space.

• User Space Layer: This module keeps OpenFlow Tables. The purpose of this module is to convert
OpenFlow tables into kernel-level flows to achieve high scalability, high throughput and high
performance.

• Management Layer: OVS provides a set of applications to perform the management tasks inside
the different OVS components. Each of these applications offers a command line using which it
manages an OVS switch software.

As shown Figure 40, more than 8 different extensions have been designed and implemented in order
to provide the new capabilities.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 63 of (74)

Figure 40 Architecture and components of OVS-based traffic actuator

4.4.4 Design of components

As indicated in Section 4.4.3, the basic architecture of OVS was not redesigned. On the contrary, the
new requirements for an integration of OVS-based User Traffic Classification actuator into a 5G
architecture have been added by extending functionality of existing modules, modifying data
structures and extending protocols (OpenFlow and Netlink). The innovations made to OVS are briefly
described below:

1. Extract 5G-Key: When a new packet enters the OVS switch, in addition to the current parsing
performed by OVS, a new packet parsing has been designed and implemented. This parsing allows
obtaining information from the most inner headers of the packet, including information about the
stack of nested encapsulations (Protocol and Tunnel identifier).

2. Flow table in Kernel Space (Mini-Flows and Mega-Flows): New fields have been added to the
standard flow definition of OVS. These new fields refer to the information of the inner headers of
each packet as well as the encapsulation stack (Type of encapsulation and Tunnel identifier).
These new fields define what we call the network slice definition in the data path and allows
performing actions over the defined slice.

3. New Actions: For example, a new action intended to copy the Differentiated Services Code Point
(DSCP) value from the inner IPv4 header into the outer DSCP value in order to allow a vertical
control signalling between NSP and DSP.

4. Netlink Protocol: OVS uses the Netlink protocol to communicate between kernel and user spaces.
Netlink messages have been extended to allow the new fields and actions supported.

5. OpenFlow Protocol Extension: The OpenFlow protocol has been extended with new fields and
actions.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 64 of (74) © SLICENET consortium 2019

6. ovs-ofctl (OpenVSwitch OpenFlow Control): This module provides a command line through which
OpenFlow tables can be handled. In this module, it has been necessary to implement new
functionality to:

a. Be able to read, via command line, an OPF specification with the new fields and actions
supported.

b. Be able to build OpenFlow messages containing the new fields and actions to send them to the
daemon in the OVS user space.

7. ovs-dpctl (OpenVSwitch Data Path Control): It communicates directly with the OVS kernel
module, using the Netlink protocol. Therefore, it should be used only in controlled environments
and for experienced purposes. It is not recommended to use ovs-dpctl in real use cases. However,
we have adapted the ovs-dpctl command line interface to add support to the new fields.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 65 of (74)

5 Interfaces and APIs
In this section, we report the main interfaces across functional modules of the MAPE-K loop as well
as external interfaces towards other components of SliceNet architecture which intervene on the
operations described across the deliverable. The focus here is on reporting the interfaces that have
been designed or implemented, leaving the documentation of other interfaces and APIs for future
developments on the overall Cognition Plane framework.

5.1 Policy Framework Interfaces
As referred previously in Section 2.4.2, the ONAP Policy Subsystem will be adopted and integrated in
the project as its PF. The management of the policies is done through a Representational State
Transfer (REST) API and its full documentation can be found on the ONAP’s official documentation
[35]. However only a subset of the API’s endpoints is relevant for this context, as described below:

• createPolicy: creates a policy based on given policy parameters;
• pushPolicy: pushes the specified policy to a PDP (group);
• updatePolicy: updates a policy based on the given policy parameters;
• deletePolicy: deletes the specified policy from the PDP (group);
• getConfig: gets the configuration of a policy based on the given policy name.

In order for the PDPs to receive the policies, they must subscribe policy notifications from the PAP.
The notifications are sent through a web socket in Java Script Notation Object (JSON) format
following a structure as shown in Figure 41.

{
 "removedPolicies":[
],
 "loadedPolicies":[
 {
 "policyName":"com.Config_BRMS_Param_BRMSParamvFirewall.1.xml",
 "versionNo":"1",
 "matches":{
 "ONAPName":"DROOLS",
 "ConfigName":"BRMS_PARAM_RULE",
 "guard":"false",
 "TTLDate":"NA",
 "RiskLevel":"5",
 "RiskType":"default"
 },
 "updateType":"NEW"
 }
],
 "notificationType":"UPDATE"
}

Figure 41 PAP notification example

Upon receiving a notification, the PDP must evaluate the retrieved information and remove or load
the policies in question. If a policy must be loaded by the PDP, its configuration must be retrieved
from the PAP using the getConfig endpoint of the REST API and based on the specified policy name.

5.2 QoE Optimizer CP Interface
One of the main endpoints in which the QoE Optimizer enforces the desired actions is SliceNet
control plane. In this regard, two main groups of operations are required to be performed by the QoE
Optimizer. First, when the actual actuation has been determined, also identifying the function that
needs to be involved, the QoE Optimizer needs to retrieve the instance of the corresponding control
plane function. For this, it needs to contact the CPSR, which will return the instance of the function

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 66 of (74) © SLICENET consortium 2019

associated to the NS. Next, the QoE Optimizer needs to contact the retrieved function to execute the
desired operation (e.g., modify QoS parameters), employing the API exposed by the function.

In this regard, the QoE Optimizer follows the APIs reported in deliverable D4.3 for both retrieving
control plane functions instances from the registry as well as the APIs for each of the functions,
mainly, QoE Control, IPC and NF Conf. The focus of the current implementation has been on the API
enabling the communication with the CPSR and the API exposed by the QoS Control function.
Additional APIs will be implemented in later stages following the development of other planned
actuators.

5.3 QoE Optimizer - QoE plugin Interface
As said previously, one of the main sources of external stimulus that trigger an actuation from the
QoE Optimizer is the received feedback from the vertical. From the QoE Optimizer perspective, this
indicates a bad experience from the user, which may not be exactly reflected on the received
monitoring data in regards of the NS, due to the subjective nature of the perception of the vertical. In
such a case, this mandates for a run-time actuation to remedy potential bad situations (i.e. negative
feedback from the vertical), for which rules (policies) will dictate the action to be applied.

The element that enables this dynamic run-time feedback and, as a consequence, the reaction from
the QoE Optimizer is the QoE Plugin developed in the context of the P&P controller. In the original
development reported in D4.1, the incipient functionalities of the QoE Optimizer where integrated
within the QoE plugin as a single monolithic module. In the current implementation being reported,
both elements (plugin and optimizer) have been separated and an interface to allow for sending the
feedback towards the QoE Optimizer has been developed. The interface is based on REST, with Table
4 summarizing its main details.

Table 4 QoE feedback API details

Endpoint http://<IP>:<PORT>/
IP: address of the QoE Optimizer instance
PORT: port in which the QoE Optimizer is listening for QoE feedbacks

HTTP operation PUT
Description It enables the reception of QoE feedback from the vertical by the QoE

Optimizer for run-time actuations
Caller QoE plugin
Request body JSON, see example in Figure 42
Response body None
Response code 200 OK - Feedback received correctly

400 Bad Request - A generic problem happened with the feedback operation

The QoE feedback is sent in the form of a QoEObject, for which Figure 42 details its structure and
main fields.

QoEObject:
type: object
 properties:
 id:
 type: string
 example: “3b3888dc-3502-11e9-b210-d663bd873d93”
 value:
 type: string
 example: “VERY BAD”

Figure 42 Schematic of a QoEObject

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 67 of (74)

Essentially, a QoEObject carries two fields with necessary information. On the one hand, the id field
relates to the identifier of the end-to-end NS for which the feedback is being sent. On the other
hand, the value field carries the actual value of the feedback as expressed by the vertical through the
capabilities exposed by both the P&P controller and the OSA.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 68 of (74) © SLICENET consortium 2019

6 Summary of software components
In this section, we provide a summary of the main software components presented along the
deliverable through the multiple exercised analytical and actuation workflows (Sections 3 and 4).
Links to their codebase can be found for each one of them. These preliminary software
developments will serve as foundation for later iterations of the Cognition Plane implementation.

6.1 ElasticMon

Name ElasticMon

Description ElasticMon is a monitoring framework crafted especially for the needs and monitoring
challenges of 5G mobile networks following the principles described in Deliverable
D5.2. It serves as a pipeline for storing, retrieving and exchanging a rich set of data
between monitoring applications, allowing flexible data flows between monitoring
applications that can be developed to collect, process and/or consume monitoring
data. ElasticMon supports the monitoring of massive and (quasi-) real-time data
streams per slice for the purposes of network control and management, as well as
both flat and hierarchical deployments to match the network architecture and to
allow to respect the data-ownership model across different players ranging from
infrastructure and service providers.

License Apache v2.0

Version 1.0

Design

Figure 43 Prototype implementation of ElasticMon monitoring Framework

The current prototype version of ElasticMon works as a framework extension on top
of the ElasticSearch search engine2 and the FlexRAN. Figure 43 portrays the modules
of ElasticMon’s prototype implementation and their interaction with ElasticSearch,
the FlexRAN hierarchical controller, and the OAI. FlexRAN's controller runs over an
OAI user plane network infrastructure, whereas ElasticSearch is used to store the
control plane data from the southbound API (the FlexRAN producer). The FlexRAN
Producer API is a dedicated lightweight application deployed over FlexRAN that stores
the gathered raw monitoring data to the data store provided by ElasticSearch. Note

2 https://www.elastic.co/

https://www.elastic.co/

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 69 of (74)

that an arbitrary number of UE devices can be indexed by the FlexRAN producer
application and that monitoring data/UE aggregation is also supported, including
aggregation per slice. But apart from supporting multi-slice monitoring, ElasticMon
v1.0 can also work with different data stores in the background, whereas different
ElasticMon instances can be used together over one or more datastore instances.
These features enhance privacy via the isolation of data stores between different
stakeholders (slices, NSPs and DSPs) alongside the filtering mechanisms that are
native to ElasticSearch.
A special wiki manual with a detailed description of the architectural design and
prototype implementation is available here:
https://gitlab.eurecom.fr/mosaic5g/mosaic5g/wikis/tutorials/elasticmon-manual

Codebase • Code available here: https://gitlab.eurecom.fr/mosaic5g/elasticmon/tree/develop
• A tutorial wiki with all necessary details for downloading, deploying, configuring

and running ElasticMon is available here:
https://gitlab.eurecom.fr/mosaic5g/mosaic5g/wikis/tutorials/elasticMon-tutorial
Note: To gain access to the above GitLab sources about ElasticMon, reviewers will
be provided with a special guest account on demand3 by Eurecom.

6.2 SkyDive
Name SkyDive
Description Skydive is an open source real-time network topology and protocols analyser providing

a comprehensive way of understanding what is happening in your network
infrastructure.

License Apache v2.0
Version 0.21.0
Design http://skydive.network
Codebase https://github.com/skydive-project/skydive

6.3 Stresser for QoE-QoS experiment
Name Network_stresser test suite for Kubernetes
Description This test suite consists in Helm charts for network bandwidth testing a Kubernetes

cluster.
License NA
Version NA
Design iperf based K8s stresser
Codebase https://github.com/cognetive/network_stresser

6.4 Noisy neighbour experiment
Name Noisy neighbour detection model
Description The model classifies the status of the VNF to one of the following statuses based on the

consumed CPU, memory, and network bandwidth:
• Normal status

3 Please, contact Prof. Navid Nikaein with an email sent to navid.nikaein@eurecom.fr, mentioning “SLICENET
reviewer access to GitLab request” in the subject of your email, to gain access to the codebase and wiki pages.

https://gitlab.eurecom.fr/mosaic5g/mosaic5g/wikis/tutorials/elasticmon-manual
https://gitlab.eurecom.fr/mosaic5g/elasticmon/tree/develop
https://gitlab.eurecom.fr/mosaic5g/mosaic5g/wikis/tutorials/elasticMon-tutorial
http://skydive.network/
https://github.com/skydive-project/skydive
https://github.com/cognetive/network_stresser

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 70 of (74) © SLICENET consortium 2019

• Noise status
• Overload status

License Apache v2.0
Version NA
Design Section 3.3
Codebase https://gitlab.com/slicenet/noisy-neighbor

6.5 Machine learning pipeline
Name Cognition pipeline
Description The ML pipeline consists of several processing steps that normalize the data, create

several event windows (of different types) and "classify" them. It is composed of
several components:
• Gold: consumes the four stream data inputs, normalizes and enriches them;
• Windows: takes JSON events and build time, time and/or sequence windows;
• Classifier: tags event windows with intervention tickets stream data;
• Kafka2Elastic: converts JSON stream data and publishes it into ElasticSearch.

License GNU GPLv3
Version 1.0.1
Design Section 2.3.1
Codebase https://gitlab.com/slicenet/cog-pipeline

6.6 Cognition Notebooks
Name Cognition Notebooks
Description Jupyter notebooks repository that contain data exploration and ML code.
License NA
Version NA
Design -
Codebase https://gitlab.com/slicenet/cog-notebooks

6.7 QoE Optimizer
Name QoE Optimizer
Description The QoE Optimizer is the responsible to gather E2E NS QoE/QoS-related monitoring

data from DSP datastores/monitoring sources and trigger necessary actuations if some
corrective actions are needed to maintain quality levels. The actions are ruled thanks
to a policy system provided by the PF. As for the actions, they may entail to engage
with the orchestration sub-system at the DSP level or Rule Enforcer/Control Plane at
the NSP level. Current prototype includes the general functionality of the QoE
Optimizer as well as the communication with the QoE plugin and SliceNet CP

License NA
Version 1.0
Design Sections 2.4.3 and 4.2.4
Codebase https://gitlab.com/slicenet/qoe-optimizer

6.8 OVS-based user traffic classification actuator
Name OVS-based user traffic classification software
Description This software-based traffic clasifier able to parse and control 5G multi-tenant user

traffic in the data plane according to the traffic control rules received. Different traffic
control rules are allowed to be applied to specific flows/sub-slices at a non-RAN

https://gitlab.com/slicenet/noisy-neighbor
https://gitlab.com/slicenet/cog-pipeline
https://gitlab.com/slicenet/cog-notebooks
https://gitlab.com/slicenet/qoe-optimizer

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 71 of (74)

network segment, including traffic dropping, setting new bandwidth, traffic redirection
etc. The prototyping is based on extending the capabilities of OVS.

License Apache v2.0
Version OpenVSwitch version 2.9.2 patched with 5G extensions
Design Section 4.4
Codebase https://gitlab.com/slicenet/openvswitch

https://gitlab.com/slicenet/openvswitch

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 72 of (74) © SLICENET consortium 2019

7 Conclusions
This deliverable has presented the design of the overall Cognition Plane within SliceNet’s
management layer and provided the first iteration for the design and implementation of the several
elements that will constitute the phases of the full cognition MAPE-K-based loop, with special
emphasis on the Analytics and Actuation parts. The main goal of the Cognition Plane is to enable the
automated and QoE-aware management and control of E2E NS as offered by DSPs entities towards
vertical customers. To this end, it is essential to provide means for analysis of the underlying NS and
its components to determine its quality levels as well as for applying (re-)configurations when
needed to maintain the desired quality levels, all in all keeping a QoE-aware/E2E NS context.

In this regard, SliceNet’s Cognition Plane provides a multi-layer/level approach, in which several
cognition loops are exercised at different stratums of the full architecture to allow for a holistic and
automated management of E2E NS at DSP level and NSSes at NSP level. The focus of the design and
implementation of the Cognition Plane resides at the E2E level. Nevertheless, the means to allow for
cross-entity NS management are also designed as it is a crucial part for fully automated management
of E2E NS. In this regard, SliceNet has designed a novel policy-ruled Actuation Framework, which
determines when and how (re-)configurations should be made on the underlying NS/NSSes, engaging
with the different points of execution at different levels to enforce the desired actions. Moreover,
the policy-based approach allows for a unified way to dictate how the overall system and its
individual components (both at DSP and NSP levels) should react to specific events. This is enabled
thanks to the data-centric and analysis approach followed by the whole Cognition Plane.

SliceNet follows a Data-Lake approach, in which all source of monitoring (telemetry, traffic level,
topology level, etc.) are logically centralized into a single source for the data, allowing for external
elements, such as the analytics, to gather desired data, elaborate on that, and insert it again in the
unified Data-Lake for later consumption by other elements of the Cognition Plane (such as the
Actuation Framework). This Data-Lake approach is also enriched by feedback data provided by
vertical customers thanks to the unique capabilities of the P&P controller, which allows to integrate
the verticals’ view in the loop and provide a more accurate QoE perspective of NSes. A novel
cognition pipeline has been designed to ingest the data found at the Data-Lake, preparing it for
several learning algorithms that have been specially designed to cover multiple aspects of SliceNet
vertical UCs.

In this regard, the deliverable reports several proof-of-concepts, with specific software
implementations, exercising the multiple phases and workflows of the Cognition Plane. These
workflows successfully demonstrate the ability to process data sources to serve as foundation for the
Data-Lake approach. Moreover, several analysis cases are presented, both in order to determine QoE
levels from monitored data as well as to determine anomalous, faulty or underperforming situations
which would then require an actuation. Lastly, several actuation cases are presented, highlighting
both actuations based on workflows (for E2E/DSP level actuation) and based on specific functions
(for more NSP-oriented level actuation). The presented designs and implementations will be
consolidated and expanded in future iterations of the overall Cognition Plane.

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2019 Page 73 of (74)

References
[1] SliceNet Deliverable D2.4, “Management Plane System Definition, APIs and Interfaces”,

SliceNet Consortium, May 2018.
[2] 5GPPP Network Management & Quality of Service Working Group, “Cognitive Network

Management for 5G”, white paper, March 2017.
[3] SliceNet Deliverable D5.2, “Modelling and Design of Vertical-Informed QoE Sensors”; SliceNet

Consortium, December 2018.
[4] Andrew Lerner, “AIOps Platforms”, Gartner Blog, August 2017. [online]: https://

blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
[5] N. Miloslavskaya, A. Tolstoy, “Big Data, Fast Data and Data Lake Concepts”, Elsevier Procedia

Computer Science, vol. 88, pp. 300-305, October 2016.
[6] ETSI, “Network Function Virtualization (VNF); Management and Orchestration”, December

2012.
[7] SliceNet Deliverable D4.2, “Network Slicing in 5G RAN-Core”, SliceNet Consortium, December

2018.
[8] ONAP Policy Framework [online]:

https://wiki.onap.org/display/DW/The+ONAP+Policy+Framework
[9] Altice Labs Alarm Manager wiki [online]:

https://wikis.ptinovacao.pt/display/SLICENET/AlarmManager+dataset+description
[10] Altice Labs Data Analysis [online]:

https://wikis.ptinovacao.pt/display/SLICENET/3+-+Data+Analysis
[11] SliceNet Deliverable D2.1: “Vertical Sector Requirements Analysis and Use Case Definition”,

SliceNet Consortium, November 2017.
[12] Prometheus - Monitoring system & time series database [online]: https://prometheus.io/
[13] OpenStack [online]: https://www.openstack.org
[14] Traffic generator for the SIP protocol [online]: http://sipp.sourceforge.net/
[15] IBM Cloud Private Service [online]: https://www.ibm.com/cloud/private
[16] Apache JMeter [online]: https://jmeter.apache.org/
[17] Iperf TCP/UDP traffic generator [online]: https://iperf.fr/
[18] Skydive – Real-time network analyser [online]: http://skydive.network/
[19] ETSI Technical Specification TS 138.401, “NG-RAN; Architecture description”, ETSI, July 2017.
[20] OpenAirInterface [online]: http://www.openairinterface.org/
[21] Mosaic 5G platform [online]: http://mosaic-5g.io/
[22] C.-Y. Chan et al., “Spectrum management application - A tool for flexible and efficient resource

utilization,” in Proceedings of IEEE Global Communications Conference 2018 (GLOBECOM
2018), Abu Dhabi (UAE) 9-13, December 2018.

[23] R language – The R project for statistical computing [online]: https://www.r-project.org/
[24] SliceNet Deliverable D4.3, “Single-Domain, Multi-Tenant Network Slicing Control”, SliceNet

Consortium, December 2018.
[25] SliceNet Deliverable D4.1, “Plug & Play Control Plane for Sliced Networks”, SliceNet

Consortium, October 2018.
[26] R. Montero et al., “Supporting QoE/QoS-aware end-to-end network slicing in future 5G-

enabled optical networks”, Proceedings of SPIE Photonics West 2019 (PW 2019), San Francisco
(USA), February 2019.

[27] X. Foukas et al. “FlexRAN: A Flexible and Programmable Platform for Software Defined Radio
Access Networks,” in Proceedings of 12th International Conference on Emerging Networking
Experiments and Technologies, 2016.

[28] Fd.io project [online]: https://fd.io
[29] eXpress Data Path (XDP) [online]: https://www.iovisor.org/technology/xdp
[30] Packet_mmap howto [online]: on https://sites.google.com/site/packetmmap

https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
https://wiki.onap.org/display/DW/The+ONAP+Policy+Framework
https://wikis.ptinovacao.pt/display/SLICENET/AlarmManager+dataset+description
https://wikis.ptinovacao.pt/%E2%80%8Cdisplay/%E2%80%8CSLICENET/%E2%80%8C3+-+Data+Analysis
https://prometheus.io/
https://www.openstack.org/
http://sipp.sourceforge.net/
https://www.ibm.com/cloud/private
https://jmeter.apache.org/
https://iperf.fr/
http://skydive.network/
http://www.openairinterface.org/
http://mosaic-5g.io/
https://www.r-project.org/
https://fd.io/
https://www.iovisor.org/technology/xdp
https://sites.google.com/site/packetmmap

Deliverable D5.5 SLICENET H2020-ICT-2016-2/761913

Page 74 of (74) © SLICENET consortium 2019

[31] PF_RING [online]: https://www.ntop.org/products/packet-capture/pf_ring
[32] SNABB project official git repository [online]: https://github.com/snabbco/snabb
[33] Data Plane Development Kit [online]: https://www.dpdk.org
[34] F. Z. Yousaf et al., "NFV and SDN - key technology enablers for 5g networks," IEEE Journal on

Selected Areas in Communications, vol. 35, num. 11, pp. 2468-2478, November 2017.
[35] ONAP Policy Engine Platform - Offered APIs [online]:

http://docs.onap.org/en/casablanca/submodules/policy/engine.git/docs/platform/offeredapis
.html

https://www.ntop.org/products/packet-capture/pf_ring
https://github.com/snabbco/snabb
https://www.dpdk.org/
http://docs.onap.org/en/casablanca/submodules/policy/engine.git/docs/platform/offeredapis.html
http://docs.onap.org/en/casablanca/submodules/policy/engine.git/docs/platform/offeredapis.html

	Abstract
	Disclaimer
	Impressum
	Copyright notice
	Executive summary
	List of authors
	List of Reviewers
	Table of Contents
	List of figures
	List of tables
	Abbreviations
	1 Introduction
	1.1 Scope
	1.2 Document structure
	1.3 Overview of SliceNet Cognition Plane
	1.3.1 Motivation for using cognition
	1.3.2 Technical approach to Cognitive management
	1.3.3 Control (MAPE-K) loops deployment

	2 Cognition Plane Architecture and Functional Components
	2.1 Cognitive Control Loop
	2.2 Knowledge & Monitoring
	2.3 Analysis
	2.3.1 Machine learning pipeline
	2.3.2 Analysis tools and model training
	2.3.3 Model application / inference
	2.3.4 Data-Driven Network Control and Management

	2.4 Planning & Execution
	2.4.1 Actuation framework and vertical-informed actuators
	2.4.2 Policy Framework
	2.4.2.1 Policy administration operations

	2.4.3 QoE Optimizer
	2.4.4 Short/cross-entity actuation loop

	2.5 Cognition workflows

	3 Analytic workflows
	3.1 Scope and preliminary implementation
	3.2 Reliable RAN slicing using NSP alarm data
	3.2.1 Demonstrated functionality
	3.2.2 Description of data
	3.2.3 Scenario

	3.3 Noisy neighbour detection
	3.3.1 Demonstrated functionality
	3.3.2 Scenario
	3.3.3 Architecture and description of components

	3.4 QoE classification from QoS metrics
	3.4.1 Demonstrated functionality
	3.4.2 Scenario
	3.4.3 Architecture and description of components
	3.4.4 QoE derived from Client Application Response Time

	3.5 RAN optimization
	3.5.1 Demonstrated functionality
	3.5.2 Architecture and description of components
	3.5.3 Scenario

	3.6 Anomaly detection
	3.6.1 Demonstrated functionality
	3.6.2 Scenario
	3.6.3 Architecture and description of components

	4 Vertical-informed actuators workflows
	4.1 Scope and Preliminary Implementation
	4.2 QoS Modification
	4.2.1 Demonstrated functionality
	4.2.2 Scenario
	4.2.3 Architecture and description of components
	4.2.4 Design of components

	4.3 NSP Sequence Modification
	4.3.1 Demonstrated functionality
	4.3.2 Scenario
	4.3.3 Architecture and description of components

	4.4 OVS-based User Traffic Classification
	4.4.1 Demonstrated functionality
	4.4.2 Scenario
	4.4.3 Architecture and description of components
	4.4.4 Design of components

	5 Interfaces and APIs
	5.1 Policy Framework Interfaces
	5.2 QoE Optimizer CP Interface
	5.3 QoE Optimizer - QoE plugin Interface

	6 Summary of software components
	6.1 ElasticMon
	6.2 SkyDive
	6.3 Stresser for QoE-QoS experiment
	6.4 Noisy neighbour experiment
	6.5 Machine learning pipeline
	6.6 Cognition Notebooks
	6.7 QoE Optimizer
	6.8 OVS-based user traffic classification actuator

	7 Conclusions
	References

