

Deliverable 3.3

Design and Prototyping of 5G-Connected Virtualized Enterprise

Infrastructure and Services

Editor: Elena-Mădălina Oproiu, ORANGE ROMANIA

Deliverable nature: Prototype (P)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery
date:

30-04-2018

Actual delivery date: 15-06-2018

Suggested readers: Telecommunication Operators, Service Providers, Infrastructure
providers; Communication service providers, Digital service
providers; Network operators; Vertical industries

Version: 1.0

Total number of
pages:

121

Keywords: Enterprise, OpenStack, Smart City, Cloud, Virtualization, 5G

Abstract

This document presents all the activities related to the design and prototyping of a 5G-
Connected Virtualized Enterprise Infrastructure and Services dedicated for Smart City Use
Case. The design proposed ensures the extension of the slicing concepts at the enterprise
level, as an end-to-end (E2E) slicing-friendly infrastructure. The demanded business model
from the vertical perspective is built on an open source architectural proposal, including for
the segment described in details the blocks involved: Data Plane (composed by Enterprise
Infrastructure and Enterprise Private Cloud), Enterprise Applications and Enterprise Services,
Control Plane, Management Plane and Cross Plane Orchestration under the umbrella of One
Stop Application Programming Interface (OSA). The proposed architecture is intended to be
opened and flexible, capable to be adapted to support different use cases over the same
physical infrastructure.

Ref. Ares(2018)3175831 - 15/06/2018

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 2 of (121) © SLICENET consortium 2018

Disclaimer

This document contains material, which is the copyright of certain SLICENET consortium
parties, and may not be reproduced or copied without permission.

In case of Public (PU):

All SLICENET consortium parties have agreed to full publication of this document.

In case of Restricted to Programme (PP):

All SLICENET consortium parties have agreed to make this document available on request to
other framework programme participants.

In case of Restricted to Group (RE):

All SLICENET consortium parties have agreed to full publication of this document. However
this document is written for being used by <organisation / other project / company etc.> as
<a contribution to standardisation / material for consideration in product development
etc.>.

In case of Consortium confidential (CO):

The information contained in this document is the proprietary confidential information of
the SLICENET consortium and may not be disclosed except in accordance with the
consortium agreement.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the SLICENET consortium as a whole, nor a certain part of the SLICENET consortium,
warrant that the information contained in this document is capable of use, nor that use of
the information is free from risk, accepting no liability for loss or damage suffered by any
person using this information.

The EC flag in this document is owned by the European Commission and the 5G PPP logo is
owned by the 5G PPP initiative. The use of the flag and the 5G PPP logo reflects that
SLICENET receives funding from the European Commission, integrated in its 5G PPP
initiative. Apart from this, the European Commission or the 5G PPP initiative have no
responsibility for the content.

The research leading to these results has received funding from the European Union Horizon
2020 Programme under grant agreement number H2020-ICT-2014-2/671672.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 3 of (121)

Impressum

[Full project title] End-to-End Cognitive Network Slicing and Slice Management Framework in
Virtualised Multi-Domain, Multi-Tenant 5G Networks

[Short project title] SLICENET

[Number and title of work-package] WP 3: 5G Integrated Multi-Domain Slicing-Friendly
Infrastructure

[Number and title of task] T3.3: 5G-Connected Virtualized Enterprise Infrastructure and
Services

[Document title] Design and Prototyping of 5G-Connected Virtualized Enterprise
Infrastructure and Services

[Editor] Oproiu Elena-Mădălina, Orange Romania

[Work-package leader: Name, company] Oproiu Elena-Mădălina, Orange Romania

[Estimation of PM spent on the Deliverable]

Copyright notice

 2018 Participants in SLICENET project

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 4 of (121) © SLICENET consortium 2018

Executive summary

5G-Connected Virtualised Enterprise Infrastructure and Services described in this deliverable
is using open-source software for creating clouding capable infrastructures, OpenStack
based, as a popular enterprise software tool for managing and controlling resources in the
Datacentre. The 5G slice-friendly cross-domain infrastructure layer, physical and virtual is
comprising the enterprise segment and addresses all the activities and transformation
needed so that the enterprise domain to be adapted and ready for the novel E2E 5G slicing-
friendly infrastructure.

The SliceNet enterprise architecture provided by the document is aiming to transform the
classic enterprise concepts by requiring new technical and business approaches, including
programming and automation into the Smart City vertical use case. It also provides an
advantageous infrastructure operational model, flexibility, including fast deployment,
vertical slice implementation, services and use case resources assurance and the prototyping
design for the Enterprise 5G segment. The model proposed may be easily adapted to any
open tool framework (European Telecommunication Standards Institute Management and
Orchestration (ETSI MANO) approach) and defines specific metrics and Key Performance
Indicators (KPIs) for the vertical enterprise’s use case developed.

There are wide range of research related to Software Defined Networks (SDN) and Network
Function Virtualization (NFV) implementations for MEC, RAN and Core segment for 5G
infrastructure deployments, the current deliverable brings and innovative approach that
extend the 5G concepts to the enterprise level, being highlighted by the following
achievements:

 A 5G slice-friendly Enterprise infrastructure, ready to cover a real 5G Smart City use
case, that can easily be adapted to any other vertical use-case;

 Infrastructure prototype ETSI MANO compliant, the concepts presented are available
to be integrated in any enterprise scenario implementation;

 The prototype presented is fully functional, detailed presented for implementation,
open to any further deployments in the enterprise segment, allowing further
programmability for resource allocation, optimization and cognition;

 Ready to integrate development and innovation concepts related to the novel
management and CP provided into the SliceNet system definition including cognition
capabilities, QoE sensors and actuators, as vertical-informed implementations;

 The virtualized Enterprise infrastructure slice ready.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 5 of (121)

List of authors

Company Author Contribution

ECOM Navid Nikaein The transition of the existing enterprise infrastructure and
services to a 5G-connected, virtualised deployment;
SliceNet vision about 5G Connected Services, about
Control Plane, Management Plane and Cross-Plane
Orchestration for Enterprise; OSA for Enterprise and its
integration in SliceNet E2E architecture.

ECOM Xenofon Vasilakos

ECOM Tien Thinh Nguyen

ORO Elena-Madalina
Oproiu

Abstract, Executive Summary, Introduction; Enterprise
Data Plane: Enterprise Infrastructure with Smart City IoT
segment, Private Cloud for Smart City; Enterprise Services:
Smart City Applications and Services; Control Plane for
Enterprise: Smart City Control Plane (Virtual Infrastructure
Manager (VIM) and SDN controller); Management Plane
for Enterprise: Smart City Management Plane
(Monitoring, Life-Cycle Management (LCM), Configuration
Management); Cross-Plane Orchestration for Enterprise:
Smart City Cross-Plane Orchestration and Enterprise
Integration in SliceNet E2E architecture; OSA for Smart
City and its integration in SliceNet E2E architecture;
Prototyped friendly network segment for Smart City;
Conclusions; References; Annexes; Abbreviations;

ORO Marius Iordache

ORO Mihai Idu

ORO Catalin Costea

ORO Catalin Brezeanu

ORO Alexandru Oprea

ORO Patachia Cristian

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 6 of (121) © SLICENET consortium 2018

Table of Contents

Executive summary .. 4

List of authors ... 5

Table of Contents ... 6

List of figures .. 8

List of tables ... 10

Abbreviations ... 11

Definitions .. 15

1 Introduction .. 16

1.1 Objective of this document ... 16

1.2 State-of-the-art .. 16

1.3 Approach and Methodology .. 18

1.4 Document Structure .. 18

1.5 SliceNet Requirements and Vision .. 19

1.6 The transition of the existing enterprise infrastructure and services to a 5G-
connected, virtualised deployment ... 21

2 Enterprise Data Plane ... 25

2.1 Enterprise Infrastructure ... 25

2.1.1 Smart City IoT segment .. 32

2.2 Enterprise Private Cloud .. 35

2.2.1 Private Cloud for Smart City ... 36

3 Services plane: Enterprise Services .. 39

3.1 SliceNet vision about 5G Connected Services ... 39

3.2 Smart City Applications.. 40

3.3 Smart City Services .. 43

4 Control Plane for Enterprise ... 45

4.1 SliceNet vision about Control Plane for Enterprise ... 45

4.2 Smart City Control Plane.. 45

4.2.1 VIM ... 46

4.2.2 SDN Controller .. 48

5 Management Plane for Enterprise ... 50

5.1 SliceNet vision about Management Plane for Enterprise ... 50

5.2 Smart City Management Plane .. 50

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 7 of (121)

5.2.1 Monitoring .. 51

5.2.2 Life-Cycle Management .. 53

5.2.3 Configuration Management ... 54

6 Cross-Plane Orchestration for Enterprise .. 59

6.1 SliceNet vision about Cross-Plane Orchestration for Enterprise 59

6.2 Smart City Cross-Plane Orchestration ... 60

6.3 Enterprise integration in SliceNet E2E architecture .. 61

7 One Stop-API .. 63

7.1 OSA for Enterprise ... 63

7.2 OSA integration in SliceNet E2E architecture .. 64

7.3 OSA for Smart City ... 65

8 Prototyped friendly network segment for Smart City ... 66

8.1 Smart city segment description ... 66

8.2 Prototyped Deployment plan .. 67

8.2.1 Resources modelling and design for Enterprise Infrastructure 68

8.2.2 Prototyped Physical Layer .. 70

8.2.3 Prototyped Enterprise cloud .. 72

8.2.4 Prototyped SDN and VIM integration .. 78

8.2.5 Prototyped LCM ... 88

8.3 Prototyped services and applications ... 89

9 Conclusions ... 94

References .. 95

Annex A TOSCA template descriptors .. 98

Annex B The interface configuration ... 101

Annex C Annex C Configure name resolution .. 103

Annex D Prototyped SDN and VIM integration .. 104

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 8 of (121) © SLICENET consortium 2018

List of figures
Figure 1 Applied integration and verification process for prototyping ... 18
Figure 2 E2E connectivity for Enterprise Network Segment .. 19
Figure 3 Enterprise Network Segment for Smart City use case in SliceNet context [4] ... 19
Figure 4 Enterprise Segment overall diagram ... 20
Figure 5 Slicent Logical Arhitecture [1] ... 25
Figure 6 High Level NFV architecture .. 26
Figure 7 High Level NFV Architecture with the MANO highlight ... 27
Figure 8 High Level NFV Architecture with the NFVI and VNFs highlight .. 31
Figure 9 Openstack services and their interaction with respect to Enterprise Segment 32
Figure 10 IoT platform instantiation .. 33
Figure 11 Enterprise physical architecture .. 34
Figure 12 Connectivity in Enterprise Infrastructure ... 34
Figure 13 High level view of Smart City apps .. 36
Figure 14 High level design for Openstack [18] .. 37
Figure 15 KVM Virtualization Environment ... 38
Figure 16 5G-Slicing offered as a SaaS over PaaS over IaaS ... 39
Figure 17 Proposed architecture for IoT platform .. 41
Figure 18 IoT Platform integration .. 43
Figure 19 SliceNet CP high level view .. 46
Figure 20 Interaction between VIM and SDN Controller ... 46
Figure 21 Simplified flow for VNF related resource management .. 48
Figure 22 Neutron control to Open vSwitch ... 48
Figure 23 Neutron agents ... 48
Figure 24 Management Architecture Components – DSP & NSP Combined Perspective [6] 51
Figure 25 Murano components and interaction with other services .. 54
Figure 26 Configuringuration Management for Manual and Auto Scaling... 55
Figure 27 Vertical and Horizontal Scaling ... 56
Figure 28 Resource management between VNFM and VIM ... 58
Figure 29 Enterprise orchestrator example, with a two-level orchestration ... 59
Figure 30 HEAT integration and interaction .. 61
Figure 31 Horizontal and Vertical Orchestrations [1] .. 62
Figure 32 Abstraction scheme ... 63
Figure 33 OSA paradigm with respect to two extreme cases: a bunddled OSA API model sitting on top of a
unified App SDK (on the left), and a fragemented OSA API model (on the right). .. 64
Figure 34 RAN slicing example .. 64
Figure 35 Smart City High Level Architecture .. 66
Figure 36 High Level Enterprise Infrastructure ... 67
Figure 37 Physical representation of infrastructure .. 70
Figure 38 Backend view of the physical infrastructure ... 71
Figure 39 The topology used in laborator for the prototype ... 72
Figure 40 KVM Version on Ubuntu Server 16.04 ... 72
Figure 41 List volumes group from compute node .. 73
Figure 42 Login page of ORO Openstack Platform .. 73
Figure 43 IoT platform template ... 74
Figure 44 Launch new instance from CLI of controller node ... 74
Figure 45 Network topology – Cloud Infrastructure .. 74
Figure 46 Available VMs .. 75
Figure 47 IoT VMs ... 75
Figure 48 Prerequisites .. 76
Figure 49 Download the packets and install ... 76
Figure 50 IoT platform status in Linux environment ... 76
Figure 51 Postres database configuration .. 77
Figure 52 Cassandra database configuration ... 77
Figure 53 Self-Service Network architecture ... 78

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 9 of (121)

Figure 54 Openstack Neutron Architecture ... 79
Figure 55 Modular Layer 2 plugin Architecture ... 80
Figure 56 Configuration of Compute Node ... 81
Figure 57 Configuration file of the linuxbridge agent ... 81
Figure 58 OpenStack DHCP agent ... 81
Figure 59 OpenStack Layer 3 agent... 82
Figure 60 OpenStack linux bridge agent ... 82
Figure 61 OpenStack metadata agent ... 82
Figure 62 nova.conf file ... 83
Figure 63 Controller node config ... 85
Figure 64 cinder-scheduler .. 86
Figure 65 keystone .. 86
Figure 66 glance-api .. 86
Figure 67 glance-registry .. 87
Figure 68 The interdependency of the OpenStack Ocata software modules [64] ... 88
Figure 69 Murano endpoints ... 89
Figure 70 Creation process of customer and tenant ... 90
Figure 71 SliceNetORO user account ... 90
Figure 72 List of devices .. 91
Figure 73 Authentication method (Token left; certificate right) ... 91
Figure 74 Parameters of a LTE-M lamp ... 92
Figure 75 Power consuption and signal strenght of LTE-M Lamp 01 .. 92
Figure 76 General status of LTE-M Lamp 01 ... 92
Figure 77 Dashboard generated for public access .. 93

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 10 of (121) © SLICENET consortium 2018

List of tables
Table 1 Requirements applicability to infrastructure layer ... 21
Table 2 Channel Quality Indicator (CQI) defined in the 36.213 rel 14 standard [7] .. 22
Table 3 The code that search the catalogue for the compute and NS .. 28
Table 4 Examples of NS catologues [65] ... 29
Table 5 Main characteristics of cloud infrastructure .. 36
Table 6 Neutron agents usage .. 49
Table 7 Differences between Scale Up – Down and Scale In – Out methods .. 57
Table 8 CPU calculations results for our case .. 69
Table 9 Physical resources ... 70
Table 10 All the module functions implemented on the Compute and Controller nodes 83
Table 11 Module functions implemented on the Compute and Controller nodes ... 87

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 11 of (121)

Abbreviations

3GPP 3rd Generation Partnership Project

3GPP TS 3rd Generation Partnership Project Technical Specifications

5G Fifth Generation (mobile/cellular networks)

5G PPP 5G Infrastructure Public Private Partnership

5GEX 5G Exchange

API Application Programming Interface

APP Application

AWS Amazon Web Services

BSS Business Support System

CapEX Capital Expenditure

CLI Command Line Interface

CN Core Network

CoAP Constrained Application Protocol

COTS Commercial Off-The-Shelf

CP Control Plane

CPU Central Processing Unit

CQI Channel Quality Indicator

DB Database

DC Datacenter

DHCP Dynamic Host Configuration Protocol

DSC Digital Selective Calling

DSP Digital Service Provider

E2E End-to-End

ECOMP Enhanced Control, Orchestration, Management and Policy

EM Element Management

eNodeB Evolved NodeB

ETSI European Telecommunications Standards Institute

ETSI MANO European Telecommunication Standards Institute Management and
Orchestration

ETSI MEC European Telecommunications Standards Institute Multi-access Edge
Computing

ETSI NFV European Telecommunications Standards Institute Network Function
Virtualization

FCAPS Fault, Management, Configuration, Accounting, Performance, Security

FPGA Field Programmable Gate Arrays

FTP File Transfer Protocol

GB GigaByte

Gbps Gigabits per second

GBR Guaranteed Bit Rate

GHz GigaHertz

GRE Generic Routing Encapsulation

GUI Graphical User Interface

HDD Hard Disk Drive

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 12 of (121) © SLICENET consortium 2018

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I/O Input/Output

IaaS Infrastructure as a Service

IMS Internet Protocol Multimedia Subsystem

IoT Internet of Things

JSON JavaScript Object Notation

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

L3 Layer 3

LCM Life-Cycle Management

LDE Local Decision Engine

LoRa Long range, low power wireless platform

LTE-M Long Term Evolution for Machines

M2M Machine to Machine

MANO Management and Orchestration

Mbit Megabit

MCPTT Mission Critical Push to Talk

MEC Mobile Edge Computing

ML2 Modular Layer 2

MPLSoUDP Multiprotocol Label Switching over User Datagram Protocol

MQTT(S) Message Queuing Telemetry Transport (Secure)

NA Network Applications

NAT Network Address Translation

NB IoT Narrowband Internet of Things

NE Network Element

NF Network Function

NFP Network Forwarding Path

NFV Network Function Virtualization

NFV MANO Network Function Virtualization Management and Orchestration

NFVI Network Function Virtualization Infrastructure

NFVO Network Functions Virtualization Orchestrator

NFVO+MEO Network Functions Virtualization Orchestrator + Major Equipment Operator

NGCN Next Generation Core Networks

NIC Network Interface Card

NO Network Operator

NR New Radio

NS Network Service

NSD Network Service Descriptor

NSI Network Slice Instance

NSMF Network Slice Management Function

NSP Network Service Provider

NSS Network Support Services

NSSMF Network Slice Subnet Management Function

OAI Open Air Interface

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 13 of (121)

O&M Operation and Maintenance

ONAP Open Network Automation Platform

OoM Out of Memory

Open-O Open Orchestrator Project

OPNFV Open Platform for NFV

OR-VI Cross Plane Orchestrator – Virtualized Infrastructure Manager

OR-VNFM Cross Plane Orchestrator - VNF Manager

OSA One Stop Application Programming Interface

OSM Open Source MANO

OS-MA OSS/BSS - NFV Management and Orchestration

OSS Operational Support System

P&P Plug and Play

P2P Peer to Peer

PaaS Platform As A Service

P-GW Packet Data Network Gateway

PNF Physical Network Function

Po Portchannel

QCI Channel Quality Indicator

QoE Quality of Experience

QoS Quality of service

RAM Random Access Memory

RAN Radio Access Network

REST Representational State Transfer

RPC Remote Procedure Call

RRM Radio Resource Management

SBA Service-Based Architecture

SDN Software Defined Networks

SLA Service Level Agreement

SLICENET End-to-End Cognitive Network Slicing and Slice Management Framework in
Virtualised Multi-Domain, Multi-Tenant 5G Networks

SaaS Software as a Service

SSaS Scalable Slicing Implementation

SSD Solid State Disk

TCP Transmission Control Protocol

ToR Top of the Rack

TOSCA Topology and Orchestration Specification for Cloud Applications

UE User Equipment

UP User Plane

UUID Universally Unique Identifier

V2X Vehicle to Everything

vComputing virtual Computing

vEPC virtual Evolved Packet Core

VIM Virtual Infrastructure Manager

VI-VNFM Virtualized Infrastructure Manager – VNF Manager

VLAN Virtual Local Area Network

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 14 of (121) © SLICENET consortium 2018

VLD Virtual Link Descriptor

VLT Virtual Link Trunking

VM Virtual Machine

VNF Virtualized Network Function

VNFC Virtual network Function Component

VNFD Virtualized Network Function Descriptor

VNFFGD VNF Forwarding Graph Descriptors

VNFM Virtualized Network Function Manager

vPC Virtual Port Channel

vStorage Virtual Storage

VXLAN Virtual Extensible Local Area Network

WAN Wide area network

WP Work Package

WWW World Wide Web

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 15 of (121)

Definitions

Enterprise Private Cloud Infrastructure is a type of cloud computing infrastructure that has
the same characteristics and advantages as a public cloud including even more benefits but
at a specific cost. The main difference is that this type of cloud infrastructure is a private
one, it is developed, installed and administrated for dedicated needs of one and specific
private organization. This offers connectivity and all additional services only for one
company/institution being able to share it in special cases.

Slicing-friendly infrastructure is the proposed SliceNet approach for an efficient, low-cost,
fast deployment and provision for a specific vertical’s slice through software-networking 5G
proof-of-concepts, investigating the mechanism and tools for a friendly software
programmable infrastructure, allowing QoS and QoE awareness and enhanced control.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 16 of (121) © SLICENET consortium 2018

1 Introduction

1.1 Objective of this document

The scope of the this deliverable is to adapt into the SliceNet 5G architecture the scenario of
the connected virtualized enterprise implementation and the specific services, by
transforming the classic enterprise concepts into the future developments, requiring new
approaches and technical implementations, including programming and automation into the
Telco field. The document is intended also to design and prototype the concept of the slicing
friendly into the global 5G scenario.

As already described into the previously deliverables, mainly into the Overall Architecture
document D2.2 [1], there are defined pillars, as the SliceNet foundation, including network
and vertical network slicing concepts, OSA, network management, configuring and
automation and cross-plane orchestrators capabilities, aiming for orchestration the E2E
slicing concept, related to the verticals requirements.

The role of the enterprise platform prototyping is strictly related to the Internet of Things
(IoT) applications and the required transformations in every industrial sector and in
particular in the Smart City vertical, as a platform that will be automatically deployed and
scaled to accommodate millions of connected devices. It will be designed as a core IoT
software platform, which is in fact an IoT Platform as a Service (PaaS).

The Enterprise IoT platform within the 5G networks context is intending to enable the
designing of a cost-efficient prototyping platform for sensors connections, easy to be
adaptable to the needs and capable to be extended and to any IoT scenario. The expected
business evolution of the platform is related to the public sector applications, as a City Hall,
due to the fact that today many municipalities are using an aging infrastructure. For sake of
clarity, the IoT platform will be implemented using an open source application (app), as the
platform to be deployed and prototyped also may be exposed to different scenarios of
developments, as a simplified ecosystem for building and managing the app into a more
automatic and programmable perspective, by using specific Application Programming
Interfaces (APIs), as generic described in SliceNet as OSA. Even the output of the prototyping
will not be presented as a mature product, commercial ready, we will be able to access and
use a PaaS capable to be consumed by different 5G verticals and services.

The deliverable is a way of innovating the enterprise applications and use in the 5G area, and
also to extend the management, configuration and related data to the E2E slicing friendly
scenario.

1.2 State-of-the-art

The chapter provides a vision of the Enterprise state-of-the-art for IoT, as IoT platforms must
be innovative, simplified, and easy to be used and integrated with different systems and
apps that are addressing different communities.

There are series of commercial and open-source project that addresses the IoT platform,
already integrated with the data sensors and IoT Gateways, as described in D3.1 [2], using
performant data process engines and storage capacities and having the capability of
exposing the results of the data processing to analytics dashboards, including the capabilities
of taking decisions.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 17 of (121)

Commercial cloud IoT PaaS, as:

 Amazon Web Services (AWS) IoT Platform;

 Microsoft Azzure IoT Hub;

 IBM Watson IoT Platform;

 Google Cloud Platform;

 Cisco IoT cloud connect.

Open source IoT platforms:

 ThingsBoard IoT Platform;

 Kaa IoT platform;

 Thingspeak platform;

 Eclipse foundation.

The IoT platform, open source project, is enabled by a rapid development, providing an IoT
cloud on the customer premises, for various IoT apps, that must be scalable, resilient,
efficient, customizable and friendly to be integrated. In fact the IoT open platform is the
software middleware used for connecting, acquisition and data processing from different
sensors. The prototyping of the IoT platform is the foundation of the next years IoT
communications, as it is expected that tens of billions of devices will be connected during
the next years, for this argument raising the need of platform deployments into a customer-
center manner.

The concept of the Enterprise IoT platform, software model, is based on a series of standards
and engineering implementations, from technical perspective to business model adaptation,
in our particular case the IoT platform for the Smart City Apps.

In SliceNet 5G E2E scenario the state-of-the-art of the development and prototyping the IoT
Enterprise platform are related to several key points aspects:

 Digitalization, from consumer and also from communication service provider
perspective;

 IoT platform, centralized approach, as an open middleware;

 Adopting the IT technology at the customer level (e.g. City Hall), including the
enriched capabilities of virtualization, automation and programmability;

 Openness to different apps;

 E2E services deployments from catalogue;

 Intra and inter-domain capabilities, including the data plane Quality of Service (QoS)
assurance;

 Relation to the new functions and logical block defined in the 5G SliceNet
Architecture (OSA, Plug and Play (P&P), cognition, monitoring and software sensors
implementation;

 5G IoT Enterprise platform with respect of the Management, Control and Data Plane,
as defined in previously architecture deliverable;

 Data processing and analysis, visualization and exposure;

 Platform control, including Fault, Management, Configuration, Accounting,
Performance, Security (FCAPS) capabilities;

 Integration into the multi-domain 5G scenario.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 18 of (121) © SLICENET consortium 2018

The task will conclude that from the underlines of the IoT today’s platform characteristics
and implementations, current approaches as state-of-the-art we will expose our vision and
future implementations regarding IoT enterprise architecture, as a major component into
the next 5G generation networks.

1.3 Approach and Methodology

This section is related to the SliceNet Work Packages (WPs) interaction and describes the
SLICENET project workflows, highlighting mainly the effort of WP2 [3], the SliceNet System
Definition, and especially outputs from T2.1 [4], related to vertical sectors requirements.

The task SliceNet 5G-Connected Virtualized Enterprise Infrastructure and Services extends
the E2E slicing concepts to the enterprise level.

The applied integration and verification process for prototyping can be observed from Figure
1.

SliceNet D2.1

SliceNet D2.2

SliceNet Deliverables
outputs

External Sources
ETSI NFV MANO, ESTI NFV Infrastructure overview
ETSI NFV Infrastructure Compute network
ETSI GS NFV-EVE
Smart city framework standard (PAS 181)
Data concept model for smart cities (PAS 182)
HyperCat IoT interoperability standard

Architecture

Use Case

Requirements

T3.3 Requirements
and Architeture

Prototyping

Refinement, design
and implementation

T3.3 Enterprise
Prototype

Components Design
and implemenation

WP2

WP3

WP7

WP8

WP8

Figure 1 Applied integration and verification process for prototyping

1.4 Document Structure

This document is composed by nine chapters, as the first chapter, Introduction, presents the
objectives of this document, state-of-the-art, approach and methodology, SliceNet
requirements and vision and the transition of the existing enterprise infrastructure and
services to a 5G-connected, virtualised deployment. Chapter 2 presents the Enterprise Data
Plane which is composed by: Enterprise Infrastructure (Smart City IoT segment) and
Enterprise Private Cloud (Private cloud for Smart City). In chapter 3, it is described the
SliceNet vision about 5G Connected Services, Smart City Applications and Services. Chapter 4
describes the SliceNet vision about Control Plane for Enterprise (VIM and SDN Controller).
SliceNet vision about Management Plane for Enterprise (Monitoring, LCM and Configuration
Management) is presented in chapter 5. Chapter 6 presents the Cross-Plane Orchestration
for Enterprise in SliceNet vision, Smart City Cross-Plane orchestration and Enterprise
integration in SliceNet E2E architecture. OSA for Enterprise, OSA for Smart City and its
integration in SliceNet E2E architecture are presented in chapter 7.

Chapter 8 describes the main part of this deliverable: the prototyped friendly enterprise
network segment for Smart City use case, by detailing the Smart City segment, resources
modelling and design, and prototyping the: Physical Layer, the Enterprise cloud (SDN and
VIM), LCM, services and applications. Finally, chapter 9 brings the conclusions.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 19 of (121)

1.5 SliceNet Requirements and Vision

This subchapter describes the SliceNet vision, key drivers and general requirements about
the virtualized enterprise infrastructure.

From the enterprise networks perspective, the challenge regarding 5G is to provide E2E
network and cloud infrastructure slices over the physical infrastructure in order to fulfil
specific requirements for the Smart City use case.

The main role of the enterprise networks will be to identify the key vertical sectors’
requirements, anticipating relevant trends early and mapping them into the 5G SliceNet
design. A successful Enterprise Infrastructure must be shared, secure and scalable and it
must enable a smarter, safer and more sustainable development for each the use cases, by
realizing multiple, highly, flexible, E2E dedicated network and cloud infrastructure slices over
the same physical infrastructure, in order to fulfil specific requirements.

The Enterprise Segment for Smart City will connect sensors, machines, city administrations
and citizens to cloud-based IoT apps as we can observe from Figure 2.

5G Network
RAN-EDGE-CORE-BACKBONE

sliced

Sensors

Enterprise
Network
Segment

Machines

City

Administrations

Citizens

WP.3.4

WP.3.3WP.3.1 +WP.3.2

Figure 2 E2E connectivity for Enterprise Network Segment

The integration of enterprise Network Segment for Smart City use case in SliceNet context
can be observed from Figure 3.

Lighting
Management

Servers

5G Lighting pole
LTE-M

NR

5G

NR
eNB

5G

NR
eNB

5G

CORE Network

Smart Lightining Slice

Smart Metering Slice

Smart Parking Slice

Smart Grid Slice
Enterprise Infrastructure

Smart Lightining Slice

Figure 3 Enterprise Network Segment for Smart City use case in SliceNet context [4]

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 20 of (121) © SLICENET consortium 2018

Taking into account the aspects presented in the deliverable D2.1 [4] about the
requirements related to the Smart City use case, the aspects related to the architecture on
SliceNet vision presented in D2.2 [1], SliceNet vison about Control plane (CP) presented in
D2.3 [5] and about Management Plane in D2.4 [6] and correlate these SliceNet WPs results
with the initial project proposal [3], it is proposed the overall diagram presented in Figure 4,
also fixing the main objective of this task: create a 5G Connected Virtualized Enterprise
Infrastructure that could serve the Smart City use case from the enterprise perspective and
after that this platform could be adapt to support any other 5G use case or IoT scenario.

In order to fulfil the requirements listed above, the Enterprise infrastructure must be
composed by several planes: Data Plane (composed by Enterprise Infrastructure and
Enterprise Private Cloud), Enterprise Applications and Enterprise Services, CP, Management
Plane and Cross Plane Orchestration under the umbrella of OSA. The proposed structure is
presented in the diagram from Figure 4.

Figure 4 Enterprise Segment overall diagram

The first plane of the enterprise architecture is the Data plane (infrastructure) which
contains an E2E heterogeneous network and distributed cloud platform. The Enterprise
Services plane defines and implements the services of the use case. The Enterprise

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 21 of (121)

Applications plane consists in databases, subscriber portal, back-end apps and scripts to fulfil
the upper layer services requirements and constraints. The synchronization and interworking
between these components will provide services to customers.

CP for Enterprise implements the abstractions provided by software networks technologies
(essentially as SDN and NFV) to support an abstracted model for the 5G networks functions.
The overall purpose of the Management Plane is to enable the monitoring, LCM and
configuration mechanisms required to assemble the supported virtual resources running
network functions.

With respect to use cases requirements, the enterprise infrastructure should provide
reliability and availability up to 99.95%. The Enterprise network must accommodate a high
number of devices per unit area that are 5G capable, although they might not all be
generating traffic simultaneously for the specified app. For each of the three use cases, the
Enterprise network should provide a maximum positioning error tolerated by the app. The
service deployment time is also a requirement and represents the duration required for
setting up the network slices in order to provide services to end customer. The enterprise
infrastructure must assure the protection of data, encompassing several level of security
such as authentication, data confidentiality, data integrity and access control in a multi-
tenant environment. Enterprise infrastructure should focus in minimizing the power
consumption and provide scaling capabilities according to network load.

Bellow table summarizes the use cases requirements and their applicability to each
enterprise infrastructure layer.

Table 1 Requirements applicability to infrastructure layer

Requirements
for Smart City
use case per
each Enterprise
Layer

Reliability &
Availability

Density Position
accuracy

Service
deployment

time

Security
& Privacy

Low power
consumption

Enterprise
infrastructure

Yes Yes No Yes Yes Yes

Enterprise
private cloud

Yes Yes No Yes Yes Yes

Enterprise apps Yes Yes Yes Yes Yes Yes

Enterprise
services

Yes No Yes No Yes No

CP Yes No No Yes Yes Yes

Management
plane

Yes No No Yes Yes Yes

Cross plane
orchestration

Yes No No Yes Yes Yes

OSA Yes No No Yes Yes No

1.6 The transition of the existing enterprise infrastructure and services to a
5G-connected, virtualised deployment

Upon the rise of a 5G slicing era, there is no need for dedicated network infrastructures to
support enterprise environments, as Service Level Agreements (SLA) can be met via slicing
and with proper QoS support. This requires control and management interfaces that allow

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 22 of (121) © SLICENET consortium 2018

enterprise administrators to take control (i.e., ownership) over their network without
interfering with the rest of the virtualized networks, which is referred as the isolation
property. Furthermore, network services (NSs) can be provisioned on demand and then
deployed in a virtualized infrastructure. This offers indeed a transition between vertical
dedicated networks, which in the current reality correspond to a different use case each,
towards a shared, customizable horizontal network. Due to this desired transition towards a
shared – yet customizable — horizontal network infrastructure, the concept of 5G slicing is
one of the most important communication innovations of the current times, yielding a series
of anticipated benefits, as network slices can maximize the sharing of network resources
across domains as well as within domains. Evidently, this reduces the Capital Expenditure
(CapEX) substantially for network operators.

Slicing also allows a high flexibility for creating dedicated logical networks with customer-
specific functions, which can meet the diverse requirements of vertical businesses, along
with all implied QoS requirements. QoS requirements can vary from hard QoS guarantee
requirements, which demand for a clear resource reservation, to soft QoS guarantee
requirements that can be addressed with a combination of resource reservation and
multiplexing. Regarding the 5G Radio Access Network (RAN) segment for instance, Table 2,
shows the standardized Channel Quality Indicator (CQI) values [7] that associate QoS
characteristics in terms of resource type priority (Guaranteed Bit Rate (GBR) or not),
scheduling priority level, packet delay budget and error loss rate to a standardized CQI index
values, edge-to-edge traffic between UEs and the Packet Data Network Gateway (P-GW).
Based on this table, use case examples implying hard QoS requirements can include
autonomous driving safety, which is based on ultra-low-latency for message exchanges, and
reliable remote mobile life assistance, which is based on mobile broadband Ultra-High-
Definition video streaming and ultra-low-latency. Last, we note that addressing QoS
requirements on a per slice basis (i.e., a slice-aware resource slicing with QoS support in
mind) requires extensions to the current QoS mechanisms.

Table 2 Channel Quality Indicator (CQI) defined in the 36.213 rel 14 standard [7]

QCI Resource
Type - GBR

or not

Priority Packet
Delay

Budget

Packet
Error Loss

Rate

Example Services

1 GBR 2 100ms 10−2 Conversational Voice

2 GBR 4 150ms 10−3 Conversational Video (Live Streaming)

3 GBR 3 50ms 10−3 Real Time Gaming, Vehicle to Everything
(V2X) messages

4 GBR 5 300ms 10−6 Non-Conversational Video (Buffered
Streaming)

65 GBR 0.7 75ms 10−2 Mission Critical user plane Push To Talk
voice (e.g., MCPTT)

66 GBR 2 100ms 10−2 Non-Mission-Critical UP Push To Talk voice

75 GBR 2.5 50ms 10−2 V2X messages

5 non-GBR 1 100ms 10−6 Internet Protocol Multimedia Subsystem
(IMS) Signalling

6 non-GBR 6 300ms 10−6 Video (Buffered Streaming) Transmission
Control Protocol (TCP) -Based (for example,
World Wide Web (www), email, chat, ftp,

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 23 of (121)

Peer to Peer (p2p) and the like)

7 non-GBR 7 100ms 10−3 Voice, Video (Live Streaming), Interactive
Gaming

8 non-GBR 8 300ms 10−6 Video (Buffered Streaming) TCP-Based (for
example, www, email, chat, ftp, p2p and the
like)

9 non-GBR 9 300ms 10−6 Video (Buffered Streaming) TCP-Based (for
example, www, email, chat, ftp, p2p and the
like). Typically used as default bearer

69 non-GBR 0.5 60ms 10−6 Mission Critical delay sensitive signalling
(e.g., MC-PTT signalling)

70 non-GBR 5.5 200ms 10−6 Mission Critical Data (e.g. example services
are the same as QCI 6/8/9)

79 non-GBR 6.5 50ms 10−2 V2X messages

In order to achieve the transition of the existing enterprise infrastructure and services to a
5G virtualized deployment, intelligent slicing offers configurable warranties in terms of QoS
and/or Quality of Experience (QoE), paving the way for new markets and a wide range of
diverse and innovative use cases, including those with hard QoS requirements. The
underlying objectives are, first, to transit to a virtualized environment that is oriented
towards verticals and desired QoE, along with a focus on cognitive network management,
and second, to transit to a virtualized environment with control for E2E slicing operation and
slice-based services across multiple operator domains, using the concepts of SDN and NFV.
In addition, there is a notion of a “one-stop shop”, which facilitates the smooth and efficient
migration of enterprises from the current reality to that of 5G slices for enhancing current
use cases as well as for creating new ones. The latter can be done in terms of innovative use
case onboarding, prompt slicing provisioning, flexible and efficient control and management.

Another important aspect towards moving to a 5G-connected virtualized deployment is
traffic isolation, which can be achieved via network traffic control with a programmable Data
plane. Traffic Isolation refers to performance isolation and/or subnetwork isolation in terms
of middleboxes for reaching an app server (such as switched and routers). Also, it can refer
to isolated tenant networks for the purpose of per tenant/user traffic differentiation.
Physical resource slicing within an isolated tenant network provides a guarantee of hard QoS
requirements in terms of network metrics (bandwidth, latency/delay, jitter, etc.). Further, it
can guarantee user-specific QoS requirements for different users in the tenant network, via
virtualized network control functions that offer the required control capabilities as well as
mobility management for same-tenant UEs.

In addition, virtualized deployments move away from the traditional (and simpler)
hardware-based data path model, towards a (more complex) both hardware-based and
software-based data path model. Specifically, Virtual machines (VMs) can be interconnected
with both software-data paths and with physical ports of Commercial Off-The-Shelf (COTS)
computers. The combination of hardware-based and software-based data paths leads to
control and monitoring points along E2E paths from source to destination. Regarding
physical data paths, each machine has to provide at least two physical network interfaces,
possibly connected to different hardware forwarding devices, respectively, interconnecting
the network segments involved in the connectivity of the computer. As explained in further
detail in section 5.1 of D2.3 [5] about QoS support for the non-RAN segment, high-end
hardware-based network cards can provide basic network traffic telemetry and embedded

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 24 of (121) © SLICENET consortium 2018

control functions that allow the configuration of existing control functions, with other
approaches being usually based on programmable hardware data paths with Field
Programmable Gate Arrays (FPGA) network cards. On the contrary, the software-based
approach has three different network control and telemetry points: one in the host machine;
another one in the software switch; and finally, one inside of the data path of the virtualized
network control function. Last, regarding QoS support in the RAN Segment, a RAN controller
provides runtime UE monitoring, control, and coordination to support QoS. This allows
adapting UP functions after spatio-temporal traffic and network dynamics, with each RAN
module (given in further detail in section 5.1 of D2. 3 [5]) being decomposed into the control
logic of the radio link and the control action that applies logical decisions.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 25 of (121)

2 Enterprise Data Plane

2.1 Enterprise Infrastructure

From the connectivity perspective, the enterprise infrastructure can be summarized in three
layers:

 Physical networks - Datacenter (DC) gateways, Top of the Rack (ToR) switches, blades
Network Interface Card (NIC);

 Underlay networks - based on Virtual Local Area Network (VLAN) and created during
the infrastructure provisioning;

 Overlay networks - based in tunnelling mechanisms like Virtual Extensible Local Area
Network (VXLAN) or Multiprotocol Label Switching over User Datagram Protocol
(MPLSoUDP) and used for traffic isolation between tenants.

The following subchapter presents the general concept of NFV, Management and
Orchestration (NFV MANO), and Business Support System (BSS) and Operational Support
System (OSS) functional blocks, communication interfaces between them and the functions
and procedures that allow the creation of apps. The Management and Orchestration
(MANO) framework proposed will be the base of the development and implementation for
prototyping IoT platform [8] [9]. This subchapter is made in line with the SliceNet logical
architecture proposed and detailed in D2.2 [1] and which is figured in Figure 5.

Figure 5 Slicent Logical Arhitecture [1]

NFV provide the aspect of implementation of Network Functions as software only entities
that run over the Network Function Virtualization Infrastructure (NFVI) [9]. In Figure 6 it is
illustrated the high-level NFV framework.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 26 of (121) © SLICENET consortium 2018

Figure 6 High Level NFV architecture

Can be observed, from Figure 6, four main working domains:

 VNF, as the software implementation of a network function which is capable of
running over the NFVI [9].

 NFVI, including the diversity of physical resources and how these can be virtualized.
NFVI supports the execution of the VNFs [9].

 Network Function Virtualization Management and Orchestration (NFV MANO), which
covers the orchestration and LCM of physical and/or software resources that support
the infrastructure virtualization, and the LCM of VNFs. NFV MANO focuses on all
virtualization specific management tasks necessary in the NFV framework.

 OSS and BSS. OSS is software, in some cases hardware, apps that support back-office
activities, which operate a telecommunication network, provision and maintain
customer services. BSS is a software app that supports customer-facing activities.
Billings, order management, customer relationship management, call centre
automation. BSS may also encompass the customer-facing a thin layer of OSS app
such as trouble ticketing and service assurance.

To fulfil our Enterprise Segment based on an ETSI MANO model, we’ll implement as follows:

 Cross Plane Orchestrator is composed of the following modules: heat-api-cfn and
heat-engine. Heat-api-cfn is a module that exposes an external Representational
State Transfer APIs (REST) based api to the heat-engine service. The communication
between the heat-api-cfn and heat-engine uses message queue based Remote
Procedure Call (RPC) [10]. Heat-engine does all the orchestration work and is the
layer in which the resource integration is implemented [11].

 Management Plane is composed of three main components, Metering which is
composed of the ceilometer service (ceilometer service is composed of several
modules who combine their responsibilities to collect, normalize and redirect the
data [12]), LCM which is composed of the heat-api module, which is responsible to

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 27 of (121)

expose an external REST based api to the heat-engine service and Configuration
Management which is composed of three modules: nova-compute, who is
responsible for building a disk image, lunching it via the underlying virtualization
driver, responding to calls to check its state, attaching persistent storage and
terminating it [13]; cinder-volume, who is an REST based api responsible to trigger
the creation of a logical volume on the storage node; and the glance-manage who is
a utility for managing and configuring a glance installation.

 CP is composed by two main components: VIM and SDN. VIM is composed by four
modules: nova-api, nova-conductor, cinder-api and glance-api. The nova-api module
is a server daemon that serves the metadata and compute APIs in separate
greenthreads, the nova-conductor module is a server daemon who provides
coordination and database query support for nova service, the module cinder-api in
OpenStack Ocata (15.0) is deprecated now, and is under cinder-wsgi who works
under apache service but the main roles are the same, to uses eventelt as a
webserver and wsgi application manages. Eventlet provides own wsgi application to
provide web server functionality [14]. The module glance-api servers the service
where users can upload and discover data assets that are meant to be used with
other services [15]. SDN is composed by the neutron service. Neutron offers the
functionality to create and attach interface devices managed by other OpenStack
services to networks [16].

The NFV framework enables dynamic construction and management of VNF instances and
the relationships between them regarding data, control, management, dependencies and
other attributes. To this end, there are at least three architectural views of VNFs that are
around different perspectives and contexts of a VNF. Those perspectives are as follow:

 A virtualization deployment/on-boarding perspective where the context can be a
VM;

 A vendor-developed software package perspective where the context can be several
inter-connected VMs and a deployment template that describes their attributes;

 An operator perspective where the context can be the operation and management of
a VNF received in the form of a vendor software package.

Figure 7 High Level NFV Architecture with the MANO highlight

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 28 of (121) © SLICENET consortium 2018

The Management and Orchestration Plane, Figure 7, which covers the orchestration and
LCM is composed by the following architectural framework functional blocks (this approach
is in line with the SliceNet logical architecture presented in Figure 5):

 Cross Plane Orchestrator, has two main responsibilities:
o As mentioned in D2.2 [1] the Cross Plane Orchestrator and Resource Orchestrator

represents the low level orchestration for slice orchestration.
o The orchestration of NFVI resources across multiple VIMs for each plane, fulfilling

the aspects that the NFVI resources under consideration are both virtualized and
non-virtualized resources, supporting VNFs and partially VNFs. Virtualized
resources in-scope are those that can be associated with virtualization containers,
and have been catalogued and offered for consumption through appropriately
abstracted services.

o The LCM of NSs, fulfilling the Network Service Orchestration which is responsible
for the Network Service LCM including the following operations:

 On-board NS register a NS in the catalogue and ensure that all the templates
describing the NS are on-boarded.

 Instantiate NS, create a NS using the NS on-boarding artefacts.
 Scale NS, grow or reduce the capacity of the NS.
 Upgrade NS by supporting NS configuration changes of various complexity

such as changing inter-VNF connectivity or the constituent VNF instances.
 Create, delete, query and update of VNF Forwarding Graph Descriptors

(VNFFGs) associated to a NS.
 Terminate NS, request the termination of constituent VNF instances, request

the release of NFVI resources associated to NSs, and return them to NFVI
resources pool if applicable.

 As a set of examples an NS catalogue is contain in the messages exchanged
between the Keystone and other services, as the form of links to the other
services that are necessary to interact in our use cases. Keystone could give
out links for more than one region, depending on the providing configuration.
The code from Table 3 will search the catalogue for the compute and NS.

Table 3 The code that search the catalogue for the compute and NS

#Find the link to the NOVA API in the service

catalog:

for service in

r.ison()['acccess']['serviceCatalog']:

 if service['type'] == 'compute':

 nova_endpoint =

service['endpoints'][0]['publicURL']

 if service['type'] == 'network':

 neutron_endoint =

service['endpoints'][0]['publicURL']

In the Table 4 there are provided 2 examples of NS catalogues.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 29 of (121)

Table 4 Examples of NS catologues [65]

"catalog": [

 {

 "name": "Keystone",

 "type": "identity",

 "endpoints": [

 {

 "interface":

"public",

 "url":

"https://identity.example.co

m:35357/"

 }

]

 }

]

"catalog": [

 {

 "name": "Neutron",

 "type": "network",

 "endpoints": [

 {

 "interface":

"admin",

 "url":

"https://network.example.com:

9696/"

 }

]

 }

]

The main parameters used in the Table 4 are:

1. Endpoints, which is an array type and represent a list of endpoint of objects.
2. Id, which is a string type and represent the Universally Unique Identifier (UUID) of

the service to which the endpoint belongs.
3. Type, which is a string type and represents the service type, which describes the API

implemented by the service. Its value could be compute, identity, image, network, or
volume.

4. Name, which is a string type and represents the service name.

 Virtualized Network Function Manager (VNFM) is responsible for the LCM of VNF
instances. Each VNF instance is assumed to have the same and the only VNF
Manager. The VNF manager may be assigned the management of all VNF instance, of
the same type or of different types. The non-exhaustive set of functions performed
by the VNFM functions. These functionalities may be exposed by means of interfaces
and consumed by other NFV-MANO functional blocks or by authorized external
entities:

o VNF instantiation, including VNF configuration if required by the VNF deployment
template.

o VNF installation feasibility checking, if required.
o VNF instance software update or upgrade.
o VNF instance modification.
o VNF instance scaling out or in and up or down.
o VNF instance-related collection of NFVI performance measurement result and

faults or events information, and correlation to VNF instance-related events or
faults.

o VNF instance assisted or automated healing.
o VNF instance termination.
o VNF LCM change notification.
o Management of the integrity of the VNF instance through its lifecycle.
o Overall coordination and adaptation role for configuration and event reporting

between the VIM and the Element Management (EM).

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 30 of (121) © SLICENET consortium 2018

 VIM is responsible for controlling and managing the NFVI compute, storage and
network resources, usually within one operator’s Infrastructure Domain. VIM may be
specialized in handling a certain type of NFVI resources (e.g. compute-only, storage-
only, networking-only), or may be capable of managing multiple types of NFVI
resources (e.g. in NFVI-Nodes). The following list expresses the set functions
performed by the VIM. These functionalities may be exposed by means of interfaces
consumed by other NFV-MANO functional blocks or by authorized external entities:
o Orchestrating the allocation or upgrade or release or reclamation of NFVI

resources, and managing the association of the virtualized resources to the
physical compute, storage, networking resources. Therefore, VIM keeps an
inventory of the allocation of virtual resources to physical resources.

o Supporting the management of VNFFGs by creating and maintaining Virtual Links,
Virtual Networks, sub-nets, and ports as well as the management of security
group policies to ensure network or traffic access control.

o Managing in a repository inventory related information of NFVI hardware
resources (compute, storage, networking) and software resources (e.g.
hypervisor), and discovery of the capabilities and features of such resources.

o Management of the virtualized resource capacity and forwarding of information
related to NFVI resources capacity and usage reporting.

o Management of software images (add, delete, update, query or copy) as
requested by other NFV-MANO functional blocks (e.g. Cross Plane Orchestrator).
While not explicitly shown in the NFV-MANO architectural framework, the VIM
maintains repositories for software images, in order to streamline the allocation
of virtualized computing resources. A validation step, performed by VIM, is
required for software images before storing the image.

o Collection of performance and fault information of hardware resources
(compute, storage and networking) software resources, and virtualized resources.

o Management of catalogues of virtualized resources that can be consumed from
the NFVI. The elements in the catalogue may be in the form of virtualized
resources that can be consumed from the NFVI. The elements in the catalogue
may be in the form of virtualized resource configurations.

NFV MANO reference points describe the interface between each functional block and are
described in the following lines.

 OSS/BSS – Cross Plane Orchestrator (OS-MA-NFVO): This reference point is used for
exchanges between OSS/BSS and Cross Plane Orchestrator and supports the
following Network Service Descriptor (NSD) and VNF package management, Network
Slice Instance (NSI) LCM, VNF LCM, policy management and/or enforcement for NS
instances, VNF instances and NFVI resources, querying relevant NSI and VNF instance
information from the OSS/BSS and forwarding of events, accounting and usage
records and performance measurement results regarding network service instances,
VNF instances, and NFVI resources to OSS/BSS, as well as and information about the
associations between those instances and NFVI resources.

 Element Management (EM) – VNF Manager (VE-VNFM-EM): This reference point is
used for exchanges between EM and VNF Manager, only in case when the EM is
aware of virtualization, and supports the following procedures, VNF instantiation,
VNF instance query, VNF instance update, VNF instance scaling out or in, and up or

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 31 of (121)

down, VNF instance termination, forwarding of configuration and events from the
EM to the VNFM, and forwarding of configuration and events regarding the VNF from
the VNFM to the EM.

 Cross Plane Orchestrator - VNF Manager (OR-VNFM): This reference point is used
for exchanges between Cross Plane Orchestrator and VNFM, and supports the
resource related requests by the VNFM, sending configuration information to the
VNFM, so that the VNF can be configured appropriately to function within the VNFG
in the NS and collecting state information of the VNF necessary for NS LCM.

 Cross Plane Orchestrator – Virtualized Infrastructure Manager (OR-VI): This
reference point is used for exchanges between Cross Plane Orchestrator and VIM,
and supports the resources reservation and/or allocation requests by the Cross Plane
Orchestrator and virtualized hardware configuration and state information exchange.

 Virtualized Infrastructure Manager – VNF Manager (VI-VNFM): This reference point
is used for exchanges between the VIM and VNFM, and supports the resources
allocation requests by the VNFM, and virtualized hardware resources configuration
and state information exchange.

The NFVI can be defined as the totality of all hardware and software components which
build up the environment, in which VNFs are deployed, managed and executed. From the
VNFs point of view, the virtualization layer and the hardware resources looks like a single
entity providing them with desired resources.

Figure 8 High Level NFV Architecture with the NFVI and VNFs highlight

The hardware resources displayed on the bottom of the Figure 8 include computing, storage
and network that provide processing, storage and connectivity to VNFs through the
virtualization layer. Storage resources can be differentiated between shared network
attached storage and storage that resides on the server itself.

The virtualization layer abstracts the hardware resources and decouples the VNF software
from the underlying hardware, thus ensuring a hardware independent lifecycle for the VNFs.
The virtualization layer has the responsibilities for abstracting and logically partitioning
physical resources, commonly as a hardware abstraction layer, enabling the software that
implements the VNF to use the underlying virtualized infrastructure and providing virtualized
resources to the VNF.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 32 of (121) © SLICENET consortium 2018

The architectural view of the NFVI and NFV is presented in Figure 6, where the virtualization
layer in the middle of the NFVI ensures that the VNFs are decoupled from hardware
resources and therefore, the software can be deployed on different physical hardware
resources. In the scope of this deliverable this virtualization layer will be managed by the
open-sources software OpenStack based.

2.1.1 Smart City IoT segment

The enterprise infrastructure is using the Openstack framework with all relevant services in
order to provide Infrastructure as a Service (IaaS) type of solution for hosting the IoT
platform. Bellow diagram, from Figure 9, depicts the Openstack services and their
interaction with respect to Enterprise Segment overall proposal.

NSD

KVM
IOT

PLATFORM
VIM

VNFM

REST

REST

OSA

VNFD

REST

Server 1

Server 2 Server 3

Figure 9 Openstack services and their interaction with respect to Enterprise Segment

The provisioning flow of Smart City service would be based on following steps:

1. A request from OSA is sent to Heat orchestration engine containing the NSD
identifier.

2. Heat is analysing the request and the NSD.
3. Heat sends a request to VNFM Murano for IoT platform instantiation.
4. Murano analyses the IoT platform requirements based on associated VNFD.
5. Murano requests the granting of LCM to Heat.
6. Heat authorizes the request and transmits to Murano the associated VIM details.
7. Murano is sending a request to VIM in order to allocate network.
8. VIM creates the network using the Neutron service and confirms the allocation to

Murano.
9. Murano is sending a request to VIM in order to allocate a compute host.
10. VIM creates a VM according to the compute requirements of IoT platform.
11. VIM confirms the instantiation to Murano.
12. VNFM confirm the deployment to Orchestrator.

These steps described above could be observed from Figure 10.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 33 of (121)

VIMVNFMOrchestrator Compute nodes

NSD

VNFD

2
3

4
5

6 7

8

9
10

11

12

Figure 10 IoT platform instantiation

The physical architecture for Smart City IoT segment is composed by:

 two routers which act as gateways to provide demarcation between Wide Area
Networks (WAN) and Enterprise infrastructure;

 two aggregation switches in order to allow seamless expansion of the infrastructure
in the future;

 two ToR switches used for servers’ connectivity;

 three servers to host the above depicted infrastructure.

Based on the calculations detailed in Subchapter 8.2.1, each server has the following
hardware capabilities:

 processors, 12 core/processor @ 2.4 GigaHertz (GHz);

 128 Gigabyte (GB) RAM;

 TB Hard Disk;

 Network adapters of 1 Gigabits per second (Gbps).

Having the target to build a resilient infrastructure, bellow diagram from Figure 11 depicts
the physical components and their connectivity.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 34 of (121) © SLICENET consortium 2018

vPC

Po Po

Po

vPC

Figure 11 Enterprise physical architecture

The underlay networks are used for transport of the remote management, Control and Data
planes traffic and relay on VLANs for segmentation. Following the Figure 12, the
administrative subnet is used for remote management access to all nodes of the
infrastructure. The internal subnet is used for communication between nodes, being
accessed by the REST of the Openstack framework and being reachable only within the
infrastructure nodes. Traffic subnet is used to communicate with external networks and will
allow sensors data to reach the IoT platform. The scope of the overlay subnet is to provide
communication between internal IoT platform components and is dynamically created based
on Neutron inputs.

Figure 12 Connectivity in Enterprise Infrastructure

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 35 of (121)

2.2 Enterprise Private Cloud

Enterprise Private Cloud Infrastructure is a type of cloud computing infrastructure that has
the same characteristics and advantages as a public cloud including even more benefits but
at a specific cost. The main difference is that this type of cloud infrastructure is a private
one, it is developed, installed and administrated for dedicated needs of one and specific
private organization. This offers connectivity and all additional services only for one
company/institution being able to share it in special cases.

Even if this approach comes with multiple benefits (like security, resource management,
architectural choices, etc.) has also two drawbacks. The first one is strongly related to the
entire cost of the project with all necessarily hardware equipment provisioning and
installation. This could generate a big investment and a grow on CAPEX side. The other one is
related to the implementation time and also the time spent on trainings with every member
of the team involved in the project. It is more cost effective to buy a subscription to an
existing cloud platform than to implement this entire project.

In general, there are three types of deployment for cloud infrastructure:

 Public cloud

 Private cloud

 Hybrid cloud

In the following sentences it is described shortly every type of it.

Public cloud infrastructure represents a type of virtualized environment mainly owned by a
third party, a company/service provider with many resources behind which they are held
one or many physical DCs and operational teams that can assure availability of the services.
The whole variety of services and access to it follow the model of multitenant with sharable
resources at hardware level, but logical distributed and separated such that can assure and
secure the data of any client. Some benefits of this type of approach are:

 Payment model: typically, almost all providers offer a pay-as-you-use model, where
the client pays only for the compute resources he uses. This could be a very
economical way for some of use cases.

 Self-management: the user can deploy, decommission, upgrade, downgrade, start or
shutdown anytime any machine without a big and skilled team.

At this moment, the top five cloud computing vendors are:

 Microsoft

 Amazon

 IBM

 Salesforce

 SAP

 Followed by Oracle, Google, VMWare and many others.

Private Cloud Infrastructure is a type of environment with a single tenant in which case all
hardware resources (compute, storage), network are dedicated (and in many cases owned
by) to a single client or company and all data is protected behind a firewall [16]. In general,
this type of approach is dedicated and chosen by middle and large size company/enterprise
businesses.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 36 of (121) © SLICENET consortium 2018

An important benefit of private cloud is that single organization that has access to resources,
can allocate however it is necessarily and this operation could lead to an efficiency of cost
for energy and for operation entire cloud. In addition, flexibility is a big plus. Every private
organization can choose own technologies, architecture and software such that can secure
and isolate apps and use cases.

A third model, the hybrid cloud is maintained by both internal and external providers. In
effect, a hybrid cloud is a combination of public and private cloud services, with
orchestration and connectivity between the two [17]. This model is attractive because it
enables organizations to take the benefits of the public cloud, while maintaining their own
private cloud for sensitive, critical or highly regulated data and applications.

In Table 5 are summarized the main characteristics of a cloud infrastructure.

Table 5 Main characteristics of cloud infrastructure

Type Flexibility Capacity Cost Security Payment O&M Provisioning Site

Private Yes Limited Initially
high

High Initial
payment +
support

Yes Instant (after
cloud is up)

Yes

Public Yes High Low
(limited
usage)

Low Pay-as-you-
use

No Instant No

2.2.1 Private Cloud for Smart City

To start development and implementation of entire Enterprise Cloud Infrastructure
dedicated to the Smart City use case and all network components, it is necessarily to
describe the needs and all blocks that make up entire service. All elements and components
from private cloud network will be described in the following words and this environment
will be developed in Orange Romania laboratory on physical infrastructure (servers and
connectivity). A high level view of Smart City Apps could be observed from Figure 13.

Figure 13 High level view of Smart City apps

Using this entire hardware infrastructure, we will instantiate a Private Cloud Infrastructure
based on OpenStack open source software collections.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 37 of (121)

OpenStack is a cloud operating system that controls large pools of compute, storage, and
networking resources throughout a DC, all managed through a dashboard that gives
administrators control while empowering their users to provision resources through a web
interface [18]. In Figure 14 it is presented a high level design for Openstack [18].

Figure 14 High level design for Openstack [18]

OpenStack is not a hypervisor, but it is designed to work with a number of different
hypervisors. Users have the option of deploying a hypervisor on the machine or an OS that
has a built-in hypervisor, like Linux Kernel-based Virtual Machine (KVM). With the OpenStack
bare-metal provisioning, users can push VMs onto bare-metal servers.

There are many OpenStack components; some of them that will be used in this project are
listed below.

Nova (compute) includes the controller and compute nodes. These get VM images from
OpenStack's image service and after that it will create a VM on the specific server.

Neutron (networking) creates virtual networks and network interfaces, and attaches to
many proprietary vendor networking products.

Keystone (identity storage) grants users and processes access to different OpenStack tools
based on an authentication token that keystone generates [19].

Besides controller node, MANO and Apps servers will use over bare metal, KVM as
hypervisor. KVM is open source software that can enable a full virtualization solution. Using
it, we can deploy and manage multiple VMs with different OSs images (Linux-based,
Windows, etc.). KVM Virtualization Environment could be observed from the Figure 15.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 38 of (121) © SLICENET consortium 2018

Figure 15 KVM Virtualization Environment

KVM converts Linux into a bare-metal hypervisor. All hypervisors need some operating
system-level components—such as a memory manager, process scheduler, input/output
(I/O) stack, drivers, security manager, a network interface to run VMs. KVM has all these
components due the fact that it’s part of the Linux kernel. Every VM is implemented as a
regular Linux process, scheduled by the standard Linux scheduler, with dedicated virtual
hardware like a network card, graphics adapter, Central Processing Unit (CPU), memory and
disks [20].

Above, in section 2.3.1., is presented entire Enterprise Segment with all VMs created on this
infrastructure, there functions and how can be them connected to build upon a solid
infrastructure for Smart City that can serve one or more cities.

Putting together all this elements it can be developed a sustainable environment for the
Smart City use case with smart lighting system and also available to be customizable for
more solutions.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 39 of (121)

3 Services plane: Enterprise Services

3.1 SliceNet vision about 5G Connected Services

NSs can be provisioned on demand and deployed over a virtualized infrastructure, allowing
the transition from nowadays vertical dedicated networks to share and customizable
horizontal networks. Slicing can maximize resource-sharing, e.g. via multiplexing, both across
and within domains. The purpose of a SliceNet slice, in particular, is for enterprises to be
able to consume logical (sub-) networks, hence allowing having no dedicated network
infrastructures in order to support enterprise environments.

Figure 16 5G-Slicing offered as a SaaS over PaaS over IaaS

5G-IaaS provides a programmable infrastructure; 5G-PaaS extends IaaS with support for
control, orchestration and virtualization; finally, 5G Software as a Service (SaaS) allows the
connected enterprise services to consume and control the underlying customized network
via P&P control apps.

Figure 16 shows how the Service Plane is organised. A 5G Connected Service is either a NS or
a value-added service such as a video optimizer for an enterprise vertical like Netflix or a QoS
optimizer in an e-health use case. The 5G-IaaS approach presented on top hierarchical level
of Figure 16 provides a programmable infrastructure (e.g., software-defined radio or an x86-
based infrastructure) and hosts the RAN service over the top, with the latter being either
commercial (e.g., Amarisoft) or open-source (e.g., OpenAirInterface (OAI)). From a provider’s
point of view, 5G-IaaS is a function that can be logically sliced and provided to each slice as
its own logical function. However, management remains the same, including the
management lifecycle. From the point of view of a slice, IaaS is perceived as a dedicated 5G
control function which is deployed as if there is no slicing.

Whereas the 5G-IaaS level is used as a common infrastructure for many slices, a 5G-PaaS
level sitting on top of the 5G-IaaS allows not only the creation of a slice based on SLA/QoS
requirements, but also the customization of the network functions as per enterprise needs.
Essentially, a 5G-PaaS level extends the underlying IaaS with support for control,
orchestration and virtualization via providing open APIs for a slice-friendly development
environment to enable an ecosystem for network applications. For instance, FlexRAN and
RAN runtime belong to this category.

A 5G SaaS level allows the connected enterprise services to consume and control the
underlying customized network comprised by both the 5G-PaaS and the 5G-IaaS. 5G-SaaS
embodies customized services through P&P control apps that are operating on the top of the
customized network such a video optimization, analytics, etc. At this level, the provider
provides an E2E service and not a VNF, which is perceived by slices more like a (micro-)
service mesh composition with the internals of the 5G NSS being opaque. Enterprise services

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 40 of (121) © SLICENET consortium 2018

can cognitively consume services like Radio Resource Management (RRM) and user
handover to provide the control logics through control apps. The development of these apps
rely on the provided Software Development Kit (SDK) and API to enable new control and
management services in an agile and flexible manner. Note, however, that 5G connected
apps are not only limited to the enterprise control apps, but also they can interact via app-
to-app communication with other control apps from other domains.

Finally, that enterprise services can also span to the 5G-PaaS level. The latter level
establishes both shared and dedicated CP and/or User Plane (UP) functionalities such as
mobile handover algorithms or RRM policies. This way an enterprise service slice perceives
5G-PaaS as a new control function that supports slightly different APIs or, alternatively,
management can be similar to standard VNF with some options disabled.

3.2 Smart City Applications

As mentioned in the section above, all apps from the use case are using to export data,
different APIs an SDK and other applications to process and gather all information in one
place.

On the third physical server, from Orange Romania laboratory will be instantiate 3 VMs that
will take the role of apps and will be the core of the data processing and storage for all
information that can be obtained from Smart City infrastructure of sensors and actuators.
Besides these 3 virtual servers, we can, on demand, instantiate new VMs for another third
party apps or data provider.

On the first VM, will be deployed all the components that cover IoT platform functionalities
and on the other two will be deployed one relational database and one no Structured Query
Language (SQL) database where can be stored all kind of data gathered from city solutions.
Both databases represent key points in entire architecture and help the IoT platform to be
more efficient and to process and stored data in correct manner for every type of client or
service.

Types of apps from enterprise segment:

1. Thingsboard.IO – open source IoT platform
2. PostreSQL – open source relational SQL database
3. Cassandra NoSQL – open source non-relational database

The entire concept of Smart City can be understood as all devices deployed in city areas that
provides data and communication technologies used to transport all data to cloud or to any
platform that can analyse it, process it and integrate in visualizations or any form that can
offer key information in running the cities towards an economical, secure, efficient and
green environment for all citizens. In this picture, the Smart City Apps use all components of
enterprise infrastructure to serve all kind of use cases. For Orange Romania, the Smart City
use case is Smart Lighting that forms apps layer of city and gather all information to offer
intelligence such that a city can have an economical and efficiency lighting system. An
endpoint as a web portal is offered to end user to can monitor and control the entire
system.

Forwards, it will be described those 3 apps listed before.

IoT platform needs to be compliant, for Smart City use cases, with some technical
capabilities listed below. Besides that, will have to connect IoT devices via telecom networks

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 41 of (121)

(with/without SIM cards – depends on use case) with reduced power and act like an IaaS
that provides hosting space and processing power for all services.

IoT Platform should integrate a set of tools to facilitate the interconnection between devices
and business apps, with the following components:

 Connectivity Interfaces (public and private) to collect data send command or
notification from/to IoT/ Machine to Machine (M2M) devices;

 Device Management (supervision, configuration, resources, firmware, etc.);

 A specific and configurable policy for message and commands routing between
devices and services;

 Data management system and data storage with different storage periods and
variable access, processing speeds;

 Web portal for user’s management and visualization tools;

IoT Platform architecture, presented in Figure 17, is composed by following complementary
levels:

 Connectivity: manages the communications with the client devices and apps;

 Bus: a set of message-oriented programs allowing exchanges between all client
software modules;

 A set of rules or a bus that can allow messages/commands exchange in asynchronous
manner;

 Service: various modules supporting the high level functions (device management,
data processing and storage, etc.).

In Figure 17 it is proposed architecture of an IoT platform, taking into account all the aspects
listed above.

Figure 17 Proposed architecture for IoT platform

In the following paragraphs it will be described in more details every component of the
platform.

a) Connectivity Interfaces:

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 42 of (121) © SLICENET consortium 2018

IoT Platform must allow a set of standard and unified public interfaces allowing connecting
any programmable devices, gateway or functional IoT backend. The public interfaces must
support the following protocols:

 Message Queuing Telemetry Transport (Secure) -MQTT(S) interface to communicate
and also over websocket interfaces;

 Hypertext Transfer Protocol Secure (HTTPS) interface;

 Optional other protocols useful in IoT segment, such as Constrained Application
Protocol (CoAP).

It handles communications from specific families of devices with defined protocol (over IP)
and translates them as standardized messages available on platform.

b) Device management:

IoT Platform must offer various functions dedicated to all kind of devices:

 Supervise devices connection and disconnection to/from the SaaS;

 Manage devices configuration parameters;

 Send command to devices and monitor the status of these commands.
c) Event processing:

Event processing service is aimed at detecting notable single event from the flow of data
messages. Based on processing rules that you define, it generates fired events that your
business apps can consume to initiate downstream action(s) like alarming, execute a
business process, etc.

d) Data management:

IoT Platform allows storing the collected data from any connectivity interfaces. These data
could be then retrieved by using Hypertext Transfer Protocol (HTTP) interface. A full-text
search engine must be provided in order to analyse the data stored. Data management must
be based on:

 The store service which is aimed to store data messages from IoT things (devices,
gateway, IoT app collecting data, etc.) as time-series data streams;

 The search service.

The data messages sent to the IoT platform can be encoded in a customer specific format.
For instance, the payload may be a string containing a hexadecimal value or a csv value. The
data decoding feature enables you to provision your own decoding grammar. On receiving
the encoded message, the IoT Platform will use the grammar to decode the payload into
plain text JavaScript Object Notation (JSON) fields and record the JSON in the store service.

e) Security: API keys are used to control the access to the SaaS for devices/app and users to
authenticate.

f) Visualization tool: Provide a simple visualization tool web-based for friendly usage.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 43 of (121)

Figure 18 IoT Platform integration

IoT platform need to be connected with two types of databases (relational and non-
relational) such that can store in efficient way all messages and documents. All these
elements figured in Figure 18 are part of apps ecosystem and will be deployed, configured
and tested in engineering laboratory on virtual infrastructure build above a physical server.

Every function and functional mode will be presented in chapter 8, where entire Enterprise
Orange prototype will be described.

3.3 Smart City Services

The apps depicted in section 3.2 will be utilized to run the services for Smart City use case in
Alba Iulia. For beginning, as it was also described in D2.1 [4] we intend to implement the
SmaLi-5G SLICENET use case. After implementing those services it is expected to extend this
implementation to other services that could be optimum offered by a 5G Smart City, like:
metering solutions (water, gas), environmental monitoring, (pollution, temperature,
humidity, noise), connected parking, real-time traffic information and control, connected
buildings, smart home, connected household appliances and public safety alerts for
improved emergency response times. The target, in the future, is to transform Alba Iulia in a
Smart City powered by 5G services.

Services delivered by smart cities should be easy to use, responsive, efficient, open and
environmental sustainable. Citizens expect high quality public services meant to improve
their daily quality of life. Nowadays cities are under pressure to enhance urban services
management, provide more efficient infrastructures and services, often for less cost.

SmaLi-5G will be considered in the scope of the 5G Massive machine-type communication
category where the challenge is to accommodate the massive number of connected
actuators/controllers. Another service requirement to be met by the SmaLi-5G use case is to
assure ultra-high network reliability and availability, while low-power, context awareness
and location awareness requirements for managing the connected actuators/controllers
over the access and transport layers can further improve the solution cost efficiency. This

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 44 of (121) © SLICENET consortium 2018

will be especially important during the daytime when the smart streets lighting poles
infrastructure is supposed to remain powered to facilitate other city services (e.g. public
safety surveillance, air quality monitoring, public Wi-Fi hotspots, advertising) [4]. The goal of
the use case is to implement smart lighting services within the Smart City platform, over a
5G enabled architecture, with slicing support, from IoT devices to the smart lighting cloud
app.

The knowhow of a sensor network is mainly reflected in provision of real time information
and in the fact that the realtime sensor data might be integrated with other type of
information such as environmental modelling and control. The increased penetrations of
fixed and wireless networks and the expected introduction of 5G allow that such ecosystems
to be connected to distributed processing data centres. The 5G Smart City enables the
sensors to feel the city systems, and process the sensing information by cloud native apps
while integrating components from the cyber space and internet of things.

Smart city services and apps are focusing on how to shape future 5G based services and apps
from a smart city perspective. The design, implementation and approval of innovative 5G
internet based services and apps are mandatory prerequisites considering the challenges of
advanced connected cities. The generation of data is not restricted to a particular location,
and the resulting products are typically delivered through the network. Smart city services
are enabled by services oriented enterprise architecture including web services and cloud
native apps.

On this deliverable it will be described and prototyped a 5G Connected Virtualized Enterprise
Infrastructure that could support the Smart Lighting service for the Smart City platform
following by the adoption of a wide range of services.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 45 of (121)

4 Control Plane for Enterprise

4.1 SliceNet vision about Control Plane for Enterprise

A slice QoE Optimizer module in the CP regards the functionality of a per-slice optimisation
actuation framework with the scope of QoE guarantees. The functionality offers
optimisation algorithms tailored for the infrastructure resources and the network functions
to be deployed, re-configured or released after the characteristics of the NSI, the current
state and utilization of the underlying physical and virtual data plane. Essentially, the QoE
Optimizer is a dedicated control function within the CP, adapting the function split of 4G/5G
architectures that separate control functions into either common or dedicated. Common
control functions are transversal for all NSI intra- and inter-domain slicing functions
(discussed later in this section). Dedicated control functions are on the other, are specifically
tailored for every NSI, such as the P&P control (discussed in the next paragraph) and the
Slice QoE Optimizer, providing enterprises with the flexibility of customized functionality
tailored slice-specific QoE requirements.

In general, P&P control functionalities provide on-demand composition, integration and
abstraction of NSI control and management to the enterprise slice consumers. SliceNet P&P
regards per-slice sets of control functions consumed and augmented by slice consumers,
hence being tailored to the enterprise needs. In order for the enterprise to consume
services, there is service registry, an inventory and a discovery module to support the
necessary control and management functions for that purpose. These control and
management functions include (i) a very basic monitoring option (e.g., for monitoring
performance, resource availability, etc.), (ii) a limited control option that allows the
enterprise as a slice consumer to gain access to a limited set of SDN and NFV control and
configuration primitives, and (iii) an extended control option allowing to access the slice
instance LCM.

Last, QoS assurance is an important factor for the enterprise. For this purpose, handling of
virtual and physical network resources can support multi-tenancy and resource isolation for
the sake of performance or security among different instances of slices and services
consumed by the enterprise. Therefore, the enterprise has to be offered with different levels
of resource isolation and sharing so as to customize the CP and to increase the resource
utilization.

4.2 Smart City Control Plane

SliceNet CP architecture, as described in D2.3 [5] is composed by different domains and
covers different technologies. There are identified some specific SliceNet functions, as P&P,
QoE Optimizer, service chaining. It is also expected to support the QoS and the SLA for each
sliceable vertical apps, in this case the Smart City lighting apps. The approach is to build and
manage a single domain inside the Network Service Provider (NSP) that also plays the role of
Digital Service Provider (DSP). The Enterprise will be part of the E2E smart lighting slice,
within the same management domain, that contains the RAN and Core part, with the
specificity that these are not the subject of the task, the slice being composed by the sub-
slices. The Smart City use case is considered to be treated as a “common slice” with respect
of the slice requirements, that reflect to both Physical Network Functions (PNFs) and VNFs
functions, including also the CP defined actuators.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 46 of (121) © SLICENET consortium 2018

The SliceNet CP high level architecture includes the Service-Based Architecture (SBA)
approaches and has the origins of implementation based on ETSI MANO, with main focus on
the VIM, integration within the Enterprise, acting as a resource orchestrator, can be
observed from Figure 19 [5].

Figure 19 SliceNet CP high level view

4.2.1 VIM

VIM is managing the NFVI and serves as a conduit for control path interaction between VNF
and NFVI. The main task for VIM is to inventories, provisions, de-provisions and manages
virtual compute, storage and networking while also communicating with the underlying
physical resources. The VIM is responsible for operational aspects such as logs, metric,
alerts, root cause analysis, policy enforcement, service assurance etc. In Figure 20 is shown
the interaction responsibilities of the VIM with the management and orchestration
functional block, and SDN controller.

Figure 20 Interaction between VIM and SDN Controller

VIM comes in the form of complete software stacks. On the market right now there are only
two major software VIM stacks prevalent in NFV: OpenStack and VMware.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 47 of (121)

To achieve the goal of building the Enterprise platform, we choose a more open source
approach, and we get to handle on OpenStack, which is growing in popularity among the
NFV deployment at carriers worldwide.

The most important aspect of OpenStack pertaining to its usage as a private cloud platform
is the tenant model. Every virtual or physical object governed by the OpenStack system
exists within a private space referred to as a tenant or project [21].

The main purpose is to use one of the computing nodes as a Management and Orchestration
where we intend to deploy alongside Cross Plane Orchestrator, VNFM and VIM also a Tacker
server. The main purpose of the Tacker server deployment in this deliverable infrastructure
is to perform the scaling procedures and optimize all the physical pool resources of the
server, with future perspective in case of managing multiple OpenStack sites without having
the need to deploy Tacker server on each of these sites.

After installation of OpenStack it needs to initialize the flavors that the platform will support.
Most Tacker sample Topology and Orchestration Specification for Cloud Applications
(TOSCA) templates will ask Tacker to create Flavor on demand [22]. If not, the specified
flavor in templates must exist in OpenStack. Tacker repository’s sample TOSCA templates are
referring to cirros image named “cirros-0.3.5-x86_64-disk”, so this image should be
uploaded into OpenStack before Tacker uses it.

TOSCA represents a specification that aims to standardize how it describe software apps and
everything that is required for them to run inside a cloud based app. TOSCA provides a way
to describe not only an app, but also its dependencies and supporting cloud infrastructure.
TOSCA contains two building blocks references: nodes and relationships.

Management and Orchestration descriptors are detailed in the table attached in the Annex
A. For example, to deploy a real VDU, we’ll use the following TOSCA template:
tosca.nodes.nfv.VDU.Tacker [23], which contains the information from the Annex A.

TOSCA parser will be updated to handle VNFD, Virtual Link Descriptor (VLD) and Connection
Point for NSD and is detailed in Annex A. The process of parsing is represented by analysing a
string input made out of a sequence of tokens to determine its grammatical structure with
respect to a given formal grammar. The parser then builds a data structure based on the
tokens. This data structure can then be used by a compiler, interpreter or translator to
create an executable program or library.

All the signalling represented in the Figure 21 is made throw specific points, called
connection points that will be exposed as part of VNF. An NSD needs to be created to
instantiate NSs. The method of creating NSD follows the TOSCA template scheme presented
in the Annex A.

In Figure 21 it can be noticed three parts of communication flow, first one is established
between the EM and VNFM establishing a VNF LCM scheme, the second one is establishing
the permissions from the orchestrator point and the last communication flow is invoking the
resource management operations handled by the VIM.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 48 of (121) © SLICENET consortium 2018

Figure 21 Simplified flow for VNF related resource management

As a conclusion of this chapter, VIM is the software resource block responsible for ensuring
that physical and virtual resources work smoothly in any condition. Compared with the more
traditional Operating System, VIM comes with extra features of collecting resources logs
from many other machines at the same time.

4.2.2 SDN Controller

SDN controller represents the control point of the SDN network and its scope is to control
the flow rules of the overlay forwarding path entities (vSwitches or vRouters) and might also
have the capability to manage the physical network equipment.

Under the perimeter of Enterprise cloud, the SDN controller is responsible for performing
network functions and to provide on-demand connectivity for apps and services while
keeping isolation between different tenants.

In the Enterprise cloud implementation, Neutron Openstack service is responsible for
enabling networking and controlling the vSwitches embedded in the compute node as
depicted in Figure 22.

Openstack
Neutron

Open vSwitch
Openflow / XMPP

Figure 22 Neutron control to Open vSwitch

In order to provide network dynamicity for discovery and allocation of virtual networks and
compute resources, the SDN controller is bound to the VIM. This interaction is based on
Modular Layer 2 (ML2) plugin and RPC service for bidirectional agent communication.

As depicted in Figure 23, Neutron agents which run in Enterprise infrastructure are split as
follows:

 On Controller Node will run neutron-server, neutron-dhcp-agent, neutron-l3-agent
and neutron-plugin-agent;

 On Compute Node will run neutron-plugin-agent (neutron-openswitch-agent).

Neutron-server

Neutron-dhcp-agent

Neutron-l3-agent

Neutron-openvswitch-agent Neutron-openvswitch-agent

Controller Node Compute Node

Figure 23 Neutron agents

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 49 of (121)

Table 6 specifies the scope of each Neutron agent in order to allow the provisioning of
virtual network interfaces and resources.

Table 6 Neutron agents usage

Agent Usage

Neutron-server Provides REST API exposure

Neutron-l3-agent Provides Layer 3 (L3) routing

Neutron-dhcp-agent Provides Dynamic Host Configuration Protocol (DHCP) services

Neutron-openvswitch-agent Provision network resources

Neutron will help on VM booting process by wiring the VM port and providing IP address to
it using DHCP agent. Neutron will also help when communication between different VMs or
to external physical world is needed.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 50 of (121) © SLICENET consortium 2018

5 Management Plane for Enterprise

5.1 SliceNet vision about Management Plane for Enterprise

The SliceNet Management Plane contains four internal sub-planes; namely, the (i)
Information, (ii) Orchestration, (iii) Monitoring and (vi) Cognition. The Information sub-plane
is logically centralized, so as to avoid replication and incoherent information (service/slice
templates and registries). It acts as a central point of interaction all SliceNet (sub) planes.
Then, the Orchestration is a sub-plane for ensuring that actions take place in a correct order
to deploy and/or configure the logical abstractions in SliceNet, namely the resources, slices
and services. The Monitoring sub-plane collects filters and enriches network information
such as events/alarms or counters from the running network resources, slices and services.
Last, the Cognition sub-plane enables proactive performance and fault management for the
network slice and services. It is fed with information from the monitoring subplane, which it
processes to allow automation policy-based procedures to run.

Regarding orchestration, in particular, for coordinating the needed actions in order to deploy
and configure a service or a slice and their (possibly cross-domain) resources, there is a
series of six components discussed next. First off, a (i) Service Orchestrator coordinates the
uninterrupted service delivery of the slice/service to the individual customers in the sliced
multi-tenant environment, exposing the necessary interfaces to customers, who can consult
available services and request new ones, or update and monitor the existing ones. Slices in
SliceNet are composed of isolated virtual infrastructures. It is at this point where a (ii) Slice
Orchestrator component is needed to coordinate one or more technology-independent
virtualization domains, so as to build isolated and unified slices, as well as to deploy and
manage the slices at runtime. The third component, a (iii) Resource Orchestrator, does the
lowest level of orchestration within the Cross-Plane Orchestration, providing the building
blocks (e.g. VNFs) for the previously discussed Slice Orchestration. It includes ETSI MANO
management components and SDN components for the apps LCM.

In addition, there is a special (iv) P&P Manager that does the P&P control, providing
management primitives and APIs that allow slice consumers to have direct run-time control
over their slice instances. In a nutshell, the P&P Manager offers all needed customization
and configuration interfaces required to expose to the verticals. Related to the former, a (v)
Infrastructure and Resource Manager offers a flexible RAN slicing runtime environment [24]
for multiple virtualized RAN instances. It enables slice owners and infrastructure providers to
manage slices, RAN and Core Network (CN) lifecycles, and to enforce custom control (e.g.,
for handover decisions). As a result, different levels of sharing and isolation across resources
and network functions are feasible with fine-granularity on a per slice basis. Last, there is a
(vi) Slice Security Manager component, which triggers the deployment of de/encryption
functions and interacts with other components in order to share de/encryption keys for the
E2E encrypted network paths within a slice.

5.2 Smart City Management Plane

Regarding Management Plane of a Smart City Enterprise architecture (in line with
deliverable D2.4. [6]) from a management perspective, 3GPP defines a Network Slice
Management Function (NSMF) as responsible for the LCM of network slice instances, linked
and interconnected to Network Slice Subnet Management Function (NSSMF) for LCM of

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 51 of (121)

subnets instances. A potential relation between 3GPP and NFV functions can be assured
such that SliceNet Management Plane can be defined and development in context of Smart
City Use Case.

All management and orchestration blocks from a network slice (in this case Smart Lighting
slice) should include and operate, such that can facilitate the proper functioning of the
service, the following functions: provisioning, optimization and performance, monitoring and
maintain entire NSI in parameters in which it was designed.

The approached scenario, as also described in D2.4 [6] for the Smart City use-case is based
on a single management domain, is a combined DSP and NSP function, as the both roles are
played by the operator, including in this case, under the same umbrella, the Enterprise
implementation.

Figure 24 Management Architecture Components – DSP & NSP Combined Perspective [6]

In the following paragraphs, will be described main management blocks and functions
regarding management of a slice dedicated to a smart city solution or service which is
offered, design, provisioned, configured, monitored and released.

5.2.1 Monitoring

Starting from the architecture Figure 24, the Monitoring Sub-Plane is the functional block
who is responsible to perform the architecture sensing functionalities, collection, filter and
enrichment of counters, events and alarms retrieved from the network resources that
compute the slice delivered to each vertical. The functional block, Monitoring Sub-Plane,
from the Figure 24 is responsible of collecting, filtering and enriching network information
that will be use to understand the performance and usage of the network slice and services.
It gathers information, such as counters, events and/or alarms form the running physical/
virtual network resources, slices and services.

DSP + NSP (Combined)

Monitoring Subplane Orchestration

Subplane

Cognition Subplane

Information Subplane

Service
Monitoring

Aggregation

P&P Mgr

Analytics

Policy
Framework

Service
Orchestrator

Service
Catalogue

Slice
Monitoring

Resource
Monitoring Slice

Catalogue

Resources
Catalogue

Slice
Orchestrator

Resource
Orchestrator

Service
Inventory

Slice
Inventory

Resources
Inventory

SliceNet Slice-level
Management Plane

SliceNet e2e Service-level
Management Plane

SliceNet e2e Service
& Slice-level Management PlaneLegend:

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 52 of (121) © SLICENET consortium 2018

Monitoring scope is to provide information to the intelligence procedures deployed in the
Cognition Sub-Plane functional block, as well to allow the network operator administrator
and/or DSP/Digital Selective Calling (DSC) to view the slice and service status.

Aspects that are expected to be monitored will be split as follows:

1. Host-Based Metrics:
The information here extracted are the bottom of the hierarchy of primitive metrics,
represents the host-based indicators. All of those metrics collected from this layer of
the hierarchy will provide the perspective for evaluating the health or performance
of an individual machine, disregarding for the upper layers in the hierarchy. These are
mainly comprised of usage or performance of the operating system on the bare
metal or hardware performance, like:

 CPU

 Memory

 Disk Space

 Processes

2. Application Metrics:
The next layer in the hierarchy of metrics is application metrics. Those are concerned
with units of processing or work that depend on the host-level resources, like
services or apps. The specific types of metrics at this layer depend on what the
service is providing, what dependencies it has, and what other components it
interacts with. In this deliverable slice network this can be consisting of a VM who is
performing the app and it desired to monitor the metrics at the application layer
considering the health, performance, or load of an app. So, in this case we should
consider the following metrics:

 Error and success rate

 Service failures and restart of the service

 Performance and latency of responses

 Resource usage

3. Network and Connectivity Metrics:
When it is necessary to deal with horizontally scaled infrastructure (like in enterprise
development), another layer of infrastructure is needed, so will be possible to
monitor the higher level of extrapolation of application and server metrics, but the
resources in this case are homogeneous servers instead of machine-level
components. This layer of metrics summarizes the health of collections of servers
using the following metrics:

 Pooled resource usage

 Scaling adjustment indicators

 Degraded instances

4. External Dependency Metrics:
Considering the distributed system that is necessary to develop and the fact that
most of the slice will communicate throw APIs. Tracking these within your own
system – as well as your actual interactions with the service – can help to identify
problems with your provider that may affect your operations. Some of the items that
might be applicable to track at this layer of hierarchy are the following metrics:

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 53 of (121)

 Service status and availability

 Success and error rates

 Run rate and operational costs

 Resource exhaustion

The NFV inherent multi-layer infrastructure requires an evolved monitoring approach. Which
can rely on the real-time analytics capability, i.e. it must be able to correlate data from all
the layers involved to understand the root-cause analysis in case of a problem occurring in
the top layers correlating data from top and from bottom layer. And E2E active service
monitoring, i.e. it should possibly use active monitoring by continuous testing for end user
service layer, also relying on service activation automated testing systems used during
automated deployment by Network Functions Virtualization Orchestrator (NFVO).

The monitoring sub-plane at the management plane constantly monitors and feed the slice
KPIs to the LDE. The LDE checks that the level of packet loss is higher than the desired level,
checks what is the threshold for TCP SYN retries per minute and it has to identify if the
device has reached maximum throughput.

As a conclusion of this subchapter, it will be a good practice to expose all the monitoring
metrics throw APIs which are categorized as presented above to further deployments in
order to obtain a more deep perspective about all the performance of the system and
service. All those monitoring metrics exposed throw APIs could be forwarded also to the
VNFM in order to concentrate all the metric information’s into one API to the Cross Plane
Orchestrator in order to take the decision to optimize all the system parameters so that the
services provided offer a high yield.

5.2.2 Life-Cycle Management

The LCM proposed is based on ETSI NFV MANO [25] and ETSI TS 128 526 [26] related to VNF
creation instantiation, configuration, scaling, auto-scaling, on-boarding and termination. The
LCM include also the NS instance procedures for instantiation, termination, scaling,
modification and lifecycle changes

In this case the main functions of LCM are:

 Create & Instantiate VNFs

 Operate VNFs

 VNFs chaining

 Update VNFs

 Terminate VNFs

 Delete VNFs

The LCM module is used to provide agility to enterprise infrastructure, facilitating the
spawning of VMs, scaling, healing, modification or termination of them. The LCM module is
based on descriptors of the targeted infrastructure, such as templates or blueprints. One
template describes the list of virtual nodes which need to be instantiated, their flavours,
configurations, and policies and is written in TOSCA.

The proposed module for LCM of enterprise services is Murano, Openstack project. Murano
will provide a catalogue of apps and services, including the rules and configurations of them
contained in templates. Network connectivity between virtual instances can be also
described in NS templates. LCM module performs basic functions such as commissioning,

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 54 of (121) © SLICENET consortium 2018

scaling or terminating of NSs and provides a framework for implementing advanced
functions such as healing, patching or upgrades.

LCM module will interact with other components of enterprise infrastructure as depicted in
Figure 25.

Murano API Murano EngineMurano Dashboard

Murano Client CLI Heat

Keystone

Figure 25 Murano components and interaction with other services

As a conclusion, the advantages of using a LCM module are:

 Fast deployment of services compared to manual methods;

 Avoid human errors in manual methods;

 Scaling capabilities to meet demand.

5.2.3 Configuration Management

Configuration Management is the part of the management plane that includes mechanism
for: design, deployment, provisioning, configuration (input for CP), monitoring, de-
provisioning of resources, including the slice and the service.

The configuration management is intended to support the enterprise network slice (through
OSA) ordering, by interacting with the CP, and includes functions such as configuration,
update, upgrade/rollback, resource configuration.

 Configuring VNF/PNF/NF | Service configuration

Proper configuration input information must be provided to the CP. The correct amount of
virtual resources (e.g.: vCPU, vRAM, Virtual Storage (vStorage)), communication protocol
information (e.g.: MQTT, CoAP, HTTP, etc.), associated technology data particularities (e.g.:
OS type, storage file system type, associated middleware and plug-ins), associated VNF/PNF
(vFirewall, vDHCP server, vIDS, etc.) must be taken into account, stored into templates and
deployed accordingly.

Due to change of traffic or load patterns, the slice, comprised of VM, VNF and PNF elements,
allocated as resources, can be scaled up/down, as a resource optimization process. A new
service instance may require reconfiguration on an existing VNF or new VNFs. If the service
evolves, new VNFs or resource allocation blueprints need to be defined.

VNF/PNF/NF configuration can be either manually triggered from the Horizon Web Interface
or by active configuration management templates stored in HOT (native to Heat) or TOSCA
templates (accessible to Heat via heat-translator).

The below steps are to be followed for enabling flexible, auto-scaling apps:

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 55 of (121)

1. Define a HOT / TOSCA template (TOSCA templates can be translated in Heat with a
special plugin), specifying: min-max virtual instances, compute, storage and
networking resources to be allocated and a key pair: control access to instances.

2. Call Heat with a cloud app HOT / TOSCA template.
3. Heat creates the cloud app stack with scale group and scale policy.
4. Heat creates alarm definitions and scaling notifications in Ceilometer.
5. Ceilometer starts to monitor the scaling group elements (auto-scaling setup is done).
6. When the allocated resource pool reaches the alarm thresholds, Ceilometer detects

and generates an alarm.
7. Ceilometer signals the app (VM/VNF) through Heat.
8. Heat gives the scale up /scale down command to the app, which can have two

outcome types:
a. allocating /removing additional VMs, VNFs, or adding PNFs to the running app;
b. creates another app instance, having the same VM/VNF/PNF resources (vCPU,

VRAM, vStorage, number of IPs, etc.) as the initial one.

If properly configured, once set up and instantiated, an app can automatically scale by
following steps 6 – 8.

These steps are depicted in the below diagram:

Virtual Infrastructure

VNFs
PNFs

2

HOT / TOSCA Template
for Configuration
Managemement 3

4

56

7

8

1

VMs

Figure 26 Configuringuration Management for Manual and Auto Scaling

 Update VNF/PNF/NF

Updating a VM/VNF/PNF in this context refers to the update of compute (vCPU, vRAM,
vStorage) and networking (vFirewall, vRouter, vCDN, etc.) or add /removing physical
resources in the mix.

Tools such as Tacker can be used for Auto-Scaling in a NFVI. Tacker is an OpenStack project
for NFV Management and Orchestration that deploys and operates VNFs and Physical NSs on
an NFV Platform. Tacker is also compatible with TOSCA templates and can be used for: VNF
LCM, monitoring, auto-scaling and self-healing.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 56 of (121) © SLICENET consortium 2018

Monitoring activities must to be done on a recurrent basis, in order to scale network and
computing resources as per Enterprise Slice needs. Thresholds must be set in order to scale
networking and computing resources up or down as per slice needs. One of the benefits
obtained by NFV approach is auto-scaling, which is the ability to dynamically extend or
reduce resources allocated to the VNF as needed and at run-time.

Scaling can be of two types (self optimization process capabilities) as is presented in Figure
27:

 Vertical Scaling | scaling up/down - ability to add or remove allocated resources for
existing computing nodes, such as memory, CPU capacity or storage;

 Horizontal Scaling | scaling out/in - ability to scale by add/remove instances, such as
VMs (instantiate new VNFs quickly, enabling creation and delivering new services
quickly).

VM PNFVNF VM PNFVNF

Scale Up – Down

VM / VNF / PNF Vertical Scaling

Scale In - Out

VM / VNF / PNF Horizontal Scaling

VM PNFVNF

VM_1 PNF_1VNF_1 VM_2 PNF_3VNF_2 VM_N PNF_NVNF_N

Figure 27 Vertical and Horizontal Scaling

When a certain threshold is hit, more resources can be committed (more bandwidth will be
allocated, more vCPU, vRAM or vStorage will be allocated), the VMs could be moved to a
superior storage plan automatically (E.g.: from Hard Disk Drive (HDD) to Solid State Disk
(SSD), to satisfy high I/O ratios).

One such example is a vCPU reaching a certain set MAX threshold, (e.g. 80%). At that point, a
Ceilometer alarm is triggered, which, in turn, initiates the instantiation of a vCPU allocation
VNF Template, which will supplement the existing vCPU resources. The supplementary
resources usually appear as a new instance, through the Scale In – Out method.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 57 of (121)

Similarly, when the vCPU of a certain Smart City slice reaches a certain set MIN threshold
(e.g. 20%), at which point a Ceilometer alarm is triggered, which in turn, initiates the
deletion of a supplementary vCPU VNF template or a decrease in vCPU usage in a VM that is
running – the latter implies a restart.

The PROs and CONs of each type of scaling are listed in Table 7 below:

Table 7 Differences between Scale Up – Down and Scale In – Out methods

 Scale Up - Down Scale Out- In

PROs - low power consumption
- good solution for single

VM apps

- easier to manage
- no need for VM / VNF instance restart
- used as the default scaling technique by most TELCO

VNFs
- can also be used with VM resources

CONs - - less scalable
- - not used by most TELCO

VNFs
- - restart must take place

for resource allocation

- - more networking resources are needed for each
supplementary instance

- - its flexibility is limited as it depends on the VM Flavor
size and Virtual Deployment Unit which is statically
configured

Even critical errors (like Out of Memory (OoM)) should trigger a “re-apply” of some
templates, restarting crucial services in order to assure that the service is not affected. Also,
different VNFs might apply, considering these thresholds (a different protocol for handling
higher bandwidth or a different number of machines in the network).

 Upgrade/ Rollback VNF/PNF/NF

There might be some cases in which the VM /VNF templates might not apply correctly.
These might be triggered during automatic scaling or a planned upgrade.

First the system has to identify the nodes on which scaling has been done or a planned
upgrade has been attempted. TOSCA templates work with interfaces. An interface defines
the types of operations that can be performed on nodes. Operations like upgrade and
rollback can be defined in the same workflow and soft coded on the same interface.

In case of an auto-scale trigger or VNF upgrade, the upgrade operation is passed and the
VNF is upgraded. If the VNF template is up to date, then the upgrade request is ignored. In
addition to upgrading, it can save the current configuration for potential rollbacks.

The rollback operation simply takes the previous VNF template and restores it. Multiple
rollback levels are supported and should be implemented.

 Resource configuration

As stated in 4.2.1, in VIM section, Resource Management Operations are done between the
VNFM and the VIM. The resources lie in the NFVI, managed by the VIM. The VNFM (Murano)
must give commands to the VIM, in order to allocate resources.

According to ETSI [27], NFV-MANO architecture must be able to support a service composed
of VNFs and PNFs and implemented across multivendor environments. Interaction between
VNF and PNF is restricted to connectivity functions.

All VNFs managed by one VNFM will use the same virtualized resource management model.
This means that resource reservation models can be done at NFVO (Heat) level.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 58 of (121) © SLICENET consortium 2018

There are multiple resource commitment models. All of them will be uses, according to the
Sliced Network needs:

1. Reservation model – this is applied on TOSCA template initial definition. Once the
template is defined, certain virtual and physical resources are booked at VNF
template first run.

2. Quota /Allowance model – which implies that a limited amount of resources can be
allocated per service or per service slice. These quotas can be specified at VIM level,
in the VNF template for the specific service (slice) or at the entire service level.

3. On demand model – which implies that resources are allocated on availability, not
limiting a service (slice) to its VNF/PNF initially set resource boundaries.

Resource management between VNFM and VIM is depicted in the below figure:

Resource Pool 1

PNF_1

vCPU

Slice A – Smart Lighting

Resource Pool 2 Resource Pool S

vRAM vStorage

Slice B – E-Health Slice Z

vFirewall vRoutervSwitch

Resource Group A1

VNF_MPNF_N

vResourc
e2

vResou
rceT

vResour
ce1

Resource Group A2

VNF1 VNF_P

Resource Group B1

VNF1 VNF_Q

Resource Group N1

VNF1 VNF_R

VNFM

VIM

VNF_1

Figure 28 Resource management between VNFM and VIM

In this diagram, each Smart City slice is a “tenant” in the VNFM, to which resource “tenants”
(e.g.: vCPU, vRAM, vStorage, vDHCP, vFirewall, vRouter, vSwitch) are allocated.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 59 of (121)

6 Cross-Plane Orchestration for Enterprise

The general purpose of the cross-plane orchestrator is to provide, as defined in D2.2 [1], the
capability of orchestration through several logical layers (virtual infrastructure, resources,
slice and service) within the scope of E2E slicing. The scenario is based on the assumption
that in this case the DSP and the NSP are combined, under the single domain administration.

6.1 SliceNet vision about Cross-Plane Orchestration for Enterprise

Figure 29 Enterprise orchestrator example, with a two-level orchestration

There is not a unique orchestration recipe from an enterprise perspective. On one hand an
enterprise wants to integrate well its existing infrastructure services like specific P&P
services, but on the other hand to have its own VNFs for managing NFs. Figure 29 shows an
example of enterprise orchestration that employs two levels. First, a dedicated VNF
orchestrator, in this example, for P&P Control Apps and for managing enterprise services via
control apps.. Second, a Platform Orchestrator for the different domains (e.g., RAN and
Mobile Edge Computing (MEC)), e.g. the different segments, technologies, vendors, etc., on
top of which there are control adapters exploiting common and technology-independent
control primitives. Notice that there can be multiple, domain-specific orchestrators in the
latter case, contrary to the single orchestrator in the first level, which manages the control
apps of the existing infrastructure. Also, notice that there can be a (meta-) Enterprise Multi-
domain orchestrator hiding the two different levels of orchestration.

A single orchestrator may be able to orchestrate and manage both NFs and Network
Applications (NAs). However, in SliceNet we not only envision different NF and NA
orchestrators, as already considered by European Telecommunications Standards Institute
Multi-access Edge Computing (ETSI MEC) [28] and depicted in Figure 2.2 of deliverable D3.1
[2]. But we also envision the differentiation of Common and Dedicated Functions, the earlier
aimed for the infrastructure provider and the latter for the slice owners. While the
Dedicated Functions serve slice owners towards optimizing slice resource usage, the
Common Functions are there to impose cross-slice policies and resolve conflicts between the
different dedicated functions, with the goal of optimization from a network perspective
rather than a slice perspective.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 60 of (121) © SLICENET consortium 2018

Regarding the orchestration tools landscape, most of the current solutions are open-source.
The most important ones are:

 Open Source MANO (OSM) [29]: OSM is published under Apache v2 license and
includes the Service Orchestrator, the Resource Orchestrator and a configuration
manager. In one realization of the architecture, the Juju framework [30] is used to
provide the VNFM functionalities and Riftware [31] to support orchestration.

 Tacker [32]: Tacker is an official OpenStack project targeting data centre
environments, building a VNFM and a NFVO to deploy and operate NSs and VNFs on
the OpenStack infrastructure platform.

 Open Network Automation Platform (ONAP) [33] [34]: ONAP brings together Open
Enhanced Control, Orchestration, Management and Policy (ECOMP) and Open
Orchestrator Project (Open-O) [35] as a platform for real-time, policy-driven
orchestration and automation of both physical and virtual NFs. It is supported by
Linux Foundation.

 Open Platform for NFV (OPNFV) [36]: realizes the ETSI MANO framework, supported
by the Linux Foundation. OPNFV integrates OpenStack [18] as the supporting cloud
management system and also considers for a number of SDN controllers. OpenStack
is used in the cloud orchestrator role.

 SONATA [37] and 5GEx (5G Exchange) [38]: SONATA and 5GEx comprise two new
types of orchestrator following ETSI MANO. JOX (defined below) employs an
architecture that is similar to the SONATA design, exploiting a message bus to
support the plugin communication subsystem.

 Open-Baton NFVO [39]: Open-Baton is designed and implemented following the ETSI
MANO specification. It uses message queueing for the communication with the
VNFM, however both OpenBaton and SONATA do not inherently support life-cycle
management of network slices.

 JOX [40]: JOX is an open-source, event-driven orchestrator for the virtualized
network which can be included in this list as a validation/prototyping tool. It supports
network slicing natively for the MEC platform and its app as well as for RAN and CN
segments. From the implementation perspective, JOX is tightly integrated with the
Juju VNFM framework.

 HEAT: main orchestration project from Openstack; provides the capability to launch
multiple cloud applications using templates written in TOSCA.

 Other frameworks: there are other framework such as CloudNFV, Puppet, Chef and
Cloud Foundry, the Unify solution that describes a multi-layer service orchestration in
a multi-domain network, Central Office Re-architected as a Datacenter (CORD/XOS),
Gigaspaces Cloudify, etc.

6.2 Smart City Cross-Plane Orchestration

In Enterprise environment, the purpose of the Orchestration engine is to automate, optimize
and abstract the operational tasks for the deployment of apps and services. Orchestration
module is opening its lower level components by the use of an open REST API which,
integrated in the SliceNet framework, is consumed by OSA to trigger the slice instantiation in
enterprise environment.

Smart City cross-plane orchestration engine is represented by HEAT, the main orchestration
project developed in Openstack. Heat relies on three components:

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 61 of (121)

 heat-engine – main component which allows orchestration tasks;

 heat-api – REST API which listens for API requests and send them to heat-engine;

 heat – command line interface (CLI) which uses heat-api.

Using a template based model, HEAT implements an orchestration engine to allow the
instantiation of Smart city apps. HEAT is interacting with VIM in order to orchestrate the
physical layer (which provides infrastructure resources like servers, volumes and floating IPs)
and is also interaction with VNFM in order to orchestrate the application layer. As depicted
in Figure 30, HEAT is also interacting with the monitoring service in order to provide auto-
scaling capabilities.

Figure 30 HEAT integration and interaction

6.3 Enterprise integration in SliceNet E2E architecture

An innovative cross-plane orchestrator must be able to automate the different
functionalities (FCAPS) associated to the automation of the slice management. The
orchestrator will coordinate the operations of the data plane, CP, management plane and
service plane for optimised network slicing, and deploy NFV actions for operational
requirements on demand related to QoE sensors /actuators to monitor /optimise the QoE of
a use case service. The other task is to prototype the demanding vertical business use cases.

The idea of Cross-Plane Orchestration for Enterprise is firstly to provide a set of enabling
automated mechanisms which can perform the cross-plane configuration of all the
architectural components involved in the layers from diagram presented in Figure 4 (CP,
Management Plane, Services Plane and Applications Plane) in order to do an efficient slice
management. Another purpose of the Cross-Plane Orchestration is to provide a set of
coordination functions across several logical layers and constructs (e.g. service, slice,
resource, and infrastructure) with the aim orchestrating the provisioning of E2E slices.

It was defined in the deliverable D2.2 [1], subchapter 6.3, that are two types of orchestration
defined in SliceNet: horizontal orchestration and vertical orchestration (see Figure 31). It is
called horizontal orchestration when it refers to multiple domains, either administrative or
technologic, and the orchestration is performed within the same layer or for the purpose of
the same logical construct. Additionally, it is called vertical orchestration when it refers to
multiple layers, e.g. a single network provider performs vertical orchestration when
deploying a service instance where the service is composed by one or more slices and each

HEAT-CLIHEAT-APIHEAT-ENGINE

VNFMVIM

METERING

OSA

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 62 of (121) © SLICENET consortium 2018

slice is composed by multiple resources. Given the three layers considered in SLICENET, e.g.
services, slices and resources; three layers of orchestration are therefore considered the
building blocks of the Cross-Plane Orchestration: service orchestration, slice orchestration
and resource orchestration [1].

Figure 31 Horizontal and Vertical Orchestrations [1]

So tacking into account the aspects presented above, it could be identified in the Virtualized
Enterprise Segment the both models of orchestration, vertical and horizontal. The vertical
orchestration is referring to the multiple layers involved (service, slice, resource, and
infrastructure) and the horizontal is composed by: one slice orchestrator, one service
orchestrator for the Intelligent Lighting service and one resource orchestrator who is
represented in this case by VIM.

Overall, referring to Enterprise integration in SliceNet E2E architecture it is important to
assure the early integration of slicing control, slice management and orchestration for Smart
City use case, Intelligent Lighting.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 63 of (121)

7 One Stop-API

7.1 OSA for Enterprise

OSA enables verticals to develop and deploy specialized 5G services on top of the SliceNet
platform. The OSA can reside on top of the Open Data API, shown in Figure 32, which works
as an interface for communicating with the underlying Control Apps. The figure presents an
abstraction scheme for supporting monitoring, control and programmability by means of
high-level technology-agnostic level APIs (depicted in purple colour, 2nd level northbound
APIs). In addition, there are low-level APIs (depicted in green colour, forming a 1st level
northbound API). The corresponding SDKs, namely, the Platform SDKs at the first level and
the App SDKs, decouple the control logic from the Data plane actions following SDN
principles. They also enable the extract aggregated and structured network configuration,
status and topology information in the form of instantaneous /current network graphs that
allow for a better data analysis and decision-making. Moreover, the SDKs facilitate the
development of extendable network Control Apps that coordinate with one another.

Figure 32 Abstraction scheme

From the enterprise point of view, the OSA appears as an abstraction layer. Below that layer,
there can be a different scheme, depending on the underlying needs. In order to perceive
this concept, it is presented in Figure 33 below, which portrays an abstract approach to
content access. Note that the OSA lies on top of App SDK level, with the latter serving as an
interface layer for what lie beneath. The content-access example shows two extreme cases.
On the left side, there is a bundled OSA API model on top of a unified App SDK, with all
Control Apps being tightly coupled and interdepending on one another. The latter implies
the Control Apps in this case need to coordinate. However, on the right side, there is an OSA
API model that is fragmented into different SDKs and corresponding underlying loosely
coupled Control APPs. In this latter case, the Control Apps are not necessarily depended on
one another; hence, they do not need to coordinate.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 64 of (121) © SLICENET consortium 2018

Authorzation

App SDKs (unified portal)

LDAP Access control

Content

Authorzation

App SDKs

LDAP Access control

Content

App SDKs

App SDKs App SDKs

Bundled & Coordinated OSA
(inter-dependent Control APPs)

Fragmented & Uncoordinated OSA
(isolated/independent Control APPs)

Figure 33 OSA paradigm with respect to two extreme cases: a bunddled OSA API model
sitting on top of a unified App SDK (on the left), and a fragemented OSA API model (on the

right).

7.2 OSA integration in SliceNet E2E architecture

OSA allows verticals to express their request for specialised 5G services in a technology-
agnostic form of a service template, which describes the creation of a slice with specific QoS
characteristics. Then, the request is passed to an appropriate Control App, which comprises
a 2nd level northbound API (see Figure 32). The Control App is responsible for translating this
technology-agnostic request to a policy for slicing used as input by the appropriate Platform
SDK and CP services (1st level northbound API portrayed in Figure 32). The latter yields a
technology dependent format (a.k.a adaptors) which can be understood and implemented
by the underlying Data Plane Services. Without loss of generality, Figure 34 below presents
the case of RAN slicing as an example, which is along the lines of what was described above:

Figure 34 RAN slicing example

A request for slicing the RAN resources follows an abstract service template. It gets passed
to an RRM Control App which can create a policy for the CP Services.

Finally, apart from being an interface for the OSA communication with the underlying
Control Apps, the Open Data API is a kind of a Pub/Sub communication layer that allows
Control Apps to interact via exchanging capabilities, commands and information about their
current status. This means that Control Apps may further provide APIs to other Control Apps.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 65 of (121)

Most of the times, the Control Apps are part of the network functions of an operator, yet via
the Open Data API, third parties can access the limited network status information to
optimize their services or manage the network slices dedicated to them via the OSA.

7.3 OSA for Smart City

OSA is the innovative one-stop shop implementation for vertical’s customized services
creation, as a rapid, efficient and scalable deployment, in relation with the P&P function, as
a dynamic slices configuration, enabled for vertical’s specialized services. The Smart City
services are OSA exposed through an aggregation of NSI/NSSI/NF selectable features that
will offer the requested service, through slice creation for a specific use-case
implementation of smart lighting apps, based on series of specific KPIs.

The OSA will provide to the enterprise the one-stop-shop information for creation the
service /app with specific requirements, based on service templates catalogue. The OSA may
provide in this case both vertical management (app based for service selection) and
horizontal management for administrative roles.

For Smart City vertical slicing configuration at the enterprise level, through the OSA the
request are for configuration of specific VNFs (with specific parameters), as an app request
from the smart lighting owner (local city administration) by providing the information for the
smart lighting network slice creation (number of devices, location, communication needs,
bandwidth and delay requirements, availability) or administrative implementations as
software upgrades.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 66 of (121) © SLICENET consortium 2018

8 Prototyped friendly network segment for Smart City

The SliceNet approach for the current network infrastructure is to remove the limitations of
current technical approaches to a software infrastructure, 5G ready, including elements of
control and management, oriented to vertical services orchestration. The innovation
proposed is also extended to the Enterprise segment development, as a friendly sliced
implementation over the dedicated enterprise network infrastructure (virtualized
implementation), within a single network domain, ready and capable of SSaS that enables
the vertical to select, deploy and consume the proper service slice. The slicing friendly
network segment of enterprise contains the key elements of 5G programmability, software
defined networks, cloud computing, QoS and QoE awareness, with respect of vertical KPIs
and SLA.

8.1 Smart city segment description

The Smart City segment is included in the IoT of connected objects that requires specific
communication services, as described in D2.1 [4] and D2.2 [1]. The service slice is composed
by different sub-slices that correspond to the access (RAN) and core part (virtual Evolved
Packet Core (vEPC)) or Next Generation Core Networks -NGCN) and in addition is
terminated, from a vertical perspective on top of the enterprise.

Sx

S2

S2

vE
PC C

ore

RAN

Ente
rp

ris
e

S1

Lora

LTE-M

Nb-IoT

NR

M
M

E
M

M
E

S-
GW

S-
GW

P-G
W

P-G
W

Apps

Apps

HSS
HSS

S1

System NSSI

Slice Template

Slice 1 Slice 2 Slice 3

Slice ... Slice ... Slice x

GW

Slice Exposion

Network Functions
Repository

Service Exposion

Resources
Repository

Orchestration

OS
Repository

Figure 35 Smart City High Level Architecture

As presented in WP2 [41] deliverable, the use-case proposes smart lighting services, to be
consumed by the vertical (City Hall or Lighting Company), split into three main domains:

 RAN domain, step-by-step approach
o Long range, low power wireless platform (Lora); Long Term Evolution for

Machines (LTE-M); Narrowband Internet of Things (Nb IoT); 5G New Radio
(NR) (sliceable)

 Core domain (sliceable)
o vEPC
o NGCN

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 67 of (121)

 Enterprise domain
o Virtualized infrastructure

The S1 and S2 represent two different services, used by two consumers, within the Smart
City apps, each consumers requiring and using a different service and slice type, chosen from
a template catalogue of services. In this scenario, as the Network Operator (NO) plays the
combined roles of DSP and NSP, the service is offer by the NO that also ensures the
communication with the Enterprise Lighting Apps, in this particular case under the NO
administrative domain.

8.2 Prototyped Deployment plan

The deployment plan of prototyping envisages all enterprise infrastructure adaptation and
services, ready to run into the 5G virtualized, programmed and automated context, opened
to a SBA approach, as presented in D2.2 [1], with respect of the smart lighting and business
model requirements from D2.1 [4], including the concepts of CP and Management Plane, as
referenced into D2.3 [5] and D2.4 [6].

Portal

Linux Kernel

server1

Linux Kernel

server2

Linux Kernel

server3

Controller Node

KVM

Management Node Compute Cluster IoT

VM1 VM2 VM3

IoT DBm SQL

templates

templates

slice slice slice

service service service

resources

CPU RAM HDD

NE

OS OS OS

slice1
slice2

slice3

Service 1
Service 2
Service 3

Figure 36 High Level Enterprise Infrastructure

As described in Figure 36, the prototyping model plans to enable vertical consumers, the
DSC, to benefits of the communications resources and apps exposed by the infrastructure
for IoT Smart City services, into a friendly manner. The system proposed is flexible and may
cope with different use cases, beyond the Smart Lighting apps, that are demonstrated in the
task. The Enterprise prototype proposed is intended to use and integrate de logical
functional blocks and architectures proposed in WP2 [41], WP4 [42] and WP5 [43] and to be
used as a functional SliceNet component in WP7 [44] and WP8 [45].

Detailed deployment plan is addressed into the next chapters, starting from physical and
resource layers, to the virtualization implementations based on open tools, including
resource control, resiliency and availability aspects, management components, up to the

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 68 of (121) © SLICENET consortium 2018

specific apps for Smart City use-case that are instantiated automatically, as a set of pre-
defined VNFs, services chained, and then the services are exposed to the consumer.

8.2.1 Resources modelling and design for Enterprise Infrastructure

After it was presented briefly all the functional blocks inside the ETSI NFV architecture
framework in Subsection 2.1, it is necessary to answer to an important question in the
mission to deploy a functional NFV service: What are the certain hardware requirements to
sustain a stable 200 VM using an OpenStack environment?

To answer to this question, several assumptions must be made, like:

1. It is necessary to sustain 200 VMs
2. No CPU oversubscribing
3. Number of GHz per core: 2.2GHz
4. Hyper-threading supported: use a factor of 2
5. Number of GHz per VM (average compute units): 2GHz
6. Number of GHZ per VM (maximum compute units): 16GHz
7. Intel Xeon E5-2680L v2 core CPU: 12 cores per CPU [46]
8. CPU socket per server: 2 CPU socket per server blade

 Number of CPU cores per VM [46]:

max 𝐺𝐻𝑧

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝐻𝑧 𝑝𝑒𝑟 𝑐𝑜𝑟𝑒 ∙ 1.3 𝑓𝑜𝑟 ℎ𝑦𝑝𝑒𝑟 − 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑛𝑔)
=

16 𝐺𝐻𝑧

2.2 𝐺𝐻𝑧 ∙ 2
= 3.6 𝐶𝑃𝑈 𝑐𝑜𝑟𝑒𝑠 𝑝𝑒𝑟 𝑉𝑀

 Total number of CPU cores [46]:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 ∙ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝐻𝑧 𝑝𝑒𝑟 𝑉𝑀(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑢𝑛𝑖𝑡𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝐻𝑧 𝑝𝑒𝑟 𝑐𝑜𝑟𝑒
=

200𝑉𝑀𝑠 ∙ 2 𝐺𝐻𝑧

2.2 𝐺𝐻𝑧
= 181 𝐶𝑃𝑈 𝑐𝑜𝑟𝑒𝑠

 Number of core CPU sockets [46]:

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑃𝑈 𝑐𝑜𝑟𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠 𝑝𝑒𝑟 𝐶𝑃𝑈
=

181 𝐶𝑃𝑈 𝑐𝑜𝑟𝑒𝑠

12 𝑐𝑜𝑟𝑒𝑠 𝑝𝑒𝑟 𝐶𝑃𝑈
= 15 𝑠𝑜𝑐𝑘𝑒𝑡𝑠

 Number of socket servers [46]:

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑘𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑐𝑘𝑒𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑟𝑣𝑒𝑟
=

15 𝑠𝑜𝑐𝑘𝑒𝑡𝑠

2 𝑠𝑜𝑐𝑘𝑒𝑡 𝑝𝑒𝑟 𝑠𝑒𝑟𝑣𝑒𝑟
= 7 𝑑𝑢𝑎𝑙 𝑠𝑜𝑐𝑘𝑒𝑡 𝑠𝑒𝑟𝑣𝑒𝑟𝑠

 Number of VMs per server [46]:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠
=

200 𝑉𝑀𝑠

7 𝑑𝑢𝑎𝑙 𝑠𝑜𝑐𝑘𝑒𝑡 𝑠𝑒𝑟𝑣𝑒𝑟
= 29 𝑉𝑀𝑠 𝑝𝑒𝑟 𝑠𝑒𝑟𝑣𝑒𝑟

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 69 of (121)

To summarize the results presented above it was created Table 8.

Table 8 CPU calculations results for our case

Nr. Crt. Item calculated Results

1 Number of CPU cores per VM 3.2 CPU cores per VM

2 Total number of CPU cores 160 CPU cores

3 Number of core CPU sockets 13 sockets

4 Number of socket servers 7 dual socket servers

5 Number of VMs per server 29 VMs per server

Based on the previous results, we can conclude that could be deployed 29 VMs per compute
node. Also, memory sizing is also important to avoid making unreasonable resource
allocations. Next will be proceeding to memory calculations.

An assumption list for memory calculations:

1. 2 GigaByte (GB) of RAM per VM
2. 8GB of RAM maximum dynamic allocation per VM
3. Compute nodes supporting slots of: 2, 4, 8 and 16 GB sticks

 RAM available per compute node [46]:

𝑇𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑜𝑓 𝑅𝐴𝑀 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑜𝑛 𝑠𝑒𝑟𝑣𝑒𝑟

𝑀𝑎𝑥 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑜𝑓 𝑅𝐴𝑀 − 𝑠𝑡𝑖𝑐𝑘 𝑠𝑖𝑧𝑒 𝑚𝑜𝑢𝑛𝑡𝑒𝑑
=

128 𝐺𝐵

16 𝑠𝑡𝑖𝑐𝑘𝑠
= 8 𝐺𝐵 𝑜𝑓 𝑅𝐴𝑀 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑛𝑜𝑑𝑒

To accomplish the target to build the enterprise infrastructure it is necessary to achieve the
best performance and networking experience. The following values can be assumed for that:

1. 200 Megabit (Mbits) per second is needed per VM
2. Maximum network latency

To accomplish all of those assumptions made previously it is necessary to use a 10GB link for
each server, which will give [46]:

10000 𝑀𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑜𝑐𝑜𝑛𝑑

29 𝑉𝑀𝑠
= 344 𝑀𝑏𝑖𝑡 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

This value is very satisfying, so the resources modelling planning could go further to identify
highly available network architecture. To solve this task, it is an alternative to use two data
switches with a minimum of 29 ports for data. If we assume a future growth of the network,
it is proper to consider using a switch aggregation that uses the Virtual Link Trunking (VLT)
technology between the switches in the aggregation. This feature allows each server rack to
divide their links between the pair of switches to achieve powerful active-active forwarding
while using the full bandwidth capacity with no requirement for a spanning tree.

Taking in consideration all the previous assumptions and results, it is necessary to plan for an
initial storage capacity per server that will serve 29 VMs. Considering the storage
calculations, several assumptions must be taken into account in this case also:

4. 100GB for storage for each VMs drive
5. The usage of persistent storage for remote attaching volumes to VMs

A simple calculation shows for 200VMs a space of 200 𝑉𝑀𝑠 ∙ 100𝐺𝐵 = 20𝑇𝐵 of local
storage used. It can be assigned 150GB of persistent storage per VM to have 200 𝑉𝑀𝑠 ∙
150𝐺𝐵 = 30𝑇𝐵 of persistent storage.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 70 of (121) © SLICENET consortium 2018

Therefore, the final question is how much storage should be installed by the server serving
29 VMs, 51 𝐺𝐵 ∙ 29𝑉𝑀𝑠 = 1479 𝐺𝐵 = 1.5 𝑇𝐵 is the result.

In conclusion, it is necessary 1.5 TB per server to serve 29 VMs.

8.2.2 Prototyped Physical Layer

In the Physical Layer Implementation, it was chosen in the virtualized infrastructure the
physical resources displayed in Table 9.

Table 9 Physical resources

Compute node role No of processors
[CPUs]

Memory [GiB] Hard Disk
Capacity [GiB]

No of NICs

Controller node 2 128 600 6

Management &
Orchestration node

2 128 1024 6

Compute node 2 128 1800 6

Figure 37 Physical representation of infrastructure

Represented in Figure 37, is the test bed set-up integrated in order to prove the
technological capabilities of the distributed virtualized enterprise app. As it can be seen in
Figure 37 and also mentioned in Table 9, the virtualized infrastructure is distributed on tree
servers. All the physical system capabilities are mentioned in Table 9 and, regarding the
network interface configuration is presented in Annex B.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 71 of (121)

Figure 38 Backend view of the physical infrastructure

Figure 38 represents the backend perspective of the physical infrastructure and each of the
physical interfaces and the use of it. As it shows above some of the interfaces are used in
different subnets and the configuration each of them are detailed in Annex B and configure
name resolution in Annex C.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 72 of (121) © SLICENET consortium 2018

As a conclusion of this subchapter, it was presented the physical layer implementations and
the configurations necessary to sustain the good functionality of the distributed virtualize
system and all the apps above this. From the physical point of view all the interconnection is
working smoothly.

8.2.3 Prototyped Enterprise cloud

As it has been described in section 2.4 of this document, there are three main types of
clouds: public, private and hybrid. In the presented prototyped segment, was followed to
develop and build from scratch an enterprise cloud platform based on Openstack Ocata
version. All Openstack tools have been configured on different physical machine, as follows:
control node, orchestration node and compute node.

In the Figure 39, entire part represented as “Engineering Lab” is composed of three physical
servers and in this section will be detailed server number 3, known as compute node.

Figure 39 The topology used in laborator for the prototype

First component that has been installed and configured on it was KVM, who is a hypervisor
that manages the link between virtual and physical resources. After this, were installed all
necessary tools and has also been mounted necessarily volume for storage usage.

h2020@h2020-server3:~$ kvm --version
QEMU emulator version 2.8.0(Debian 1:2.8+dfsg-3ubuntu2.9~cloud3)
Copyright (c) 2003-2016 Fabrice Bellard and the QEMU Project developers

Figure 40 KVM Version on Ubuntu Server 16.04

 Volume for storage resources (Figure 41):

h2020@h2020-server3:~$ sudo vgdisplay
--- Volume group ---
 VG Name h2020-server3-vg

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 73 of (121)

[…]
--- Volume group ---
 VG Name cinder-volumes
 System ID
 Format lvm2
 […]
 VG Size 1.55 TiB
 PE Size 4.00 MiB
 Total PE 405189
 Alloc PE / Size 404480 / 1.54 TiB
 Free PE / Size 709 / 2.77 GiB
 VG UUID muVJUu-A8jl-JI8A-iJYn-il2x-tGjd-c6uoLX

Figure 41 List volumes group from compute node

In the following paragraphs, it was shown how could be created new VMs. There are two
possibilities: the first one is to use Horizon, friendly web interface and the second one
involves the use of CLI.

1. Web interface (HORIZON):
http://192.168.204.15/horizon/auth/login/?next=/horizon/

Figure 42 Login page of ORO Openstack Platform

After the login (Figure 42), we can go to “Project -> Compute -> Instances” and hit the
“Launch Instance” button. In this page, we have to define a list of parameters such as:
Instance Name, Availability Zone, Source, OS, Flavor, Networks Ports and Interfaces, Security
Groups, and so on.

On the other hand, it has been also installed on server number 2, Heat, a tool that helps to
orchestrate entire infrastructure. So, we will continue to detail instantiation mode through
orchestration flow.

It has to be accessed “Project -> Orchestration -> Stacks” and choose a stack that has been
previously defined.

For instantiation of a VM with IoT flavor, we will use the template from Figure 43.

description: Launch a basic instance with UBUNTU image using the ``IoT_platform_high_version``
 flavor, ``mykey`` key, and one network.
heat_template_version: '2015-10-15'
outputs:

http://192.168.204.15/horizon/auth/login/?next=/horizon/

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 74 of (121) © SLICENET consortium 2018

 instance_ip:
 description: IP address of the instance.
 value:
 get_attr: [server, first_address]
 instance_name:
 description: Name of the instance.
 value:
 get_attr: [server, name]
parameters:
 NetID: {description: Network ID to use for the instance., type: string}
resources:
 server:
 properties:
 flavor: IoT_platform_high_version
 image: ubuntu
 key_name: mykey
 networks:
 - network: {get_param: NetID}
 type: OS::Nova::Server

Figure 43 IoT platform template

2. CLI: ssh h2020@192.168.204.15

To launch a new instance from CLI, just run the following command from Figure 44.

openstack server create --flavor IoT_platform_high_version --image ubuntu --nic net-id=f6291e27-
7476-41b4-9453-5769a32c0fcf --security-group default --key-name mykey ThingsBoardIoT_Platform

Figure 44 Launch new instance from CLI of controller node

In Figure 46 are listed all available VMs from our infrastructure and in Figure 45 network
topology of all machines from cloud.

Figure 45 Network topology – Cloud Infrastructure

The output from Figure 46 represents all available VMs in the Openstack infrastructure.

mailto:h2020@192.168.204.15

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 75 of (121)

Figure 46 Available VMs

For the moment, main interest is on VMs with number 1 (DataBases-Machine) and number 3
(ThingsBoardIoT_Platform).

In the following lines, it will be describe how the databases and IoT platform has been
installed and configured such that can settle up the entire (E2E) cloud infrastructure.

In the Figure 47, it is represented a simple imagine of VMs and host server placed above
KVM hypervisor.

Figure 47 IoT VMs

 Installing IoT Platform:

Prerequisites and informations about the system are listed in Figure 48:

ubuntu@ThingsBoardIoT-Platform:~$ uname -a
Linux ThingsBoardIoT-Platform 4.4.0-124-generic #148-Ubuntu SMP Wed May 2 13:00:18 UTC 2018
x86_64 x86_64 x86_64 GNU/Linux

#virtualization layer
ubuntu@ThingsBoardIoT-Platform:~$ sudo dmidecode -s system-product-name

OpenStack Nova

ubuntu@ThingsBoardIoT-Platform:~$ java -version

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 76 of (121) © SLICENET consortium 2018

java version "1.8.0_161"
Java(TM) SE Runtime Environment (build 1.8.0_161-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.161-b12, mixed mode)

#Update ThingsBoard memory usage and restrict it to 256MB in
/etc/thingsboard/conf/thingsboard.conf
export JAVA_OPTS="$JAVA_OPTS -Xms256M -Xmx256M"

Figure 48 Prerequisites

To install the platform, a package has to be downloaded, unzip it and after that edit some
configuration files and start the entire platform like in Figure 49.

wget https://github.com/thingsboard/thingsboard/releases/download/v1.4/thingsboard-1.4.deb
sudo dpkg -i thingsboard-1.4.deb

Figure 49 Download the packets and install

To start the platform, use the command from Figure 50:

#start the platform
sudo service thingsboard start
#status of the platform
service thingsboard status
Redirecting to /bin/systemctl status thingsboard.service
● thingsboard.service - thingsboard
 Loaded: loaded (/usr/lib/systemd/system/thingsboard.service; enabled; vendor preset: disabled)
 Active: active (running) since Thu 2018-03-22 18:51:06 EET; 1 months 29 days ago
 Main PID: 15390 (thingsboard.jar)
 CGroup: /system.slice/thingsboard.service
 ├─15390 /bin/bash /usr/share/thingsboard/bin/thingsboard.jar
 └─15404 /usr/bin/java -Dsun.misc.URLClassPath.disableJarChecking=true -Dplatform=rpm -jar
/usr/share/thingsboard/bin/thingsboard.jar

Mar 22 18:51:06 ThingsBoardIoT-Platform systemd[1]: Started thingsboard.
Mar 22 18:51:06 ThingsBoardIoT-Platform systemd[1]: Starting thingsboard...
Mar 22 18:51:08 CentOS72x86-apps thingsboard.jar[15390]:
===
Mar 22 18:51:08 ThingsBoardIoT-Platform thingsboard.jar[15390]: :: ThingsBoard :: (v1.4.0)
Mar 22 18:51:08 ThingsBoardIoT-Platform thingsboard.jar[15390]:
===

Figure 50 IoT platform status in Linux environment

 Installing and configuring Postgres SQL Database and Cassandra NoSQL Database
(Figure 51):

root@databases-machine:/home/ubuntu# systemctl status postgresql.service
● postgresql.service - PostgreSQL RDBMS
 Loaded: loaded (/lib/systemd/system/postgresql.service; enabled; vendor preset: enabled)
 Active: active (exited) since Wed 2018-05-16 15:36:28 UTC; 4min 13s ago
 Main PID: 21927 (code=exited, status=0/SUCCESS)
 CGroup: /system.slice/postgresql.service
May 16 15:36:28 databases-machine systemd[1]: Starting PostgreSQL RDBMS...
May 16 15:36:28 databases-machine systemd[1]: Started PostgreSQL RDBMS.
May 16 15:36:37 databases-machine systemd[1]: Started PostgreSQL RDBMS.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 77 of (121)

May 16 15:40:37 databases-machine systemd[1]: Started PostgreSQL RDBMS.
ubuntu@databases-machine:~$ sudo -i -u postgres
postgres@databases-machine:~$ psql -d postgres -W
Password:
psql (9.5.12)
Type "help" for help.
postgres=# CREATE DATABASE thingsboard;
postgres=# \list
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-------------+----------+----------+-------------+-------------+-----------------------
 postgres | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 template0 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/postgres +
 | | | | | postgres=CTc/postgres
 template1 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/postgres +
 | | | | | postgres=CTc/postgres
thingsboard | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
(4 rows)

Figure 51 Postres database configuration

 Installing and configuring Cassandra NoSQL Database (Figure 52):

Add cassandra repository
echo 'deb http://www.apache.org/dist/cassandra/debian 311x main' | sudo tee --append
/etc/apt/sources.list.d/cassandra.list > /dev/null
curl https://www.apache.org/dist/cassandra/KEYS | sudo apt-key add -
sudo apt-get update
Cassandra installation
sudo apt-get install cassandra
Tools installation
sudo apt-get install cassandra-tools

ubuntu@stack-db-server-dhd2vdfa7i55:~$ sudo service cassandra status
sudo: unable to resolve host stack-db-server-dhd2vdfa7i55
● cassandra.service - LSB: distributed storage system for structured data
 Loaded: loaded (/etc/init.d/cassandra; bad; vendor preset: enabled)
 Active: active (exited) since Thu 2018-05-17 10:27:28 UTC; 14min ago
 Docs: man:systemd-sysv-generator(8)

May 17 10:27:28 stack-db-server-dhd2vdfa7i55 systemd[1]: Starting LSB: distributed storage system
for structured data...
May 17 10:27:28 stack-db-server-dhd2vdfa7i55 systemd[1]: Started LSB: distributed storage system
for structured data.
May 17 10:37:51 stack-db-server-dhd2vdfa7i55 systemd[1]: Started LSB: distributed storage system
for structured data.

Figure 52 Cassandra database configuration

In section 8.3, will be presented the services which can used the platforms and infrastructure
depicted above.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 78 of (121) © SLICENET consortium 2018

8.2.4 Prototyped SDN and VIM integration

8.2.4.1 Prototyped SDN

The OpenStack Ocata (v15.0) module responsible with the functions of the SDN in the
enterprise solution is Neutron. This module manages networking virtualization that runs on
top of the OpenStack engine.

From the networking point of view, the setup used is presented in the Figure 53, below.

Figure 53 Self-Service Network architecture

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 79 of (121)

Figure 54 Openstack Neutron Architecture

The elements from Figure 54 will be presented as follows:

1. Plugin Agent

Those agents are specific to the Neutron plugin being used. They run on the compute
node, in this use case implementation is the h2020-server3 node and communicate
with the Neutron plugin to manage virtual switches. These agents are optional in
many deployments and perform local virtual switch configuration on each hypervisor.

2. Message Queue

This is an OpenStack component, which is including in Neutron as well, who is used
as an advanced message queue protocol (AMQP) for internal communications. In this
use case implementation it is used the RabbitMQ who sits between any two internal
components of Neutron and allows them to communicate in a loosely coupled
fashion (e.g. Neutron components use remote procedure call and it can be identified
in the configuration files as RPC parameter).

3. Database

This logical function block is almost in all plugins, because all of them need a
database to maintain a persistent network model.

4. DHCP Agent

This agent is a part of Neutron and provides DHCP service to tenant networks. It
maintains the required DHCP configuration and is the same across all plugins.

5. L3 Agent

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 80 of (121) © SLICENET consortium 2018

This agent is responsible for providing layer 3 and Network Address Translation (NAT)
forwarding to gain external access for VMs on tenant networks.

Another plugin used in this enterprise solution is the modular layer 2 core plugin, or just
ML2, which is a neutron core plugin. ML2 is a plugin framework allowing OpenStack Neutron
to simultaneously utilize the variety of layer 2 networking technologies found in complex
real-world data centers.

Figure 55 Modular Layer 2 plugin Architecture

This Plugin achieves the modularity through its driver mode. As we can see in the Figure 55,
it includes two categories of drivers: type and mechanism. Type drivers (such as flat, VLAN,
Generic routing encapsulation (GRE) and VXLAN) define a particular L2 type, where each
available network type is managed by a corresponding type driver. The driver maintains
type-specific state information and realizes the isolation among the tenant networks long
with validation of provider networks.

On the other hand, the mechanism drivers, which are vendor specific (such as open virtual
switch, and drivers from ODL, Cisco, NEC, Huawei, Juniper, etc.), based on the enabled type,
support creating, updating and deletion of network, subnet and port resources. Is nice to
mention the aspect that a hardware vendor might implement a completely new plug-in
solution, which might be similar to ML2, or just implement a mechanism driver.

In Figure 53 it is represented the self-service network architecture that was included in the
enterprise solution. The neutron software modules in this enterprise implementation are as
follows:

 On Compute Node: neutron-linuxbridge-agent and neutron-linuxbridge-cleanup.

On this node, it is necessary to create the link between the compute OpenStack service and
networking OpenStack service as presented below, in Figure 56 [47].

h2020@h2020-server3:~$ sudo vi /etc/neutron/neutron.conf
[DEFAULT]
transport_url = rabbit://openstack: ************@h2020-server1
auth_strategy = keystone
[keystone_authtoken]
auth_uri = http://h2020-server1:5000
auth_url = http://h2020-server1:35357

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 81 of (121)

memcached_servers = h2020-server1:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = neutron
password = ************

Figure 56 Configuration of Compute Node

In order to send all the Message Queue as presented in Figure 56 from the Compute node, it
is necessary to configure this transport_url parameter in the neutron.conf file. The
keystone_authtoken section represents the identity service access based on the neutron
user and a password that has been obfuscated.

In Figure 57 is represented the configuration file of the linuxbridge agent [47].

h2020@h2020-server3:~$ vi /etc/neutron/plugins/ml2/linuxbridge_agent.ini
[DEFAULT]
[agent]
[linux_bridge]
physical_interface_mappings = provider:eno1
[securitygroup]
enable_security_group = true
firewall_driver = neutron.agent.linux.iptables_firewall.IptablesFirewallDriver
[vxlan]
enable_vxlan = true
local_ip = 192.168.204.17
l2_population = true

Figure 57 Configuration file of the linuxbridge agent

 On the Management and Orchestration Node, it wasn’t installed any of the neutron
software modules.

 On the Controller Node, there were installed the following software modules:

 neutron-dhcp-agent [48] (Figure 58)
The entire configuration regarding the OpenStack DHCP agent is located in the
dhcp_agent.ini file that provides DHCP services for virtual networks.

h2020@h2020-server1:~$ vi /etc/neutron/dhcp_agent.ini
[DEFAULT]
interface_driver = linuxbridge
dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq
enable_isolated_metadata = true
 [agent]
availability_zone = nova
[ovs]

Figure 58 OpenStack DHCP agent

 neutron-l3-agent [48] (Figure 59)

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 82 of (121) © SLICENET consortium 2018

The entire configuration regarding the OpenStack Layer 3 agent is located in the l3_agent.ini
file that is responsible for packet forwarding including routing from one node to another.

h2020@h2020-server1:~$ vi /etc/neutron/l3_agent.ini
[DEFAULT]
interface_driver = linuxbridge
 [agent]
availability_zone = nova
[ovs]

Figure 59 OpenStack Layer 3 agent

 neutron-linuxbridge-agent [49] (Figure 60)
The entire configuration regarding the OpenStack linux bridge agent is located in the
linuxbridge_agent.ini file.

 h2020@h2020-server1:~$ vi /etc/neutron/plugins/ml2/linuxbridge_agent.ini [DEFAULT]
 [agent]
[linux_bridge]
physical_interface_mappings = provider:eno1
 [securitygroup]
enable_security_group = true
[vxlan]
enable_vxlan = true
local_ip = 192.168.204.15
l2_population = true

Figure 60 OpenStack linux bridge agent

 neutron-linuxbridge-cleanup

 neutron-metadata-agent [60] (Figure 61)
The entire configuration regarding the OpenStack metadata agent is located in the
metadata_agent.ini file which is responsible for providing configuration information such as
credentials to instances.

h2020@h2020-server1:~$ vi /etc/neutron/plugins/ml2/linuxbridge_agent.ini
[DEFAULT]
IP address used by Nova metadata server. (string value)
nova_metadata_ip = 192.168.204.15
metadata_proxy_shared_secret = ************
[agent]
[cache]

Figure 61 OpenStack metadata agent

 neutron-server
On the table below we are listing all the module functions implemented on the Compute and
Controller nodes.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 83 of (121)

Table 10 All the module functions implemented on the Compute and Controller nodes

Server node Software module Functionalities

Compute
Node

neutron-linuxbridge-
agent

Configures a Linux Bridge to realize neutron’s
network, port and attachment [50].

neutron-linuxbridge-
cleanup

Automated removal of empty bridges has been
disabled to fix a race condition between the Compute
(nova) and Networking (neutron) services [50].

Controller
Node

neutron-dhcp-agent Allocates IP addresses to VMs that run on the
network [51].

neutron-l3-agent Uses the Linux IP stack and ip tables to perform Layer
3 forwarding and NAT.

neutron-linuxbridge-
agent

Configures a Linux Bridge to realize neutron’s
network, port and attachment [50].

neutron-linuxbridge-
cleanup

Automated removal of empty bridges has been
disabled to fix a race condition between the Compute
(nova) and Networking (neutron) services [50].

neutron-metadata-
agent

Provides metadata services for instances [49].

neutron-server Enforces the network model and IP addressing of
each port. Requires indirect access to a persistent
database [52].

To configure the compute service to be able to use the networking service, it is necessary to
configure the neutron section in the nova.conf file (Figure 62) so the link between those two
OpenStack services is enabling.

h2020@h2020-server1:~$ sudo vi /etc/nova/nova.conf
 [neutron]
url=http://h2020-server1:9696
auth_url = http://h2020-server1:35357
auth_type = password
project_domain_name = Default
user_domain_name = Default
region_name = RegionOne
project_name = service
username = neutron
password = ************
service_metadata_proxy = true
metadata_proxy_shared_secret = ************

Figure 62 nova.conf file

In the section above it was presented only the neutron section that is creating the link
between the compute and networking services.

8.2.4.2 VIM integration

OpenStack Ocata (v15.0) embodies the Virtual Infrastructure Manager, and the main
software modules are:

1. Nova

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 84 of (121) © SLICENET consortium 2018

2. Cinder
3. Keystone
4. Glance

Considering the Nova software module in this enterprise implementation, it was installed:

 On Compute node, nova-compute, nova-manage and cinder-volume were installed.

 On Management and Orchestration Node, it wasn’t installed any software modules
mentioned previously.

 On Controller node, were installed the following software modules (Figure 63):

 nova-api

 nova-conductor

 nova-consoleauth

 nova-novncproxy

 nova-scheduler

h2020@h2020-server1:~$ vi /etc/nova/nova.conf
 [DEFAULT]
transport_url = rabbit://openstack:************@h2020-server1
my_ip = 192.168.204.15
user_neutron = True
firewall_driver = nova.virt.firewall.NoopFirewallDriver
image_service=nova.image.glance.GlanceImageService
compute_driver=libvirt.LibvirtDriver
allow_resize_to_same_host=true
instance_name_template=instance-%08x
dhcpbridge_flagfile=/etc/nova/nova.conf
public_interface=eno1
vlan_interface=eno1
flat_network_bridge=br100
flat_interface=eno1
dhcpbridge=/usr/bin/nova-dhcpbridge
force_dhcp_release=true
state_path=/var/lib/nova
enabled_apis=osapi_compute,metadata
network_manager=nova.network.manager.FlatDHCPManager
dhcpbridge_flagfile=/etc/nova/nova.conf
firewall_driver=nova.virt.libvirt.firewall.IptablesFirewallDriver
[api]
auth_strategy = keystone
[api_database]
connection = mysql+pymysql://nova: ************@h2020-server1/nova_api
[cells]
enable=False
mute_weight_multiplier=-10.0
ram_weight_multiplier=10.0
offset_weight_multiplier=1.0
scheduler_weight_classes=nova.cells.weights.all_weighers
[cinder]
os_region_name=RegionOne
[database]

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 85 of (121)

connection = mysql+pymysql://nova: ************@h2020-server1/nova
[vnc]
enable = True
vncserver_listen = $my_ip
vncserver_proxyclient_address = $my_ip
[wsgi]
api_paste_config=/etc/nova/api-paste.ini

Figure 63 Controller node config

 cinder-scheduler (Figure 64)

root@h2020-server1:/etc/cinder# vi cinder.conf
[DEFAULT]
rootwrap_config = /etc/cinder/rootwrap.conf
api_paste_confg = /etc/cinder/api-paste.ini
iscsi_helper = tgtadm
volume_name_template = volume-%s
volume_group = cinder-volumes
verbose = True
debug = True
auth_strategy = keystone
state_path = /var/lib/cinder
lock_path = /var/lock/cinder
volumes_dir = /var/lib/cinder/volumes
tranport_url = rabbit://openstack: ************@h2020-server1
my_ip = 192.168.204.15
[database]
...
connection = mysql+pymysql://cinder: ************@h2020-server1/cinder
[keystone_authtoken]
...
auth_uri = http://h2020-server1:5000
auth_url = http://h2020-server1:35357
memcached_servers = h2020-server1:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = cinder
password = cinder
[oslo_concurrency]
...
lock_path = /var/lib/cinder/tmp
[lvm]
#iscsi_helper = tgtadm
#volume_group = cinder-volumes
#iscsi_ip_address = 192.168.204.15
#volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver
#volume_dir = /var/lib/cinder/volumes
#iscsi_protocol = iscsi
#volume_backend_name = lvm

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 86 of (121) © SLICENET consortium 2018

#volume_clear = none
[oslo_messaging_notifications]
#...
driver = messagingv2

Figure 64 cinder-scheduler

 keystone (Figure 65)

root@h2020-server1:/etc/keystone# vi keystone.conf
[DEFAULT]
admin_token = abcd1234
debug = true
verbose = true
log_file = /var/log/keystone/keystone.log
[database]
connection = mysql+pymysql://keystone: ************@h2020-server1/keystone

Figure 65 keystone

 glance-api (Figure 66)

root@h2020-server1:/etc/glance# vi glance-api.conf
[DEFAULT]
debug = True
[database]
sqlite_db = /var/lib/glance/glance.sqlite
connection = mysql+pymysql://glance: ************@h2020-server1/glance
[glance_store]
stores = file,http
default_store = file
filesystem_store_datadir = /var/lib/glance/images/
auth_uri = http://h2020-server1:5000
auth_url = http://h2020-server1:35357
memcached_servers = h2020-server1:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = glance
password = ************
[paste_deploy]
flavor = keystone

Figure 66 glance-api

 glance-registry (Figure 67)

root@h2020-server1:/etc/glance# vi glance-registry.conf
[DEFAULT]
debug = True
verbose = true
transport_url = rabbit://openstack:************@h2020-server1
[database]

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 87 of (121)

connection = mysql+pymysql://glance:************@h2020-server1/glance
sqlite_db = /var/lib/glance/glance.sqlite
backend = sqlalchemy
[keystone_authtoken]
auth_uri = http://h2020-server1:5000
auth_url = http://h2020-server1:35357
memcached_servers = h2020-server1:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = glance
password = ************
[matchmaker_redis]
[oslo_messaging_amqp]
[oslo_messaging_kafka]
[oslo_messaging_notifications]
driver = messagingv2
[oslo_messaging_rabbit]
[oslo_messaging_zmq]
[oslo_policy]
[paste_deploy]
[profiler]

Figure 67 glance-registry

On the Table below are listed all the module functions implemented on the Compute and
Controller nodes.

Table 11 Module functions implemented on the Compute and Controller nodes

Server node Software module Functionalities
Compute
Node

nova-compute It handles all processes relating to instances [53].

nova-manage Controls cloud computing instances by managing
shell selection, vpn connections, and floating IP
address configuration [54].

cinder-volume Responds to requests to read from and write to a
block storage database to maintain state by
interacting with other processes, like cinder-
scheduler, through a message queue, and to act
directly upon block-storage providing hardware or
software [55].

Controller
Node

nova-api Serves the metadata and compute APIs in
separate greenthreads [56].

nova-conductor Provides coordination and database query
support for nova service [57].

nova-consoleauth Provides authentication for nova consoles [58].

nova-novncproxy Websocket proxy that is compatible with
openstack nova noVNC consoles [59].

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 88 of (121) © SLICENET consortium 2018

nova-scheduler Determines how to dispatch compute requests
[60].

cinder-scheduler Schedule volume on a different back-end from a
set of volumes [61].

Keystone Provides authentication credential validation and
data about users and groups [62].

glance-api Provides services for discovering and retrieving
VM images [63].

glance-registry Provides services for registering the VM images
[63].

The interworking of all the software modules presented previously and their
interdependency is presented in the Figure 68. The Figure is inspired by one from [64] but is
adapted accordingly with this scenario.

Figure 68 The interdependency of the OpenStack Ocata software modules [64]

The information presented in the Annex D represent the OpenStack software modules that
were installed according to the Table 11 and it get as inputs all the configuration file
highlighted above in the text.

As a conclusion of this subchapter, the implementation of the VIM and SDN based on
OpenStack services is working smoothly to provide all the services necessary to facilitate the
access of the enterprise platform to the lightning modules.

8.2.5 Prototyped LCM

The OpenStack Ocata module responsible with LCM of enterprise services and apps is
Murano. Running on top of the aforementioned Openstack cloud, Murano will manage the
creation, instantiation, updates and termination of Smart City apps and services.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 89 of (121)

Murano is composed of four services:

 murano-engine – workflow execution organizer;

 murano-API – programmatic interface used for interaction with Murano;

 murano-client CLI – CLI used for managing environments, packages and categories;

 murano-dashboard – Horizon add-on for Murano service.

While Murano assures the life cycle of apps, it is integrated with Heat in order to orchestrate
the physical resources. This integration is based on REST APIs between Murano-engine and
Heat.

In order to create a new Smart City app composed of multiple VMs, it was defined the
service metadata. These metadata specify the properties and the necessary steps for
deploying the Smart City service. Murano provides the possibility to define the smart city
apps under an app catalogue.

Murano services were installed in Management and Orchestration Node and are listed in
Figure 69:

Figure 69 Murano endpoints

8.3 Prototyped services and applications

As described in section 3 of this document regarding Smart City apps and services, in this
current section it will be described how IoT platform has been configured such that can
deliver and manage smart city services, in this case smart lighting service.

After all components of enterprise cloud infrastructure have been configured and all physical
elements installed in place must ensure E2E connectivity so as the service can deliver at the
expected level.

The starting point to create the entire service is to add in Thingsboard.io Platform (Open
Source IoT Platform in this scenario) a new customer, a new tenant and user (or users) such
that can deploy and manage every element (lamps, controllers, gateways) as can be seen
from Figure 70.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 90 of (121) © SLICENET consortium 2018

Figure 70 Creation process of customer and tenant

Every customer available in the platform has created a tenant who owns all connected
devices and the data produced. Based on this, a service offered to a customer can be
distinguished from another. (e.g. smart lighting service for City of Alba Iulia versus smart
lighting service for City of Bucharest). All settings made below, has been made using
SLICENETORO user.

Figure 71 SliceNetORO user account

After all of this has been set up, all devices have to be declared in IoT platform panel. In the
Figure 72, are listed six lighting elements (two of them are using LTE-M and the other three
LoRa WAN and one 5G-ready) connected throw this platform. All devices are associated to
the customer previous defined.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 91 of (121)

Figure 72 List of devices

To pair every device, an authentication method must be used: based on access token or
based on X.509 certificate. Within this use case, an access token based authentication has
been used (Figure 73).

Figure 73 Authentication method (Token left; certificate right)

After all the lamps has been connected and correctly configured, they started to send first
messages – the “hello message”. The payload of this message contains all technical
parameters and attributes regarding the client itself (the client in this understanding is the
device). In the Figure 74, all device attributes are listed: name of device, type, panel, pillar,
address and so on. For better and compact visualization has been created dashboards for
every important part from device configuration menu.

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 92 of (121) © SLICENET consortium 2018

Figure 74 Parameters of a LTE-M lamp

A list with all dashboards generated for operation and maintenance of entire service is
described in the figures (Figure 75 and Figure 76) below:

Figure 75 Power consuption and signal strenght of LTE-M Lamp 01

Figure 76 General status of LTE-M Lamp 01

The following dashboard from Figure 77 has been generated for public access and the city
hall can expose the data to citizens.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 93 of (121)

Figure 77 Dashboard generated for public access

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 94 of (121) © SLICENET consortium 2018

9 Conclusions

The overall aim of this deliverable is to define, within the novel 5G E2E slicing perspective,
the concepts and detailed needs of transformation to a 5G ready enterprise infrastructure.
The proposed infrastructure prototype is adapted to the SliceNet system definition aspects,
from vertical sector needs, to the architectural perspective, with specific elements defined in
the control and management plane tasks. The proposed implementation, based on open-
source tools and apps can be easily integrated into the proposed 5G slicing friendly
infrastructure and can easily benefit from the further developments from other tasks,
relevant achievements related to the WP5 cognition, vertical-informed QoE sensors and
actuators, slice management and FCAPS functions.

One of the main outputs of the deliverable is defining the transition from the traditional
enterprise approach to a new 5G implementation model, a virtualized and programmable 5G
ready infrastructure, as there are enormous technical expectations from many business
vertical perspectives, with huge financial growth impact.

The second important output of the deliverable is related to the system automation, the first
5G enterprise prototype model proposing to remove the limitations of the current network
infrastructure, inflexible, costly and hard scalable, by deploying software 5G slice network
infrastructure, including controlling and orchestration of resources availability, also by
extending the 5G slicing-friendly concepts to the enterprise border.

As 5G will bring major transformation to the networks architecture, including the enterprise
segment, the vertical sector services running over the novel 5G environment will face also a
major transformation. The technological model proposed will maximize the potential of the
new services to be deployed within the 5G context, over advanced software cognitive
networks.

SliceNet is proposing an intelligent 5G slicing approach, by offering QoS and QoE capabilities
to the end consumers, the verticals, as an E2E novel multi-domain implementation
framework, cross-plane orchestrator, including innovative elements of E2E slicing, QoE
modelling, one-stop-shop API flexible solution to facilitate the creation of the new services,
design and customization capabilities offered to the vertical, as a perspective of P&P control
function.

The prototype proposed by this deliverable is designed to be adapted to any open source
orchestration and automation implementation and is intelligent designed to be easily
integrated with any 5G SliceNet software blocks, as cognitive management, QoE Optimizer,
sensors and actuators, one-stop API and P&P control.

The model is intended to be demonstrated into a 5G Smart City scenario, as it is fulfilling the
specific smart lighting requirements, supported by the 5G fast time to market, efficiency,
flexibility, environmental friendly, and secured mMTC IoT use cases.

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 95 of (121)

References

[1] SliceNet, Deliverable 2.2 -Overall Architecture and Interfaces Definition, Jan 2018

[2] SliceNet, Deliverable 3.1 - Design and Prototyping of SliceNet Virtualised Mobile Edge,
Apr. 2018

[3] SliceNet project, https://SliceNet.eu/

[4] SliceNet, Deliverable 2.1 - Vertical Sector Requirements Analysis and Use Case
Definition, Oct. 2017

[5] SliceNet, Deliverable 2.3 -Control Plane System Definition, APIs and Interfaces, Apr.
2018

[6] SliceNet, Deliverable 2.4- Management Plane System Definition, APIs and Interfaces,
May 2018

[7] http://www.etsi.org/deliver/etsi_ts/136200_136299/136213/14.02.00_60/ts_136213v
140200p.pdf

[8] Network Function Virtualization Architectural Framework, ETSI GS NFV 002:
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v01010
1p.pdf

[9] Network Function Virtualization Management and Orchestration, ETSI GS NFV-MAN
001: http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-
man001v010101p.pdf

[10] https://docs.openstack.org/heat/pike/man/heat-api-cfn.html

[11] https://docs.openstack.org/heat/pike/man/heat-engine.html

[12] https://docs.openstack.org/ceilometer/latest/admin/telemetry-system-
architecture.html

[13] https://docs.openstack.org/nova/pike/cli/nova-compute.html

[14] https://specs.openstack.org/openstack/cinder-specs/specs/liberty/non-eventlet-wsgi-
app.html

[15] https://docs.openstack.org/ocata/install-guide-ubuntu/common/get-started-
networking.html

[16] http://searchcloudcomputing.techtarget.com/definition/private-cloud

[17] http://searchcloudcomputing.techtarget.com/definition/public-cloud

[18] https://www.openstack.org/software/

[19] http://cdn.ttgtmedia.com/searchCloudComputing/downloads/OpenStack+Guide.pdf

[20] https://www.redhat.com/en/topics/virtualization/what-is-KVM

[21] Michael Solberg , Ben Silverman , Openstack for Architects, Packt Publishing (February
6, 2017), ISBN-13: 978-1784395100

[22] https://docs.openstack.org/tacker/latest/install/openstack_vim_installation.html

[23] https://docs.openstack.org/tacker/latest/contributor/vnfd_template_description.html

http://www.etsi.org/deliver/etsi_ts/136200_136299/136213/14.02.00_60/ts_136213v140200p.pdf
http://www.etsi.org/deliver/etsi_ts/136200_136299/136213/14.02.00_60/ts_136213v140200p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://docs.openstack.org/heat/pike/man/heat-api-cfn.html
https://docs.openstack.org/heat/pike/man/heat-engine.html
https://docs.openstack.org/ceilometer/latest/admin/telemetry-system-architecture.html
https://docs.openstack.org/ceilometer/latest/admin/telemetry-system-architecture.html
https://docs.openstack.org/nova/pike/cli/nova-compute.html
https://specs.openstack.org/openstack/cinder-specs/specs/liberty/non-eventlet-wsgi-app.html
https://specs.openstack.org/openstack/cinder-specs/specs/liberty/non-eventlet-wsgi-app.html
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://docs.openstack.org/tacker/latest/contributor/vnfd_template_description.html

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 96 of (121) © SLICENET consortium 2018

[24] Technical Report: “RAN slicing runtime system for flexible and dynamic service
execution environment” , http://www.eurecom.fr/fr/publication/5351/detail/ran-
slicing-runtime-system-for-flexible-and-dynamic-service-execution-
environment?popup=1

[25] http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-
MAN001v010101p.pdf

[26] http://www.etsi.org/deliver/etsi_ts/128500_128599/128526/14.00.00_60/ts_128526v
1 40000p.pdf

[27] http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/010/02.03.01_60/gs_NFV-
IFA010v020301p.pdf

[28] http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing

[29] OSM Whitepaper, Release THREE, Feb. 2018. [Online]. Available:
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.pdf

[30] JUJU, https://jujucharms.com

[31] RIFTWARE, https://www.riftio.com/tag/rift-ware/

[32] TACKER , https://wiki.openstack.org/wiki/Tacker

[33] ONAP, http://onap.org/

[34] ONAP2, Whitepaper, [Online]. Available: https://www.onap.org/wp-
content/uploads/sites/20/2017/12/
ONAP_CaseSolution_Architecture_120817_FNL.pdf

[35] ECOMP+OPEN-O , https://www.onap.org/category/announcement

[36] OPNFV, https://www.opnfv.org

[37] SONATA, www.sonata-nfv.eu

[38] 5GEx Project, http://www.5gex.eu/

[39] OPENBATON Whitepaper, [Online]. Available:
https://openbaton.github.io/documentation/

[40] K. Katsalis, N. Nikaein, and A. Huang, “JOX: an event-driven orchestrator for 5G
network slicing”, in Proc. IEEE/IFIP Network Operations and Management Symposium,
2018.

[41] SliceNet work package -WP2: SliceNet System Definition

[42] SliceNet work package -WP4: 5G Multi-Domain Slice Control Plane

[43] SliceNet work package -WP5:Cognitive, Service-Level QoE Management

[44] SliceNet work package -WP7: Cross-Plane Orchestration and Use Cases Prototyping

[45] SliceNet work package -WP8: System Integration and Demonstration

[46] Michael Solberg, Ben Silverman, Openstack for architects, 978-1784395100

[47] https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-compute-
install.html#neutron-compute-compute

http://www.eurecom.fr/fr/publication/5351/detail/ran-slicing-runtime-system-for-flexible-and-dynamic-service-execution-environment?popup=1
http://www.eurecom.fr/fr/publication/5351/detail/ran-slicing-runtime-system-for-flexible-and-dynamic-service-execution-environment?popup=1
http://www.eurecom.fr/fr/publication/5351/detail/ran-slicing-runtime-system-for-flexible-and-dynamic-service-execution-environment?popup=1
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/128500_128599/128526/14.00.00_60/ts_128526v1%2040000p.pdf
http://www.etsi.org/deliver/etsi_ts/128500_128599/128526/14.00.00_60/ts_128526v1%2040000p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/010/02.03.01_60/gs_NFV-IFA010v020301p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/010/02.03.01_60/gs_NFV-IFA010v020301p.pdf
http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.pdf
https://jujucharms.com/
https://www.riftio.com/tag/rift-ware/
https://www.onap.org/wp-content/uploads/sites/20/2017/12/%20ONAP_CaseSolution_Architecture_120817_FNL.pdf
https://www.onap.org/wp-content/uploads/sites/20/2017/12/%20ONAP_CaseSolution_Architecture_120817_FNL.pdf
https://www.onap.org/wp-content/uploads/sites/20/2017/12/%20ONAP_CaseSolution_Architecture_120817_FNL.pdf
https://www.onap.org/category/announcement
https://www.opnfv.org/
https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-compute-install.html#neutron-compute-compute
https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-compute-install.html#neutron-compute-compute

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 97 of (121)

[48] https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-controller-install-
option2.html

[49] https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-controller-
install.html#neutron-controller-metadata-agent

[50] https://wiki.openstack.org/wiki/Neutron-Linux-Bridge-Plugin

[51] http://docs.ocselected.org/openstack-manuals/kilo/networking-
guide/content/section_adv_cfg_dhcp_agent.html

[52] https://docs.openstack.org/security-guide/networking/architecture.html

[53] https://docs.openstack.org/nova/pike/cli/nova-compute.html

[54] https://docs.openstack.org/nova/pike/cli/nova-manage.html

[55] http://blog.flux7.com/blogs/openstack/tutorial-what-is-cinder-and-how-to-install-and-
use-it

[56] https://docs.openstack.org/nova/pike/cli/nova-api.html

[57] https://docs.openstack.org/nova/latest/cli/nova-conductor.html

[58] https://docs.openstack.org/nova/pike/cli/nova-consoleauth.html

[59] https://docs.openstack.org/nova/pike/cli/nova-novncproxy.html

[60] https://docs.openstack.org/kilo/config-reference/content/section_compute-
scheduler.html

[61] https://docs.openstack.org/cinder/pike/scheduler-filters.html

[62] https://docs.openstack.org/keystone/latest/getting-started/architecture.html

[63] https://launchpad.net/glance

[64] https://www.slideshare.net/mirantis/openstack-architecture-43160012

[65] Alok Shrivastwa, Suntil Sarat, Kevin Jackson, Cody Bunch, Egle Sigle, Tony Campbell,
Openstack: building a cloud environment”, Publisher Packt Publishing, September 19,
2016, ASIN: B01M0IREB3

https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-controller-install-option2.html
https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-controller-install-option2.html
https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-controller-install.html#neutron-controller-metadata-agent
https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-controller-install.html#neutron-controller-metadata-agent
https://wiki.openstack.org/wiki/Neutron-Linux-Bridge-Plugin
http://docs.ocselected.org/openstack-manuals/kilo/networking-guide/content/section_adv_cfg_dhcp_agent.html
http://docs.ocselected.org/openstack-manuals/kilo/networking-guide/content/section_adv_cfg_dhcp_agent.html
https://docs.openstack.org/security-guide/networking/architecture.html
https://docs.openstack.org/nova/pike/cli/nova-compute.html
https://docs.openstack.org/nova/pike/cli/nova-manage.html
http://blog.flux7.com/blogs/openstack/tutorial-what-is-cinder-and-how-to-install-and-use-it
http://blog.flux7.com/blogs/openstack/tutorial-what-is-cinder-and-how-to-install-and-use-it
https://docs.openstack.org/nova/pike/cli/nova-api.html
https://docs.openstack.org/nova/latest/cli/nova-conductor.html
https://docs.openstack.org/nova/pike/cli/nova-consoleauth.html
https://docs.openstack.org/nova/pike/cli/nova-novncproxy.html
https://docs.openstack.org/kilo/config-reference/content/section_compute-scheduler.html
https://docs.openstack.org/kilo/config-reference/content/section_compute-scheduler.html
https://docs.openstack.org/cinder/pike/scheduler-filters.html
https://docs.openstack.org/keystone/latest/getting-started/architecture.html
https://launchpad.net/glance
https://www.slideshare.net/mirantis/openstack-architecture-43160012

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 98 of (121) © SLICENET consortium 2018

Annex A TOSCA template descriptors

NSD [6] VNFD [6] VDU [6] Vnfc [7] VNFFGD [6] NFP [8]

tosca_definitions_version:
tosca_simple_profile_for_
nfv_1_0_0
imports:
 - VNFD1
 - VNFD2
topology_template:
 node_templates:
 VNF1:
 type:
tosca.nodes.nfv.VNF1
 requirements:
 - virtualLink1: VL1
 - virtualLink2: VL2
 VNF2:
 type:
tosca.nodes.nfv.VNF2
 VL1:
 type:
tosca.nodes.nfv.VL
 properties:
 network_name: net0
 vendor: tacker
 VL2:
 type:
tosca.nodes.nfv.VL
 properties:
 network_name:
net_mgmt
 vendor: tacker

tosca_definitions_version:
tosca_simple_profile_for_
nfv_1_0_0

description: VNF TOSCA
template with input
parameters

metadata:
 template_name: sample-
tosca-vnfd

topology_template:

 node_templates:
 VDU1:
 type:
tosca.nodes.nfv.VDU.Tack
er
 properties:
 image: cirros-0.3.5-
x86_64-disk
 flavor: m1.tiny
 availability_zone:
nova
 mgmt_driver: noop
 config: |
 param0: key1
 param1: key2

 CP1:
 type:
tosca.nodes.nfv.CP.Tacker

topology_template:
 node_templates:
 VDU1:
 type:
tosca.nodes.nfv.VDU.Tack
er
 properties:
 image: cirros-0.3.5-
x86_64-disk
 availability_zone:
nova
 capabilities:
 nfv_compute:
 properties:
 disk_size: 10 GB
 mem_size: 2048
MB
 num_cpus: 2

topology_template:
 node_templates:
 firewall_vnfc:
 type:
tosca.nodes.nfv.VNFC.Tac
ker
 requirements:
 - host: VDU1
 interfaces:
 Standard:
 create:
install_vnfc.sh

policy:
 type: ACL
 criteria:
 - name: block_tcp
 classifier:
 network_src_port_id:
640dfd77-c92b-45a3-
b8fc-22712de480e1

destination_port_range:
80-1024
 ip_proto: 6
 ip_dst_prefix:
192.168.1.2/24
 - name: block_udp
 classifier:
 network_src_port_id:
640dfd77-c92b-45a3-
b8fc-22712de480eda

destination_port_range:
80-1024
 ip_proto: 17
 ip_dst_prefix:
192.168.2.2/24

tacker nfp-list
tacker nfp-show <nfp id>
tacker chain-list
tacker chain-show <chain
id>
tacker classifier-list
tacker classifier-show
<classifier id>

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 99 of (121)

 properties:
 management: True

anti_spoofing_protection:
false
 requirements:
 - virtualLink:
 node: VL1
 - virtualBinding:
 node: VDU1

 CP2:
 type:
tosca.nodes.nfv.CP.Tacker
 properties:

anti_spoofing_protection:
false
 requirements:
 - virtualLink:
 node: VL2
 - virtualBinding:
 node: VDU1

 CP3:
 type:
tosca.nodes.nfv.CP.Tacker
 properties:

anti_spoofing_protection:
false
 requirements:
 - virtualLink:
 node: VL3
 - virtualBinding:
 node: VDU1

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 100 of (121) © SLICENET consortium 2018

 VL1:
 type:
tosca.nodes.nfv.VL
 properties:
 network_name:
net_mgmt
 vendor: Tacker

 VL2:
 type:
tosca.nodes.nfv.VL
 properties:
 network_name: net0
 vendor: Tacker

 VL3:
 type:
tosca.nodes.nfv.VL
 properties:
 network_name: net1
 vendor: Tacker

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 101 of (121)

Annex B The interface configuration

Compute node role Interface configuration

Controller node # This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).
source /etc/network/interfaces.d/*
auto lo
iface lo inet loopback
auto eno1
iface eno1 inet static
 address 192.168.204.15
 netmask 255.255.255.192
 network 192.168.204.0
 broadcast 192.168.204.63
 gateway 192.168.204.1
auto eno3
iface eno3 inet static
 address 10.10.12.1
 netmask 255.255.255.192
 network 10.10.12.0
 broadcast 10.10.12.255
auto eno4
iface eno4 inet static
 address 10.10.13.1
 netmask 255.255.255.192
 network 10.10.13.0
 broadcast 10.10.13.255

Management &
Orchestration node

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).
source /etc/network/interfaces.d/*
auto lo
iface lo inet loopback
auto eno1
iface eno1 inet static
 address 192.168.204.16
 netmask 255.255.255.192
 network 192.168.204.0
 broadcast 192.168.204.63
 gateway 192.168.204.1
 dns-nameservers 192.168.204.16
auto eno2
iface eno2 inet static
 address 10.10.23.2
 netmask 255.255.255.0
 network 10.10.23.0
 broadcast 10.10.23.255
auto eno3
iface eno3 inet static
 address 10.10.12.2
 netmask 255.255.255.0
 network 10.10.12.0
 broadcast 10.10.12.255

Compute node # The loopback network interface
auto lo
iface lo inet loopback
auto eno1

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 102 of (121) © SLICENET consortium 2018

iface eno1 inet static
address 192.168.204.17
netmask 255.255.255.192
network 192.168.204.0
broadcast 192.168.204.63
gateway 192.168.204.1
dns-nameservers 8.8.8.8
auto eno2
iface eno2 inet static
address 10.10.23.3
netmask 255.255.255.192
network 10.10.23.0
broadcast 10.10.23.255
auto eno3
iface eno3 inet static
address 172.18.60.37
netmask 255.255.252.0
network 172.18.60.0
broadcast 10.10.12.255
auto eno4
iface eno4 inet static
auto eno4
iface eno4 inet static
address 10.10.13.3
netmask 255.255.255.192
network 10.10.13.0
broadcast 10.10.13.255

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 103 of (121)

Annex C Annex C Configure name resolution

Compute node role Interface configuration

Controller node 127.0.0.1 localhost
192.168.204.15 h2020-server1
192.168.204.16 h2020-server2
192.168.204.17 h2020-server3
10.10.12.1 controller
10.10.12.2 mano
10.10.13.1 controller
10.10.13.3 compute
The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Management & Orchestration node 127.0.0.1 localhost
192.168.204.16 h2020-server2
192.168.204.15 h2020-server1
192.168.204.17 h2020-server3
10.10.23.2 mano
10.10.23.3 compute
10.10.12.2 mano
10.10.12.1 controller
The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Compute node 127.0.0.1 localhost
192.168.204.15 h2020-server1
192.168.204.16 h2020-server2
192.168.204.17 h2020-server3
192.168.204.18 h2020-server4
10.10.23.3 compute
10.10.23.2 mano
172.18.60.37 vm_gw
10.10.13.3 compute
10.10.13.1 controller
The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 104 of (121) © SLICENET consortium 2018

Annex D Prototyped SDN and VIM integration

Server node Software module Configurations

Compute Node neutron-linuxbridge-agent start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/neutron
 chown neutron:neutron /var/$i/neutron
 done
 for i in log ; do
 mkdir -p /var/$i/neutron
 chown neutron:adm /var/$i/neutron
 done
end script

script
 [-x "/usr/bin/neutron-linuxbridge-agent"] || exit 0
 DAEMON_ARGS="--config-file=/etc/neutron/plugins/ml2/linuxbridge_agent.ini"
 CONFIG_FILE="/etc/neutron/neutron.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/neutron/neutron-
linuxbridge-agent.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/neutron \

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 105 of (121)

 --chuid neutron:neutron --make-pidfile --pidfile /var/run/neutron/neutron-linuxbridge-agent.pid \
 --exec /usr/bin/neutron-linuxbridge-agent -- ${DAEMON_ARGS}
end script

neutron-linuxbridge-cleanup start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/neutron
 chown neutron:neutron /var/$i/neutron
 done
 for i in log ; do
 mkdir -p /var/$i/neutron
 chown neutron:adm /var/$i/neutron
 done
end script

script
 [-x "/usr/bin/neutron-linuxbridge-agent"] || exit 0
 DAEMON_ARGS="--config-file=/etc/neutron/plugins/ml2/linuxbridge_agent.ini"
 CONFIG_FILE="/etc/neutron/neutron.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/neutron/neutron-
linuxbridge-agent.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/neutron \
 --chuid neutron:neutron --make-pidfile --pidfile /var/run/neutron/neutron-linuxbridge-agent.pid \

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 106 of (121) © SLICENET consortium 2018

 --exec /usr/bin/neutron-linuxbridge-agent -- ${DAEMON_ARGS}
end script

Controller Node neutron-dhcp-agent start on runlevel [2345]
stop on runlevel [!2345]

respawn

chdir /var/run

pre-start script
 mkdir -p /var/run/neutron
 chown neutron:root /var/run/neutron
 # Check to see if openvswitch plugin in use by checking
 # status of cleanup upstart configuration
 if status neutron-ovs-cleanup; then
 start wait-for-state WAIT_FOR=neutron-ovs-cleanup WAIT_STATE=running WAITER=neutron-dhcp-agent
 fi
end script

exec start-stop-daemon --start --chuid neutron --exec /usr/bin/neutron-dhcp-agent -- --config-
file=/etc/neutron/neutron.conf --config-file=/etc/neutron/dhcp_agent.ini --log-file=/var/log/neutron/dhcp-
agent.log

neutron-l3-agent start on runlevel [2345]
stop on runlevel [!2345]

respawn

chdir /var/run

pre-start script
 mkdir -p /var/run/neutron
 chown neutron:root /var/run/neutron
 # Check to see if openvswitch plugin in use by checking
 # status of cleanup upstart configuration
 if status neutron-ovs-cleanup; then
 start wait-for-state WAIT_FOR=neutron-ovs-cleanup WAIT_STATE=running WAITER=neutron-l3-agent
 fi
end script

exec start-stop-daemon --start --chuid neutron --exec /usr/bin/neutron-l3-agent -- \

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 107 of (121)

 --config-file=/etc/neutron/neutron.conf --config-file=/etc/neutron/l3_agent.ini \
 --config-file=/etc/neutron/fwaas_driver.ini --log-file=/var/log/neutron/l3-agent.log

neutron-linuxbridge-agent start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/neutron
 chown neutron:neutron /var/$i/neutron
 done
 for i in log ; do
 mkdir -p /var/$i/neutron
 chown neutron:adm /var/$i/neutron
 done
end script

script
 [-x "/usr/bin/neutron-linuxbridge-agent"] || exit 0
 DAEMON_ARGS="--config-file=/etc/neutron/plugins/ml2/linuxbridge_agent.ini"
 CONFIG_FILE="/etc/neutron/neutron.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/neutron/neutron-
linuxbridge-agent.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/neutron \
 --chuid neutron:neutron --make-pidfile --pidfile /var/run/neutron/neutron-linuxbridge-agent.pid \
 --exec /usr/bin/neutron-linuxbridge-agent -- ${DAEMON_ARGS}

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 108 of (121) © SLICENET consortium 2018

end script

neutron-linuxbridge-cleanup start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/neutron
 chown neutron:neutron /var/$i/neutron
 done
 for i in log ; do
 mkdir -p /var/$i/neutron
 chown neutron:adm /var/$i/neutron
 done
end script

script
 [-x "/usr/bin/neutron-linuxbridge-agent"] || exit 0
 DAEMON_ARGS="--config-file=/etc/neutron/plugins/ml2/linuxbridge_agent.ini"
 CONFIG_FILE="/etc/neutron/neutron.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/neutron/neutron-
linuxbridge-agent.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/neutron \
 --chuid neutron:neutron --make-pidfile --pidfile /var/run/neutron/neutron-linuxbridge-agent.pid \
 --exec /usr/bin/neutron-linuxbridge-agent -- ${DAEMON_ARGS}
end script

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 109 of (121)

neutron-metadata-agent start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/neutron
 chown neutron:neutron /var/$i/neutron
 done
 for i in log ; do
 mkdir -p /var/$i/neutron
 chown neutron:adm /var/$i/neutron
 done
end script

script
 [-x "/usr/bin/neutron-metadata-agent"] || exit 0
 DAEMON_ARGS="--config-file=/etc/neutron/metadata_agent.ini"
 CONFIG_FILE="/etc/neutron/neutron.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/neutron/neutron-
metadata-agent.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/neutron \
 --chuid neutron:neutron --make-pidfile --pidfile /var/run/neutron/neutron-metadata-agent.pid \
 --exec /usr/bin/neutron-metadata-agent -- ${DAEMON_ARGS}
end script

neutron-server start on runlevel [2345]

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 110 of (121) © SLICENET consortium 2018

stop on runlevel [!2345]

respawn

chdir /var/run

pre-start script
 mkdir -p /var/run/neutron
 chown neutron:root /var/run/neutron
end script

script
 [-x "/usr/bin/neutron-server"] || exit 0
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/neutron-server] && . /etc/default/neutron-server
 [-r "$NEUTRON_PLUGIN_CONFIG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$NEUTRON_PLUGIN_CONFIG"
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/neutron/neutron-
server.log"
 exec start-stop-daemon --start --chuid neutron --exec /usr/bin/neutron-server -- \
 --config-file=/etc/neutron/neutron.conf ${DAEMON_ARGS}
end script

Server node Software module Configurations

Compute Node nova-compute start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

env MAX_STATUS_CHECK_RETRIES=20

pre-start script
 mkdir -p /var/run/nova
 chown nova:root /var/run/nova/

 mkdir -p /var/lock/nova
 chown nova:root /var/lock/nova/

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 111 of (121)

 # Only try to modprobe if not running within a container
 if [! -f /run/container_type]; then
 modprobe nbd
 fi

 # If libvirt-bin is installed, always wait for it to start first
 if status libvirt-bin; then
 start wait-for-state WAIT_FOR=libvirt-bin WAIT_STATE=running WAITER=nova-compute
 fi

 # If installed, wait for neutron-ovs-cleanup to complete prior to starting
 # nova-compute.
 if status neutron-ovs-cleanup; then
 # See LP #1471022 for explanation of why we do like this
 retries=$MAX_STATUS_CHECK_RETRIES
 delay=1
 while true; do
 # Already running?
 s=`status neutron-ovs-cleanup`
 echo $s
`echo $s| grep -qE "\sstart/running"` && break
 if retries=`expr $retries - 1`; then
 # Give it a push
 echo "Attempting to start neutron-ovs-cleanup"
 start neutron-ovs-cleanup || :
 # Wait a bit to avoid hammering ovs-cleanup (which itself may be waiting
 # on dependencies)
 echo "Recheck neutron-ovs-cleanup status in ${delay}s"
 sleep $delay
 if _=`expr $retries % 2`; then
 delay=`expr $delay + 2`
 fi
 else
 echo "Max retries ($MAX_STATUS_CHECK_RETRIES) reached - no longer waiting for neutron-ovs-cleanup to
start"
 break
 fi
 done
 fi
end script

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 112 of (121) © SLICENET consortium 2018

exec start-stop-daemon --start --chuid nova --exec /usr/bin/nova-compute -- --config-file=/etc/nova/nova.conf --
config-file=/etc/nova/nova-compute.conf

nova-manage import sys

from nova.cmd.manage import main

if __name__ == "__main__":
 sys.exit(main())

cinder-volume start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/cinder
 chown cinder:cinder /var/$i/cinder
 done
 for i in log ; do
 mkdir -p /var/$i/cinder
 chown cinder:adm /var/$i/cinder
 done
end script

script
 [-x "/usr/bin/cinder-volume"] || exit 0
 DAEMON_ARGS=""
 CONFIG_FILE="/etc/cinder/cinder.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 113 of (121)

 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/cinder/cinder-
volume.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/cinder \
 --chuid cinder:cinder --make-pidfile --pidfile /var/run/cinder/cinder-volume.pid \
 --exec /usr/bin/cinder-volume -- ${DAEMON_ARGS}
end script

Controller Node nova-api start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/nova
 chown nova:nova /var/$i/nova
 done
 for i in log ; do
 mkdir -p /var/$i/nova
 chown nova:adm /var/$i/nova
 done
end script

script
 [-x "/usr/bin/nova-api"] || exit 0
 DAEMON_ARGS=""
 CONFIG_FILE="/etc/nova/nova.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/nova/nova-api.log"

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 114 of (121) © SLICENET consortium 2018

 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/nova \
 --chuid nova:nova --make-pidfile --pidfile /var/run/nova/nova-api.pid \
 --exec /usr/bin/nova-api -- ${DAEMON_ARGS}
end script

nova-conductor start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/nova
 chown nova:nova /var/$i/nova
 done
 for i in log ; do
 mkdir -p /var/$i/nova
 chown nova:adm /var/$i/nova
 done
end script

script
 [-x "/usr/bin/nova-conductor"] || exit 0
 DAEMON_ARGS=""
 CONFIG_FILE="/etc/nova/nova.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/nova/nova-
conductor.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 115 of (121)

file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/nova \
 --chuid nova:nova --make-pidfile --pidfile /var/run/nova/nova-conductor.pid \
--exec /usr/bin/nova-conductor -- ${DAEMON_ARGS}
end script

nova-consoleauth start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/nova
 chown nova:nova /var/$i/nova
 done
 for i in log ; do
 mkdir -p /var/$i/nova
 chown nova:adm /var/$i/nova
 done
end script

script
 [-x "/usr/bin/nova-consoleauth"] || exit 0
 DAEMON_ARGS=""
 CONFIG_FILE="/etc/nova/nova.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/nova/nova-
consoleauth.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 116 of (121) © SLICENET consortium 2018

 exec start-stop-daemon --start --chdir /var/lib/nova \
 --chuid nova:nova --make-pidfile --pidfile /var/run/nova/nova-consoleauth.pid \
 --exec /usr/bin/nova-consoleauth -- ${DAEMON_ARGS}
end script

nova-novncproxy start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/nova
 chown nova:nova /var/$i/nova
 done
 for i in log ; do
 mkdir -p /var/$i/nova
 chown nova:adm /var/$i/nova
 done
end script

script
 [-x "/usr/bin/nova-novncproxy"] || exit 0
 DAEMON_ARGS=""
 CONFIG_FILE="/etc/nova/nova.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/nova/nova-
novncproxy.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 117 of (121)

 exec start-stop-daemon --start --chdir /var/lib/nova \
 --chuid nova:nova --make-pidfile --pidfile /var/run/nova/nova-novncproxy.pid \
 --exec /usr/bin/nova-novncproxy -- ${DAEMON_ARGS}
end script

nova-scheduler start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/nova
 chown nova:nova /var/$i/nova
 done
 for i in log ; do
 mkdir -p /var/$i/nova
 chown nova:adm /var/$i/nova
 done
end script

script
 [-x "/usr/bin/nova-scheduler"] || exit 0
 DAEMON_ARGS=""
 CONFIG_FILE="/etc/nova/nova.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/nova/nova-
scheduler.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/nova \

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 118 of (121) © SLICENET consortium 2018

 --chuid nova:nova --make-pidfile --pidfile /var/run/nova/nova-scheduler.pid \
 --exec /usr/bin/nova-scheduler -- ${DAEMON_ARGS}
end script

cinder-scheduler start on runlevel [2345]
stop on runlevel [!2345]

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/cinder
 chown cinder:cinder /var/$i/cinder
 done
 for i in log ; do
 mkdir -p /var/$i/cinder
 chown cinder:adm /var/$i/cinder
 done
end script

script
 [-x "/usr/bin/cinder-scheduler"] || exit 0
 DAEMON_ARGS=""
 CONFIG_FILE="/etc/cinder/cinder.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/cinder/cinder-
scheduler.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/cinder \
 --chuid cinder:cinder --make-pidfile --pidfile /var/run/cinder/cinder-scheduler.pid \

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 119 of (121)

 --exec /usr/bin/cinder-scheduler -- ${DAEMON_ARGS}
end script

keystone isten 5000
Listen 35357

<VirtualHost *:5000>
 WSGIScriptAlias / /usr/bin/keystone-wsgi-public
 WSGIDaemonProcess keystone-public processes=5 threads=1 user=keystone group=keystone display-
name=%{GROUP}
 WSGIProcessGroup keystone-public
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
 LimitRequestBody 114688

 <IfVersion >= 2.4>
 ErrorLogFormat "%{cu}t %M"
 </IfVersion>

 ErrorLog /var/log/apache2/keystone.log
 CustomLog /var/log/apache2/keystone_access.log combined

 <Directory /usr/bin>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 </Directory>
</VirtualHost>

<VirtualHost *:35357>
 WSGIScriptAlias / /usr/bin/keystone-wsgi-admin
 WSGIDaemonProcess keystone-admin processes=5 threads=1 user=keystone group=keystone display-
name=%{GROUP}
 WSGIProcessGroup keystone-admin
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
 LimitRequestBody 114688

SLICENET H2020-ICT-2016-2/761913 Deliverable D3.3

Page 120 of (121) © SLICENET consortium 2018

 <IfVersion >= 2.4>
 ErrorLogFormat "%{cu}t %M"
 </IfVersion>

 ErrorLog /var/log/apache2/keystone.log
 CustomLog /var/log/apache2/keystone_access.log combined

 <Directory /usr/bin>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 </Directory>
</VirtualHost>

Alias /identity /usr/bin/keystone-wsgi-public
<Location /identity>
 SetHandler wsgi-script
 Options +ExecCGI

 WSGIProcessGroup keystone-public
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
</Location>

Alias /identity_admin /usr/bin/keystone-wsgi-admin
<Location /identity_admin>
 SetHandler wsgi-script
 Options +ExecCGI

 WSGIProcessGroup keystone-admin
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
</Location>

glance-api start on runlevel [2345]
stop on runlevel [!2345]

Deliverable D3.3 SLICENET H2020-ICT-2016-2/761913

© SLICENET consortium 2018 Page 121 of (121)

chdir /var/run

respawn
respawn limit 20 5
limit nofile 65535 65535

pre-start script
 for i in lock run lib ; do
 mkdir -p /var/$i/glance
 chown glance:glance /var/$i/glance
 done
 for i in log ; do
 mkdir -p /var/$i/glance
 chown glance:adm /var/$i/glance
 done
end script

script
 [-x "/usr/bin/glance-api"] || exit 0
 DAEMON_ARGS=""
 CONFIG_FILE="/etc/glance/glance-api.conf"
 USE_SYSLOG=""
 USE_LOGFILE=""
 NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG=""
 [-r /etc/default/openstack] && . /etc/default/openstack
 [-r /etc/default/$UPSTART_JOB] && . /etc/default/$UPSTART_JOB
 ["x$USE_SYSLOG" = "xyes"] && DAEMON_ARGS="$DAEMON_ARGS --use-syslog"
 ["x$USE_LOGFILE" != "xno"] && DAEMON_ARGS="$DAEMON_ARGS --log-file=/var/log/glance/glance-api.log"
 [-z "$NO_OPENSTACK_CONFIG_FILE_DAEMON_ARG"] && DAEMON_ARGS="$DAEMON_ARGS --config-
file=$CONFIG_FILE"

 exec start-stop-daemon --start --chdir /var/lib/glance \
 --chuid glance:glance --make-pidfile --pidfile /var/run/glance/glance-api.pid \
 --exec /usr/bin/glance-api -- ${DAEMON_ARGS}
end script

