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Abstract 

This document reports the third iteration of the SliceNet Cognition Sub-Plane design and 
implementation. SliceNet Cognition Sub-Plane enables the Quality of Experience (QoE)-aware 
management of network slices. SliceNet QoE-aware slice management combines the established 
MAPE (Monitoring, Analysis, Planning, and Execution) autonomic control loop with state-of-the-art 
data-driven management and AIOPS (Artificial Intelligence for IT Operations). To this end, the 
components reported in this document provide the implementations of both analytical and actuation 
frameworks of the Cognition Sub-Plane, all governed through a data-centric approach. The current 
document also describes the role played by the Cognitive Sub-Plane in the SliceNet Use Cases, 
progress to the previous iteration’s analytic workflows, the position of SliceNet’s Cognition Sub-Plane 
against related 5G standards and other research projects. It also discusses how the Cognition Sub-
Plane has achieved its goals and how it can be exploited beyond the scope of SliceNet. 
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Executive summary  

The provisioning of network slices (NSes) with proper Quality of Experience (QoE) guarantees is seen 
as one of the key enablers of future 5G networks. However, it poses several challenges in the slices 
management that need to be addressed for efficient end-to-end (E2E) services delivery, including 
estimating QoE Key Performance Indicators (KPIs) from monitored metrics and reconfiguration 
operations (actuations) to support and maintain the desired quality levels. SliceNet provides a design 
and implementation of cognitive slice management that leverages Machine Learning (ML) techniques 
to proactively maintain the network in the required state to assure E2E QoE, as perceived by the 
vertical customers.  

This deliverable is the third iteration of the overall Cognition Sub-Plane design and implementation. It 
demonstrates work package-level integration of the different Cognition Sub-Plane components and 
initial integration with other SliceNet components (such as Monitoring, FCAPS (Fault, Configuration, 
Accounting, Performance and Security) management, and Plug and Play (P&P) control) and applies 
this to the three SliceNet vertical Use Cases (UCs), namely 5G Smart Grid Self-Healing,  e-Health 
connected ambulance, and Smart City.  These UCs provide a means to validate SliceNet’s approach 
and architecture for QoE cognitive management of NSes, including interfaces and prototypes. In 
addition to the UC integration, the deliverable describes progress on the analytic workflows 
introduced in the previous two iterations.  The deliverable also describes the alignment of the final 
SliceNet’s Cognition Sub-Plane with related 5G standards and how the Cognitive Sub-Plane 
compliments other related 5G Projects with additional capabilities. Finally, it shows how the 
Cognition Sub-Plane works with the rest of SliceNet architecture components to assure NS E2E QoE. 
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1 Introduction  

Across three iterations, SliceNet has built and prototyped a Cognition Sub-Plane architecture with the 
aim to provide the tools for achieving QoE-aware management of NSes. This has been accomplished 
thanks to the implementation of a full Monitoring, Analysis, Planning and Execution governed by a 
Knowledge-base (MAPE-K) loop that encloses QoE monitoring and analysis functions as well as an 
actuation system to apply remedies based on the monitoring/analysis outputs for QoE maintenance. 
Moreover, the developed Cognition Sub-Plane engages with other modules of the SliceNet 
architecture to achieve its purposes; namely, the FCAPS management system developed in WP6 for 
obtaining data inputs, essential for QoE monitoring/analysis, and the Orchestration system 
developed in WP7 as the entry point to enforce desired actuations to guarantee the QoE of the 
multiple slices.  

In this last iteration, we focus on how the Cognitive Sub-Plane and QoE Slice Management apply to 
the overall architecture and how it is specifically relevant to the three vertical UCs defined in 
SliceNet. We also discuss enhancement to the analytic workflows presented in the previous two 
iterations that explore how to best satisfy the E2E QoE by exploiting ML techniques. 

Finally, to give closure to the work developed, we review the position of SliceNet’s Cognition Sub-
Plane against related 5G standards and other 5G research projects as well as discussing how the 
Cognition Sub-Plane has achieved its goals, lessoned learned and how it can be exploited beyond the 
scope of SliceNet.  

1.1  Document structure  

This document is structured as follows: 

1. Section 2 describes the role played by the Cognitive Sub-Plane in each of the SliceNet UCs. 
2. Section 3 describes progress to the analytic workflows presented in the previous iteration of WP5, 

namely D5.6.  
3. Section 4 describes Cognitive Sub-Plane’s alignment with related 5G Standards. 
4. Section 5 describes Cognitive Sub-Plane’s compatibility with other 5G Projects and its innovations 

beyond the said projects. 
5. Section 6 describes the essential contributions of the Cognitive Sub-Plane to the SliceNet 

Architecture and why it matters. 
6. Lastly, Section 7 concludes with lessons learned and future directions. 
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2 Cognitive QoE Slice Management Per Use Case  

2.1 Overview  

This section discusses how the Cognitive Sub-Plane (described in detail in the previous iterations, that 
is, D5.5 [1] and D5.6 [2]) is instantiated to support the SliceNet vertical UCs. The general details about 
the UCs prototyping can be found in D7.2 [3]. As such, in this document, we focus on the role of the 
developed Cognition Sub-Plane in the realization of the vertical UCs. 

Table 1 Summary of cognition-based management per SliceNet Use Case 

In the following sub-sections, a brief summary of the UCs is reported. In particular, the role of the 
Cognition Sub-Plane is highlighted. 

2.2 5G Smart Grid Self-Healing Use Case  

2.2.1 Description 

The key objective of the Smart Grid (SG) UC is to support a self-healing solution for electric power 
grids. From the power grid perspective, two major steps are involved - the first one is on detecting 
and isolating the electric failure, whereas the second one is to efficiently reconfigure the power grid 
and therefore minimize the service downtime. 

Intelligent Electronic Devices (IEDs) are used to sense the electric power grid and guarantee that it is 
configured accordingly and rapidly. To achieve this, the IEDs require a reliable Radio Access Network 
(RAN) connectivity service to allow ultra-low latency (~15 ms) communications between them. A 
specific network communication protocol - IEC 61850 GOOSE - is used to establish the IEDs 
communications in order to protect and reconfigure the power grid. Besides the inter-IEDs 
communications for the power grid protection and reconfiguration, this scenario also requires a 
communication service between the IEDs management system and the IEDs for management 
purposes, such as configuration, remote diagnosis, etc. 

From a business point of view, the vertical will subscribe the E2E services (Ultra Low Latency Service 
and Management Service) from a Digital Service Provider (DSP), indicating the service’s endpoints 
(IEDs and SG Management Server), as well as the associated requirements. Associated with each 

Use Case Short description 

5G Smart Grid Self-Healing The Smart Grid Self-Healing UC focuses on validating an advanced 
self-healing solution for electric power grids.  The goal is to 
minimize the service downtime. Two major issues are involved: 1) 
detecting and isolating the electric failure, 2) efficiently 
reconfiguring the power grid. 

5G e-Health Connected 
Ambulance 

The e-Health UC focuses on a connected ambulance that acts as a 
connection hub for the emergency medical equipment and 
wearables, enabling storing and real time streaming of video data 
to the awaiting emergency department team at the destination 
hospital. 

5G Smart City  The Smart City UC focuses on managing an intelligent public 
lighting system. This system will enable the control of every single 
pole and the monitoring of the current consumption. As such, it 
will give authorities the ability to turn the lights on and off 
remotely but also to dim them according to a schedule, reducing 
the overall power consumption of the public lighting system.   
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service subscription is a Service Level Agreement (SLA) which indicates the delivery obligations of the 
DSP, as well as the counter-measures if there is a violation. It is fully abstracted from the vertical how 
exactly the DSP delivers the contracted services, as well as the involved Network Service Providers 
(NSPs). Figure 1 provides an overall perspective of the SG UC, including the vertical devices (in blue), 
the DSP actor (in red) and the subscribed E2E services - Ultra-Low Latency (ULL) Communication 
Service (dashed line) and the Management Communication Service (continuous line). 

 

Figure 1 Smart Grid Use-Case High Level Overview 

For the ULL Communication Service subscribed by the Vertical, an E2E Ultra Low Latency (E2E ULL) 
Slice is used, as depicted in Figure 2. A complete 5G mobile network is required to deliver this E2E 
slice - including RAN and Mobile Core components. The slice endpoints are the Subscriber 
Identification Module (SIM) cards connected to the IEDs 5G modem. 

The E2E slice is a logical concept, managed by the DSPs, which is materialized in NSes instantiated at 
each NSP (which is the business entity managing the NS physical/virtual resources). In this particular 
UC, due to the IEDs geographic distribution, the E2E ULL Slice is instantiated using RANs from two 
NSPs (but a common Mobile Core). Shortly, in terms of decomposition, the E2E ULL Slice, illustrated 
in Figure 2 (grey colour), is translated in the following NSes: 

1. RAN + Mobile Core NS @NSP1 (green colour); 
2. RAN NS @NSP2 (yellow colour). 

It is important to mention that the E2E ULL slice (subscribed by the vertical) translation to the NSP 
NSes is transparent to the vertical. In other words, depending on the vertical requirements and on 
the available NSP NS offers, the DSP decides, during the E2E slice instantiation phase, which NSP 
NSes will be required. Therefore, from the business perspective, the vertical only “sees” the SLA with 
the DSP. On the other hand, the DSP must manage contractual relationships with the NSP (or NSPs) 
providing the NSes. Further details about the SG UC are provided in D5.6 [2] and D7.2 [3]. 
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Figure 2 Smart Grid Use-Case - E2E Ultra Low Latency Slice 

The DSP must be able to guarantee that the SLA obligations to the vertical are met. In this case, for 
the E2E ULL slice, it should guarantee that the IED - IED communications over the 5G mobile network 
delivers latencies below 10 ms and that no packets are lost. On the other hand, the NSPs must be 
able to guarantee to the DSP that the RAN + Mobile Core NS (@NSP1 – green colour) and the RAN NS 
(@NSP2 – yellow colour) requirements are also met. 

The SliceNet Cognition Sub-Plane is critical for the NSPs and the DSP in order to guarantee that the 
contracted SLAs are met during the whole slice’s lifetime. At the NSP level, the Cognition Sub-Plane is 
responsible for predicting RAN faults and therefore avoiding an unreliable NS to be delivered towards 
the DSP. Proactively detecting network faults will enable their mitigation within the NSP borders, 
without affecting the SLA towards the DSP, as well as without impacting the vertical QoE. At the DSP 
level, the Cognition Sub-Plane is responsible for guaranteeing that the E2E NS respects the 
contracted SLA. In the SG UC, the Cognition Sub-Plane at the DSP is alerted when the NSP is not able 
to meet the contracted SLAs and, as a mitigation action, decides which are the best candidate NSP(s) 
to replace the imminent faulty NSP. 

The following sub-sections will detail the role of the Cognition Sub-Plane at the NSPs and DSP, 
respectively. 

2.2.2 NSP Instantiation 

As described in the previous sub-section, the Cognition Sub-Plane is responsible for predicting RAN 
faults at the NSP level. Figure 3 illustrates the instantiation of the NSP for the SG UC, depicting the 
cognition workflow, which is responsible for real-time prediction of RAN-related alarms. 
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Figure 3 SliceNet Smart Grid UC instantiated at the NSP 

Table 2 describes the SG UC steps implemented in the MAPE/cognition workflow. 

Table 2 SG UC MAPE/cognition workflow (at NSP) steps description 

Step Description 

1 In this UC, the alarms data is provided from Altice Network Operator (NO) from Portugal 
(named MEO). Therefore, the training and online predictions are made over the MEO alarms 
data, whereas the actuations are made directly on the SG UC testbed using the Open Air 
Interface (OAI) RAN. 
The MEO data is replayed and ingested to the SliceNet system through the External Monitor 
component. The data is collected and thereafter delivered to the Aggregator in the next step. 
In parallel, the External Monitor also persists the collected data on the Data Lake. 

2 The alarms data from MEO are delivered to the Aggregator, which is responsible for the 
preparation and transformation procedures in real-time. When completed, the Aggregator 
streams the data towards the Alarms Prediction ML model running in the Analyser. Besides 
streaming the data, the Aggregator also persists the data in the Data Lake. 

3 The Analyser, in which the Alarms Prediction ML model is running, consumes the transformed 
data in real-time and runs the model to produce the alarms insights/predictions. The produced 
alarms insights/predictions are stored in the Data Lake and streamed for real-time 
consumption and reaction. 

4 The Rule (TAL) Engine consumes the alarms prediction Event, checks the configured NSP 
policies Conditions, in this case the slice available bandwidth, and as a mitigation Action 
decides to increase the NS bandwidth to avoid the network fault. The Rule (TAL) Engine 
implements the ECA (Event – Condition – Action) policy approach. 

5 The action plan decided by the Rule (TAL) Engine is delivered to the Service & Slice 
Orchestrator. 

6 Following the NS bandwidth increase request issued by the Rule (TAL) Engine, the Service & 
Slice Orchestrator interacts with the Quality of Service (QoS) Control component at the 
SliceNet Control Plane to enforce the NS bandwidth modification. 

7 The QoS Control identifies the appropriate network segment (RAN) adapter to address the 
bandwidth increase request and delivers it to the RAN Adapter. The RAN Adapter delivers the 
request to the OAI RAN Controller, which translates the generic bandwidth increase 
information request to OAI RAN specific parameters. Finally, the RAN Controller modifies the 
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NS bandwidth by interacting with the OAI Remote Radio Head (RRH). 

2.2.3 DSP Instantiation 

On the DSP side, the Cognition Sub-Plane is responsible for selecting the most appropriated NSPs to 
be engaged in the E2E NS, guaranteeing that the E2E service delivered to the vertical fulfils the 
contracted SLA. Figure 4 illustrates the instantiation of the DSP for the SG UC, depicting the cognition 
workflow. 

 

Figure 4 SliceNet Smart-Grid UC instantiated at the DSP 

Table 3 describes the SG UC steps implemented in the MAPE/cognition workflow. 

Table 3 SG UC MAPE/cognition workflow (at DSP) steps description 

Step Description 

5 The NS Monitor collect NSes information related with the imminent faulty NS at NSP1. 

6 The collected information is delivered to the Aggregator which will perform the required 
preparation and transformation procedures on the data, create E2E NS perspective metrics and 
stream the result towards the QoE Optimizer. 

7 The QoE Optimizer consumes the event produced by the Aggregator and decides, based on 
policies delivered by the Policy Manager, that NSP1 RAN NS should be replaced by NSP RAN NS. 

8 The final decision is delivered to the Slice & Service Orchestrator of the DSP, which will enforce 
the required actions to replace NSP1 RAN NS by NSP2 RAN NS. 

9 The Slice & Service Orchestrator requests NSP1 to decommission the RAN NS. 

10 The Slice & Service Orchestrator requests NSP2 to instantiate the RAN NS. This procedure is 
described in D7.2 [3]. 

2.3 5G e-Health connected Ambulance Use Case  

Previously, in deliverable D5.6 [2], an anomaly detection model was proposed and tested on real 
data with high performance. In this deliverable, we will detail its integration within the SliceNet 
framework. This section will present the scenario and the integration details. 
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2.3.1 Description 

The SliceNet eHealth UC aims to provide a NS for the vertical (hospital) offering the best services and 
an excellent QoE to a paramedic team. A smart connected ambulance is roaming through the NSPs 
while sending data streams that should be delivered in real time with no quality degradation. A 
feedback mechanism is implemented, allowing for verticals to express their perceived quality of the 
service every second. In this regard, the focus of the developed ML model is to serve as an intelligent 
QoE sensor by analyzing these data samples. The Cognitive Sub-Plane’s anomaly detection model for 
the eHealth UC’s goal is to predict if a degradation in the network signal strength in the RAN segment 
may be perceived in the future 5 minutes by observing the last 5 minutes of QoS metrics that are 
perceived by the vertical. A streaming of the vertical feedback will be sent every 5 seconds to the 
One Stop Application Programming Interface (API) (OSA), which, in collaboration with the P&P 
controller, will deliver the data towards the Cognition Sub-Plane. The used KPIs are well-known QoS 
metrics in RAN domain, which are detailed in Table 4. The Cognitive Sub-Plane identifies that the 
signal quality will be degraded and actuates a handover in order to maintain optimal QoE levels. 

Table 4 e-Health Use Case related QoS metrics 

KPI Description 

Timestamp The timestamp of the measurements 

IMSI The International Mobile Subscriber Identity (IMSI) of the User 
Equipment (UE) mobile device sending data 

Perceived Reference Signal 
Receive Power 

The average power received from a single reference signal 

Perceived Reference Signal 
Receive Quality 

It indicates quality of the received signal 

Perceived Signal to Noise 
Ratio 

It measures the signal strength relative to background noise. 

Perceived Channel Quality 
Indicator 

It is an indicator carrying the information on how good/bad the 
communication channel quality is 

Perceived Received Signal 
Strength Indication  

Signal strength measured from all base stations 

Perceived Downlink bitrate The bit rate in down link 

Perceived Uplink bitrate The bit rate in up link 

The trained anomaly detection model allows predicting the signal quality in the future 5 minutes.  
Once the model predicts low signal strength for an urgent video stream, the Actuation Framework 
within SliceNet’s Cognition Sub-Plane will trigger the event in order to do a remedial action and solve 
the problem before it occurs. One possible actuation is to do a handover of the Evolved Node B (eNB) 
to which the ambulance is connected to another eNB in the same NSP. This model also offers the 
opportunity for the vertical to supervise the performance of its E2E NS and to express its feedback to 
Slicenet; for its part, the SliceNet framework will react with some remedial actions. 

2.3.2 DSP Instantiation 

The cognition capabilities that allow for the realization of the eHealth vertical UC and, more 
concretely, the Anomaly Detection cognition technical UC (TUC), reside exclusively at the DSP level. 
In this regard, the DSP is responsible for maintaining the quality of the ambulance connection to the 
provided slice in order to guarantee a healthy E2E service across the provisioned infrastructure. After 
collecting RAN-related information from the UE endpoint, the DSP determines if an anomaly is going 
to happen at the connection channel that may affect ongoing eHealth service. This being the case, 
the DSP triggers the necessary remedial actions to overcome the predicted anomaly. 
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In this regard, two modes of operation have been defined for the cognitive-based loop. One mode, 
labelled as a streaming mode, has been defined in which data coming from the UE is directly fed 
onto the analytical function responsible for detecting anomalies for real-time analysis of the 
collected data. The other mode, labelled as offline mode, differs in the fact that the data from the UE 
is stored at the DSP shared Data Lake, which then aggregates the several measurements into a 
Comma Separated Values (CSV) file for its latter consumption by the analytical model. Figure 5 and 
Figure 6 illustrate the instantiation of the eHealth UC, depicting the cognition workflow for both 
operation modes, respectively. 

 

Figure 5 SliceNet eHealth UC instantiated at the DSP – streaming mode 

 

Figure 6 SliceNet eHealth UC instantiated at the DSP – offline mode 
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The following tables describe the eHealth UC steps implemented in the MAPE/cognition workflow for 
both operation modes, namely, streaming mode (Table 5) and offline mode ( 

Table 6). 

Table 5 eHealth UC MAPE/cognition workflow (at DSP) steps description – streaming mode 

Step Description 

1 Thanks to the capabilities exposed through the OSA and the P&P Control, the information 
related to quality metrics from the UE is directly streamed towards the Analyser. 

2 The Analyser (i.e. the Anomaly Detection ML model) analyses the data and produces an 
anomaly prediction event (if any) which is sent directly to the QoE Optimizer. 

3 The QoE Optimizer consumes the event and decides, based on policies delivered by the Policy 
Manager, that in order to avoid predicted anomalies onto the ongoing eHealth service, a 
handover is required. A handover means that the UE is re-associated with a healthier eNB or 
RAN slice within the NSP infrastructure and disassociated from the failing slice’s resources. The 
decision is delivered to the Slice & Service Orchestrator of the DSP. 

4 The Slice & Service Orchestrator at DSP level engages with the Slice & Service Orchestrator at 
NSP level in order to enforce the handover/UE re-association. The exact action will be carried 
out thanks to NSP level capabilities (e.g. Control Plane functions). 

 

Table 6 eHealth UC MAPE/cognition workflow (at DSP) steps description – offline mode 

Step Description 

1 Thanks to the capabilities exposed through the OSA and the P&P Control, the information 
related to quality metrics from the UE is collected by the DSP Aggregator. 

2 The Aggregator performs the required preparation and transformation procedures on the data 
to create a CSV file containing several UE measurements, and insert it onto the DSP Data Lake. 

3 The aggregated CSV file is collected by the Analyser from the shared Data Lake. 

4 The Analyser (i.e. the Anomaly Detection ML model) analyses the data and produces an 
anomaly prediction event (if any) which is inserted back as elaborated data to the DSP Data 
Lake. 

5 The prediction events are polled from the Data Lake by the QoE Optimizer to determine if 
remedial actions are required. 

6 The QoE Optimizer decides, based on policies delivered by the Policy Manager, that in order to 
avoid the predicted anomalies onto the ongoing eHealth service, a handover is required. A 
handover means that the UE is re-associated with a healthier eNB or RAN slice within the NSP 
infrastructure and disassociated from the failing slice’s resources. The decision is delivered to 
the Slice & Service Orchestrator of the DSP. 

7 The Slice & Service Orchestrator at DSP level engages with the Slice & Service Orchestrator at 
NSP level in order to enforce the handover/UE re-association. The exact action will be carried 
out thanks to NSP level capabilities (e.g. Control Plane functions). 

The two developed modes serve different interests and purposes. On one hand, the streaming mode 
enables the real-time processing of the monitored UE data, its subsequent analysis and near-real-
time actuation to overcome the predicted anomalies. This approach is essential in scenarios in which 
critical services, as it is the case of the eHealth vertical UC, are being executed, since they require a 
fast and up-to-date analysis and actuation to guarantee optimal quality levels. However, this real-
time process requires high computational capabilities to be realized, potentially being overtaxing in 
situations with large amounts of data. 
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In light of this, the other developed mode, offline, relaxes the time constraints by making use of the 
shared Data Lake. In such a case, the data is not processed in real-time but rather processed in 
batches, which eases the burden of the analytical functions. This approach is suitable for services 
instances whose priorities are lower and thus less stringent times may be applied for the analysis and 
actuation processes. In addition, the offline mode may execute background analysis that can help 
and complement the capabilities of the steaming mode. All in all, the two developed modes are not 
exclusive, on the contrary, they complement each other, serving specific goals within the overall 
vertical UC. 

2.4 5G Smart City Use Case  

2.4.1 Description 

Previously, in deliverable D5.6 [2], a ML model highlighting the Noisy Neighbour (NN) issue detection 
and mitigation process was proposed and tested on the Orange testbed infrastructure. The noisy 
neighbour problem describes a cloud computing multi-tenant infrastructure that consumes all 
bandwidth, disk, Central Processing Unit (CPU) and other resources, negatively impacting other 
user’s performance. Since the effect of noise causes issues to others Virtual Machines (VMs) and 
applications that are using the same infrastructure cloud network (analogous to multiple slices 
sharing the same NSP infrastructure), it has been identified as problem that would affect the Smart 
City UC performance. 

The Smart City UC is based on a NS provided by SliceNet infrastructure for the Smart Lighting 
application. In the real scenario, the NS ensures connectivity for tens of thousands of connected 
devices, across the virtualized network environments. As the UC requirements are not highly related 
to metrics (latency, delay, packet loss, or bandwidth per device) and the UC information – Internet of 
Things (IoT) packets – is not critical in terms of QoS metrics, the UC’s performance may be more 
impacted by its sharing of infrastructure network resources, as one of the use case’s VMs may work 
in a noisy infrastructure environment. Table 7 provides a summary of the main QoS metrics 
considered for the Smart City UC.  

Table 7 Smart City service QoS metrics 

QoS metric QoS Range 

Service availability  99,99 %  

Bandwidth  20-100 kbps  

Latency  50-300 ms  

Packet loss  <=0.1%  

In addition, the list below provides the format of the IoT packets for the traffic flows experienced 
within the UC: 

• Size ≈ 1408B 

• IoT Periodicity: one packet/minute 

• Transport layer: User Datagram Protocol (UDP) 

• Application protocol: Message Queuing Telemetry Transport (MQTT) 

• Command on/off: 70B 

• Capacity/device: 50kbps 

The UC demonstrates the ability of applying cognitive methods for QoS metrics analysis and to 
predict the status of Virtual Network Function (VNF) instances running in a Network Function 
Virtualization Infrastructure (NFVI) environment. Noise in the virtualized environment (overload of 
the compute node that is hosting the UC’s VNF for IoT) is monitored, by the infrastructure collected 
data, providing the capability to detect and predict that a specific VNF is affected by the 
infrastructure noise generated by other resource consumers. 



Deliverable D5.7 SLICENET H2020-ICT-2016-2/761913 

Page 24 of (70)  © SLICENET consortium 2019 

In order to demonstrate the capabilities of the Cognition Sub-Plane for the Smart City UC, a real 
scenario demonstration has been executed within Orange testbed (Figure 7). In particular, two NSes 
have been deployed, with the first NS being the Smart City UC slice whereas the second NS plays the 
role of another consumer of the virtualized infrastructure, generating network traffic and using 
infrastructure resources, thus simulating the noise over the Smart City UC slice. The IoT VM and the 
Video VNF are deployed on the same compute node. Due to the compute node’s excess resource 
consumption (other VNFs are consuming the server CPU) the IoT platform experiences processing 
delays issues. The Cognitive Sub-Plane identifies the problem and actuates the remedial action to 
reduce the overload condition thus ensuring the desired QoE.  

 

Figure 7 Smart City concurrent NSes competing for resources creating the noisy neighbour problem 

In such environment, the SliceNet Cognition Sub-Plane should guarantee that the contracted SLAs are 
met during the slice lifetime, keeping the slice QoE at optimum levels. The following sub-section 
details how the Cognition Sub-Plane is exercised for the Smart City UC.  

2.4.2 DSP/NSP Instantiation 

The Smart City UC is unique in that it demonstrates the case in which both administrative roles (DSP 
and NSP) collapse onto the same entity, which then assumes the management and control 
capabilities offered by the multiple components within the SliceNet architecture. As a result, a hybrid 
instantiation of the Cognition Sub-Plane is materialized, in which, instead of having a separate MAPE-
K/cognition loop per administrative role, a unique loop spans all the functionalities starting from the 
5G network infrastructure towards the capabilities of the Cognition Sub-Plane. For example, a single 
Data Lake is instantiated, which holds all the data of the full layered system. Additionally, actuations 
related to quality of deployed slices do not require the engagement of both Policy Decision Points 
(PDPs), i.e. the Rule (TAL) Engine and the QoE Optimizer, but is enough that all QoE-related (re-
)configurations are handled by the QoE Optimizer. Given these details, Figure 8 illustrates the 
instantiation of the Cognition Sub-Plane and the related MAPE-K loop for the Smart City UC assuming 
a single administrative entity. 
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Figure 8 SliceNet Smart City UC instantiation 

Table 8 describes the Smart City UC steps implemented in the MAPE/cognition workflow. 

Table 8 Smart City UC MAPE/cognition workflow steps description 

Step Description 

1 Performance metrics related to the VNF instances belonging to the Smart City E2E slice are 
collected thanks to the Resource Monitor at the Monitoring Sub-Plane. 

2 The Resource Monitor stores the collected metrics into the Data Lake. 

3 This Resource Data is elaborated by the Aggregator, which prepares and transforms the data 
for it to be ML-ready. 

4 The Aggregator inserts the aggregated data into the shared Data Lake. 

5 The aggregated data related to the performance of the deployed VNFs is collected by the 
Analyser from the Data Lake. 

6 The Analyser (i.e. the NN ML model) analyses the data and produces an event which indicates 
if any of the monitored/supervised VNFs supporting the IoT applications of the Smart City 
service is under any undesired state (e.g. overloaded, noisy). These events are the inserted 
back into the Data Lake. 

7 The QoE Optimizer, acting as the sole PDP, polls the Data Lake and collects the stored events 
related to the previous analysis. 

8 The QoE Optimizer decides, based on policies delivered by the Policy Manager, the most 
suitable remedial action to overcome the undesired states of affected VNF instance. It may 
decide on scaling overloaded VNFs or migrations related to quieting the noisy VNFs (lowering 
their priorities, reducing their allotted resources, etc.). The decision is delivered to the Slice & 
Service Orchestrator. 

9 The Slice & Service Orchestrator delivers the decision to the Resource Orchestrator. 

10 The Resource Orchestrator, given the forwarded request and its parameters, determines which 
is the extra resources that are required (upscaling case) or the new location (migration case) 
for the VNF instance for which the actuation has been triggered. To enforce the desired action, 
it engages with the Virtual Infrastructure Manager. 

11 The Virtual Infrastructure Manager, being responsible for the management of the virtual 
computation resources (e.g. VMs), executes the determined action. 
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3 Progress to Analytic Workflows  

This section discusses the progress to the analytic workflows described in D5.6 [2]. The implemented 
analytic workflows demonstrate the logical SliceNet workflows responsible for predicting NS QoE 
KPIs, including obtaining the required data, learning, processing, and providing the necessary 
information for actuation, to allow NS QoE management. These workflows enrich the raw data from 
multiple sources (including the vertical), adding insights and predictions to support vertically-
informed actuations. 

The implementations exercise several E2E logical workflows of SliceNet that interact with the 
Cognition Sub-Plane (see Table 9). We demonstrate monitoring and cognition at both network sub-
slice (NSS) and E2E NS/service levels, providing the building blocks for the implementation of 
Vertically-Informed QoE Sensors. The focus at this stage is on the learning phase of the cognitive 
pipeline, validating the applicability of the analytic methods employed using external and simulated 
data. New to the current iteration, the several presented analytic workflows provide expanded 
results sections, providing experimental evaluations of the several cognition TUCs that have been 
developed, and linking them to the corresponding actuation workflows. 

Table 9 Summary of analytic prototype workflows 

Name Short description 

Reliable RAN slicing 
using NSP alarm data 

Demonstrate processing of external data sources to support NS 
reliability; optimizing resource selection during NS creation and 
predicting imminent failures. 

Noisy Neighbour 
detection 

Demonstrate the ability to provide a QoE sensor that monitors slice-
level metrics and applies cognitive methods to predict service level 
degradation and pinpoint its origin (application vs. provider). 

QoE classification from 
QoS metrics 

Demonstrate the usage of vertical feedback at the training stage to 
develop a model for predicting E2E QoE from measured QoS KPIs. 

RAN optimisation Demonstrate the application of cognitive methods for managing the 
RAN effectively and optimizing its capacity to maintain high QoS for 
multiple slices and meet their desired service-based performance 
objectives. 

3.1 Reliable RAN slicing using NSP alarm data  

One of the requirements of having a real-time prediction model is the creation of a process that 
evaluates how good these predictions are when deployed. Every model has its synthetic metrics that 
evaluate the performance after the training, but since the model is generated from historical data, 
there must be a continuous re-evaluation of the model to ensure against the degradation of its 
prediction quality over time. Model supervision introduces a whole set of new concepts on how to 
evaluate model performance, which are described in the next sub-sections.  

Another dimension of this study is the translation of model prediction events and how they are 
related to alarm instances. Remember that the original MEO dataset is made of events of instances. 
When deployed and in runtime production mode, the model reads and creates events that must be 
translated back into instances, as they carry the semantic meaning required to apply corrective 
actions in the network. 

The deployment of the models will result in the output of predictive events, when evaluating, these 
events cannot be mapped directly on decisions made in the Policy Framework (PF), and as such some 
form of transformation is required as the main element to be interpreted in PF actuations. To this 
effect, the events are mapped into instances with a lifetime limit equal to the model’s prediction 
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interval (6h at the time of this writing), if new events arrive this limit is updated and extended. 
Extending the predictions to alarm instances leverages the semantic in the data. Interpreting events 
directly would distort the results and therefore the required actions. This section explains how the 
output of the predictive models generates predictive alarm instances and how it relates to the real 
alarm instances. The terms and used definitions are described in Table 10. 

Table 10 Terms and Definitions in the prediction model output 

Term Definition 

Predictive event Output of the model, can be a positive prediction or a negative 
one 

Predictive alarm 
instance/predictive instance 

The instance generated by using the predictive events 

Real alarm instance/alarm 
instance 

the instances created from events received from the equipment 
or other systems 

3.1.1 Context and properties of the data 

Each record in the input data represents an event. The event may update the information of the 
state of the system by starting, modifying or ending instances. We can say that each state is defined 
by an event, while the event alone does not define the state. The state of a given moment contains 
information regarding the instances that are open. In particular, an instance has the following 
properties: 

• specificProblem → what is the problem associated with the instance. 

• start time → when the instance started. 

• end time → when the instance was closed (might be undefined if the instance is open). 

• last event → when was the arrival of the last event associated with this instance. 

In addition, a state has the following properties: 

• Instances → a set of open instances. 

• localcode → scope of the location of the events that defined this state. 

• timestamp → the time when this state was defined 

The prediction model takes a state as input and outputs a prediction. This means that each prediction 
is defined from a state. The model’s output has the following properties: 

• specificProblem 

• localCode 

• timestamp 

• likelihood of occurrence 

The evaluation of the predictions is made by matching the models output with the target instances 
set. The target instances are instances that are closed (the end time property is defined) and where 
the specificProblem belongs to a given set of target specific problems. When reading the model 
output, a given threshold associated with the likelihood of occurrence classifies the output as a 
positive event prediction - predicts that a target instance will happen - or negative event prediction - 
predicts that a target instance won’t happen. By joining the model output with the target instances 
with a predefined target time we can define the event predictions as being true or false. 

A positive event prediction is classified as true positive if the target instance is occurring as 
predicted. A false positive classification means that the target instance is missing within the set 
target time (the prediction was wrong) or that the instance is occurring when the prediction is made 
(no actual prediction was made). 
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For the negative event predictions, the opposite conditions apply: if there is a target instance within 
the set target time, the prediction from the model output is defined as a false negative, otherwise as 
a true negative. Note that since each prediction came from a state and each state came from an 
event, we can say that this is a unit associated with the prediction of a target instance. 

For the evaluation, we will define ∆t as the time to the start of the next target instance of this 
prediction unit. This ∆t is a property of the relation between the prediction and the next target 
instance. Since several predictions can precede a single target instance, each target instance can 
have multiple predictions associated. The evaluation of the models will be focused on the instances. 
Figure 9 depicts a schematic of the process for successfully evaluate a prediction event. 

 

Figure 9 Success evaluation of predictive events 

3.1.2 Evaluations 

Let the evaluated target instances be defined by the following sets: 

• S = {all target instances} 

• FN = {all target instances associated with false negative (FN) predictions} 

• TP = {all target instances associated with true positive (TP) predictions} 

• M = S ∩ ¬(FN ∪ TP) = {all target instances with no associated predictions} 

Prediction of instances is considered for a given period before their start. A prediction can be 
Positive ↑ (instance occurs) or Negative ↓ (instance does not occur), according the expected 
instances within the set period. If the expectation is met, then the prediction is True, otherwise it is 
False. Figure 10  exemplifies this classification. 

 

Figure 10 Simplified depictions of true/false positives/negatives 
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Consider a set (S) of instances of a target problem in a location, 
S = {A, B, C, D} → the set S contains all the instances of a target problem. Moreover, consider a set 
(TP) of instances of the set S, where TP Predictive events occur if TP = {A, B, C}. In addition, consider a 
set (FN) of instances of the set S, where FN Predictive events occur: FN = {A}. Lastly, consider a set 
(M) of instances of the set S, where there are no associated predictive events M = {D}. 

With such definitions, the evaluations are defined as the following: 

• Figure 11 plots the distribution of the number of associated TP predictions in the instances. → 
How many instances (axis Y) have a number of TP predictions in an instance (axis X, binned in 
intervals). 

 

Figure 11 Distribution of the Number of TP Predictions in Instances 

• Figure 12 plots the distribution of the maximum ∆t in the instances. → How many instances 
(axis Y) have where predicted ∆t before their start (axis X, binned in intervals. 

 

Figure 12 Distribution of the maximum ∆t in the instances 

• Figure 13 plots the distribution of the ∆t in the associated TP predictions → How many TP 
predictions (axis Y) were made ∆t before the start of their target instance (axis X, binned in 
intervals). 

 

Figure 13 Distribution of the ∆t in the associated TP predictions 

For the set FN of the instances: 
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• Figure 14 plots the distribution of the ∆t in the associated FN predictions → How many FN 
predictions (axis Y) were made ∆t before the start of their target instance (axis X, binned in 
intervals). 

 

Figure 14 Distribution of the ∆t in the associated FN predictions 

For the set of predictions False Positive (FP): 

• Figure 15 plots the distribution of the ∆t in the FP predictions → How many FP predictions (axis 
Y) missed the target time by ∆t (axis X, binned in intervals). 

 

Figure 15 Distribution of the ∆t in the FP predictions 

3.1.2.1 Considerations 

The predictive events that fall under the False Positive or True Negative classifications are not 
associated with an alarm instance. As such, it is not possible to evaluate them under the context of 
alarm instances. A predictive event can be associated with two or more target instances. The 
instances intervals can overlap as they come from different equipment within a location/slice. 
Instances that fall under the M set require a different Feature Engineering approach since there was 
no data retrieved with the current transformations. 

3.1.3 Supervision Test Environment 

Figure 16 depicts the processes deployed at AlticeLabs SG test lab to evaluate previously created 
models. The supervision processes are executed against historical data as they require the real 
events that match the predictions to evaluate the quality of the model results. In our test 
environment, the messages that arrive from the Kafka bus are persisted in a Hadoop storage to allow 
these validations.  

When running the supervision processes, the end result is a report that provides the evaluation 
metrics and graphics for manual analysis. In future iterations of the supervision process, these 
metrics would serve as an input for an automated process that would switch the running predictive 
models by updated ones as needed or it would inform a human supervisor to take an action as the 
system degraded. 
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Figure 16 Execution Environment with Supervision 

3.1.4 Results 

The results obtained from the execution of the supervision processes are transcribed below in this 
section. For brevity reasons and since it would not provide much more information, the results here 
presented are just for a single day of execution of a single model. 

Model: RAN:NE IS DISCONNECTED 
Evaluation: 2019-08-08 

Predicted 240 of measured 279 of 315 instances. 76.19% of the instances were predicted 
successfully. 

Events Metrics: 

Event classification 

 Real Negatives Real Positives 

Predicted Negatives 315474 858 

Predicted Positives 2005 1038 

Accuracy: 0.9910 
Precision: 0.3411 
Recall: 0.5475 
F1: 0.4203 

Figure 17 illustrates the FP predictive events to next instance occurrence (hours). 
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Figure 17 Distribution of FP Predictive Events to the next instance occurrence 

Figure 18 depicts the instance metrics and model profiling. 

 

Figure 18 Instance Metrics and Model Profiling 

In details, the depicted histograms have the following properties: 

• n → x-axis describes the number of predictions for an instance in bins, the y-axis the number of 
instances. 

• pos → x-axis describes the number of positive predictions for an instance in bins, the y-axis the 
number of instances. 

• neg → x-axis describes the number of negative predictions for an instance in bins, the y-axis the 
number of instances. 

• maxDelta → x-axis is the number of hours that the first positive prediction appears for an 
instance, y-axis is the number of instances. 

• deltas → x-axis is the number of hours from the prediction to the instance, y-axis are the number 
of positive predictive events associated with an instance. 

• PosRatio → x-axis describes the ratio of positive prediction by the number of predictions done for 
an instance, the y-axis the number of instances. 

3.1.5 Final notes 

Since the results were obtained for a test environment, no models were replaced by using these 
supervision processes. However, the developed tools allow understanding the performance of the 
deployed models that run in the Analyser. Without this development, the PF actuations could be 
missing or operating under wrong premises from the information given by the Analyser. 

3.2 Noisy Neighbour (NN) 

The Smart City UC is deployed as a NS composed by a set of network elements (VNFs), components 
and specific applications. This NS ensures in real time the connectivity of an enormous number of 
devices across the network (IoT devices). As such, the functions composing the NS are deployed in 
virtualized environments.  
The developed ML model is used to detect if the perceived QoE is degraded due to the NN problem 
or not, as most elements of the network interconnecting the devices will be deployed in a virtualized 
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environment. Since several machines may suffer from this problem in the infrastructure, an 
investigation should be tackled in order to determine the root cause of the noise for every deployed 
machine. Therefore, we propose a Root Cause Analysis (RCA) [4] approach in order to determine the 
source of the noise in the virtualized infrastructure. To achieve this purpose, we propose a 
propagation path-based solution that observes the correlation between events and seeks the most 
probable anomaly propagation sequence in the infrastructure. A graph is later created in order to 
describe the different dependencies in the system and the possible propagation paths of anomalies 
between the machines. Later, a score is defined to pinpoint the machine that is responsible for the 
noise phenomenon. 

3.2.1 ML model 

Propagation of anomalies between two machines in a virtualized infrastructure may occur following 
three scenarios as illustrated in Figure 19, where VM is a virtual machine and PM is a physical 
machine. VM to VM propagations are avoided as we believe propagation cannot occur unless it 
passes through PMs. Besides, on a large scale, it is very complicated to monitor every (VM-VM) 
couple in the infrastructure. 

 

Figure 19 Noisy Neighbour propagation paths 

The model aims to determine the propagation type of each couple of machines M1 and M2. Hence, 
each instance is described by six features: the CPU usage, the network inbound and the network 
outbound of each machine. The propagation path belongs to one of this set {PMtoVM, VMtoPM, 
PMtoPM}. In order to learn these propagation paths, we use a support vector machine (SVM) one-
class classifier in order to train the propagation paths between each couple of machines. Different 
models per propagation path will decide the type of the propagation for every new data as illustrated 
in Figure 20. 

 

Figure 20 Noisy Neighbour ML classifier for propagation path determination 

Once propagation paths are trained, the next step consists of creating a propagation graph that 
represents the correlation between abnormal system observations. Let G=(V,E) be a direct graph, 
where V is the set of misbehaving components and E represents the propagation paths. 
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In order to select the root cause, we assign an RCA score to each element of the graph. The RCA 
score represents the ability of the component to propagate its anomaly to the rest of the affected 
entities. It is the minimum distance that the entity needs in order to reach every component n in the 
system. The score of a component c in a graph G is the following: Score(c)G= ∑ 𝑑(𝑐, 𝑛)𝑛∈𝐺  , where 
d(c,n) represents the shortest path distance from the component c to the component n using Dijkstra 

algorithm. If n is not accessible by c then d{c,n} = ∞. 

3.2.2 Experimental study 

In order to evaluate the model, several experiments were executed in the NN testbed setup 
previously presented in D5.6 [2] as illustrated in Figure 21. 

 

Figure 21 Noisy Neighbour Testbed Setup 

“Noise” is a server containing the victim machine suffering from noise and the NN itself. “Asterisk” is 
an open source Voice over IP (VoIP) application and it represents our VNF deployed on a VM in order 
to receive calls. It is our victim. “Stress” is the NN VM that performs intense calculations and 
consumes a lot of CPU. “P-tour04” is another server on which we deploy a traffic generator “SipP”. It 
is a free Open Source test tool for the Session Initiation Protocol (SIP). The role of this machine in the 
infrastructure is to generate calls to “Asterisk”.  

In the testbed, we use “Node Exporter” as an agent in every VM and PM. It allows collecting 
information from the machine in the form of counters that are sent to “Prometheus Server”. This 
server creates metrics that describe the utilization of the component in order to create a dataset. 
The training data are created following different scenarios where components operate in different 
charges. Data are collected into “Prometheus” every 5 seconds, for about 8 days, for a total of 
136920 instances per machine. 75% of the data are used for the training phase and the rest 25% are 
used for the test phase. 

Once a NN is detected, an investigation is launched in the whole infrastructure in order to identify all 
the involved machines. The training data for RCA is collected from the couples of machines (Stress, 
Noise) labelled as {VMtoPM} and from the couple (Asterisk, Noise) labelled as {PMtoVM}. Once the 
SVM one-class model [5] is trained, the propagation paths between the machines are determined. 
The results over the test set are presented in Table 11. It shows a comparison of one-class SVM with 
a similar one-class algorithm, namely the Isolation forest [6]. The precision, recall and accuracy prove 
that the model succeeds to determine the propagation paths with an accuracy that is equal to 86%. 
Among all PM to VM propagations, 80% are detected. Besides, 78% of all VM to PM propagations are 
discovered by the model as well. 
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Table 11 Noisy Neighbour ML Results 

 

After determining the propagation paths, a direct graph is created as illustrated in Figure 22. This 
graph represents reachable components through propagation paths resulted from the previous step. 

 

Figure 22 Noisy Neighbour propagation graph 

Later, an RCA score is calculated in every node to describe the ability of that node to propagate its 
anomaly to the rest of the machines. According to the graph presented in Figure 22, we can see that 
both “Asterisk” machine and “Noise” server are unable to propagate the anomaly to the rest of 
machines. This later is proved by the score that has an infinite value for these two machines. 
However, “Stress” machine gives a finite score (score=3) since it can propagate its anomaly to the 
rest of the machines so it represents the root cause of our problem, it is then the NN. Hence, the 
migration of the VNF to another server can be performed after pinpointing the root cause of the 
problem thanks to this RCA solution. 

3.3 QoE classification from QoS metrics  

3.3.1 Goal 

The goal of the QoS to QoE classification TUC is to use ML models to predict QoE at run-time and to 
trigger corrective measures within the SliceNet framework. The assumption is that the service 
provider can measure various QoS metrics; however, does not have full information on the actual 
QoE that the user is experiencing. Therefore, it must estimate the QoE from the measured QoS 
metrics. In particular, these QoE estimations would serve as triggers for actuations by the SliceNet 
QoE Optimizer. Given the monitored QoS parameters for the several deployed E2E NS, the 
corresponding QoE could be derived thanks to the proposed approach. Given such metric, a policy 
defined within the the SliceNet PF would define which actions (actuations) need to be triggered 
when facing bad QoE situations, for which the measurements would come as outputs from the 
proposed ML model. Then, these outputs would feed an instance of the QoE Optimizer, which will 
check the conditions stated by the slice policies in place and trigger the necessary (re-)configurations 
in case the conditions are met (e.g. the estimated QoE is below a certain threshold).  

This approach can be exploited by the multiple SliceNet vertical UC, especially the eHealth one 
following the feedback approach stated previously, since it correlates the several network-level 
metrics (QoS) with the quality being perceived by the customers of the slice. Note that, while the 
developed ML may not match perfectly with the different vertical UCs expectations, mainly due to 
the different data employed in them, the methodology employed sets a solid framework to allow for 
QoE classification-based management of NSes within the context of the SliceNet architecture. 
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3.3.2 Scenario 

The developed ML model focuses on the E2E latency of services over a network as distinctive QoE 
KPI. For this, a WordPress web service is employed [7], with the client and server running on two 
Kubernetes (K8s) clusters [8]. One K8s cluster corresponds to a managed slice, where a real slice 
provider would collect QoS metrics (e.g. through Skydive [9]) in order to manage the slice’s desired 
QoE. In order to vary the WordPress client QoE, traffic application has been simulated with the iPerf3 
tool [10], directing the traffic to the same host as the WordPress server. Then, the test driver collects 
and labels the QoE and the QoS metrics and uploads the metrics to a Jupyter notebook [11] for ML 
analysis. A ML classification process learns a QoE sensor model that estimates E2E QoE from 
measured QoS metrics. Finally, the model is then validated. 

In order to simulate the user’s workload, an application to generate WordPress client traffic to the 
WordPress server is run. The WordPress Client load is created with a Jmeter Load Tester tool [12]. 
The test driver utility is designed to coordinate the running of the WordPress client workloads, 
referred to as benchmark instances, concurrently with various levels of stress generated by iPerf3. 
The test driver also maintains an index that records the start time, end time, benchmark duration of 
each experimental sample used to map the benchmark duration (QoE) to the Skydive flows (QoS). 
The WordPress client benchmark consists of multiple concurrent get homepage, get posts, and 
downloads of files, 500KB, 5MB and 15MB, from the WordPress Server.  Note that in D5.6 [2], the 
workload was simpler with only two threads of two downloads, 5MB and 15MB. In the background, 
various levels of stress are run, including no stress. Skydive is used as a sensor that collects per flow 
network metrics every minute from the WordPress server’s eth0 interface (QoS). These one-minute 
segments are labelled with the benchmark instance id as they are collected.  In D5.6, the sample size 
granularity was of an entire benchmark instance; now we partition the benchmark instances into 
minutes to mimic how the QoS will be collected in production. 

To analyse the collected data, an IBM Watson Studio [13] notebook with a Python 3.6 kernel is 
employed, with the Python Data Analysis Library (Pandas [14]) used to aggregate the QoS and QoE 
measures. Finally, the Python Scikit-learn library [15] is used for creating the ML model. 

3.3.3 Data Description 

3.3.3.1 ML Features 

The different per flow metrics collected through Skydive are transformed and aggregated to supply 
the QoS features used to generate the ML model for predicting QoE classifications, namely binary 
and multi-class QoE classification of benchmarks durations. We start with the raw Transmission 
Control Protocol (TCP) flow metrics described in Table 12, where A and B are the source and 
destination Internet Protocol (IP) addresses of a flow, respectively. In D5.6, it was also used these 
raw TCP flow metrics for its evaluation.   

Table 12 Skydive raw TCP network flow metrics 

Skydive raw TCP network flow metrics Description 

Metric.Start Flow start time 

Metric.Last Flow end time 

Metric.ABBytes Number of bytes sent from A to B 

Metric.BABytes Number of bytes sent from B to A 

Metric.ABPackets Number of data packets sent from A to B 

Metric.BAPackets Number of data packets sent from B to A 

Metric.RTT Round Trip Time 
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These raw flow metrics described in Table 12 are transformed into per flow metrics described in 
Table 13. 

Table 13 Skydive per flow transformations 

Skydive per flow transformations Description 

flow_duration Metric.Last - Metric.Start 
bytes_per_flow (Metric.ABBytes + Metric.BABytes) / flow_duration 
packets_per_flow (Metric.ABPackets + Metric.BAPackets) / flow_duration 
AB_bytes_per_flow Metric.ABBytes / flow_duration 
BA_bytes_per_flow Metric.BABytes / flow_duration 
AB_packets_per_flow Metric.ABPackets / flow_duration 
BA_packets_per_flow Metric.BAPackets / flow_duration 

Metric.RTT Round Trip Time 

The per flow transformations above are aggregated in to per minute aggregations described in Table 
14. In D5.6, the aggregations were per benchmark instance not time windows.   

 

Table 14 Skydive per minute aggregations 

Skydive per minute aggregations Description 

flow_duration_mean Flow_duration per minute mean 
bytes_per_flow_mean Mean of bytes per flow_duration per minute 
packets_per_flow_mean Mean of packets per flow_duration per minute 
AB_bytes_per_flow_mean Mean of AB bytes per flow_duration per minute 
BA_bytes_per_flow_mean Mean of BA bytes per flow_duration per minute 
AB_packets_per_flow_mean Mean of AB packets per flow_duration per minute 
BA_packets_per_flow_mean Mean of BA packets per flow_duration per minute 

RTT_mean RTT per flow per minute mean 

flow_duration_count Number flows per minute 

flow_duration_sum Sum of flow_durations per minute 

bytes_per_flow_sum Sum of bytes per flow_duration per minute 

packets_per_flow_sum Sum of packets per flow_duration per minute 

AB_bytes_per_flow_sum Sum of AB bytes per flow_duration per minute 

BA_bytes_per_flow_sum Sum of BA bytes per flow_duration per minute 

AB_packets_per_flow_sum Sum of AB packets per flow_duration per minute 

BA_packets_per_flow_sum Sum of BA packets per flow_duration per minute 

RTT_sum Sum of RTTs per minute 

bytes_sum Bytes per minute 

packets_sum Packets per minute 

AB_bytes_sum AB bytes per minute 

BA_bytes_sum BA bytes per minute 

AB_packets_sum AB packets per minute 

BA_packets_sum BA packets per minute 

Table 15 describes the correlations between the QoS features described in Table 14 with the target 
QoE, namely benchmark duration. 
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Table 15 QoS/QoE Correlations 

Skydive per minute aggregations (QoS) Pearson Correlation to Benchmark duration (QoE) 

flow_duration_count  0.138526 

flow_duration_sum  0.005999 

RTT_mean -0.019630 

flow_duration_mean -0.020285 

RTT_sum -0.026374 

AB_bytes_per_flow_mean -0.355992 

AB_bytes_per_flow_sum -0.439918 

AB_packets_per_flow_mean -0.457886 

AB_packets_per_flow_sum -0.538687 

BA_packets_per_flow_mean -0.587640 

BAPackets_sum -0.587990 

packets_sum -0.589249 

packets_per_flow_mean -0.590046 

BABytes_sum -0.591192 

bytes_sum -0.591318 

ABPackets_sum -0.593416 

BA_bytes_per_flow_mean -0.600813 

bytes_per_flow_mean -0.604522 

ABBytes_sum -0.611438 

packets_per_flow_sum -0.694955 

BA_packets_per_flow_sum -0.703995 

BA_bytes_per_flow_sum -0.715410 

bytes_per_flow_sum -0.718420 

The QoS features with high negative correlation (coloured in green) are used in generating the ML 
classification models to predict QoE from QoS.  Specifically, we use features: packets_per_flow_sum, 

BA_packets_per_flow_sum, BA_bytes_per_flow_sum, and bytes_per_flow_sum. In D5.6, no such 
correlation or feature prioritization was done.   

3.3.3.2 ML Target Classifications 

The ML target classifications represent the target QoE and are based on benchmark durations with 
no background stress. Table 16 describes the QoE Classifications and decision boundaries. The 
boundaries are derived by calculating quantiles over the benchmark duration instances with no 
background stress. The high boundary is the .99 quantile and the low boundary .75 quantile. 

Table 16  QoE Classifications and decision boundaries. 

Classification 
Type 

QoE 
Classification 

Class Formula Range 

Binary Good 0 range(0,quantile(0.99)) 0-812559 

Binary Bad 1 range(quantile(0.99),infinity) 812559-infinity 

Multiclass Good 0 range(0,quantile(0.75)) 0-482081 

Multiclass Acceptable 1 range(quantile(0.75),quantile(0.99)) 482081-812559 

Multiclass Bad 2 range(quantile(0.99),infinity) 812559-infinity 

Table 17 describes the QoE Classification training and test data distribution over the QoE 
classifications described in Table 16. The source of the QoE data for the training and test data is real 
data calculated for each benchmark instance’s duration. The training dataset includes 530 
benchmark instances divided into 4845 one-minute segments of measured QoS flow metrics, while 
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the testing set includes 198 benchmark instances divided into 1901 one-minute segments of 
measured QoS flow metrics. The Training/Testing one-minute segments of measured labelled QoS 
data labelled with the associated benchmark instance id. 

Table 17 QoE from QoS ML Classification Training and Test Data Distribution 

Classification 
Type 

QoE 
Classification 

Sample 
set  

Benchmark 
instances 

One Minute 
Segments 

Binary Good Training 377 2850 

Binary Bad Training 153 1995 

Binary Good Testing 106 701 

Binary Bad Testing 92 1200 

Multiclass Good Training 243 1545 

Multiclass Acceptable Training 134 1305 

Multiclass Bad Training 153 1995 

Multiclass Good Testing 86 535 

Multiclass Acceptable Testing 20 166 

Multiclass Bad Testing 92 1200 

3.3.4 Results 

We used a few methods to predict QoE from QoS. The methods are summarized in Table 18. In order 
to determine which method performed best we rank their predictions by their F1, accuracy, and log 
loss scores. The results are described in the following sections. In D5.6, only the Non-Neural ML 
Classifier Basket was employed so there was not method comparison.   

 

Table 18 QoE from QoS Prediction Methods 

QoE from QoS 
Prediction 
Methods 

Description 

Thresholding  Thresholding uses classic analytics to predict QoE from a single high correlation 
QoS feature without resorting to any of the available ML methodologies. 

Neural 
Network 

MLPClassifer is scikit’s neural network classifier.  MLPClassifer takes few hours to 
run so it was only run on the full complement of features that exhibit a high 
correlation with the target QoE.  

TPOT TPOT is a Python Automated ML tool that optimizes ML pipelines using genetic 
programming. TPOT explores thousands of possible pipelines to find the best one 
for your data.  It takes days to run so it was only run on the full complement of 
features that exhibit a high correlation with the target QoE. 

Non-Neural 
ML Classifier 
Basket 

A basket of Non-Neural ML Classifiers is used to best predict the target QoE.  
Each classifier is exercised against all combinations of the features with high 
correlation to the target QoS.  

3.3.4.1 Thresholding 

Thresholding uses classic analytic techniques to predict QoE from a single high correlation QoS 
feature without using a ML methodology. It assumes that since the subject QoS feature has a high 
correlation with target QoE, its distribution will also be the same, so it mimics the same boundary 
conditions used to define the QoE classes, but it applies them to the QoS feature.  Specifically, the 
boundaries are derived by calculating quantiles over the subject QoS feature per minute samples 
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with no background stress. The high boundary is the .99 quantile and the low boundary .75 quantile. 
Table 19 and  

Table 20 show the resulting threshold boundary ranges for QoS features bytes_per_flow_sum and 
bytes_sum per minute aggregations. Note that since these feature exhibit high negative correlation 
with the target QoE their classifications are inverted. That is, the target QoE, i.e. benchmark duration, 
is better when it less, whereas the QoS feature, i.e. bytes per minute, is better when it is greater.  

Table 19 QoS Threshold boundary ranges for bytes_per_flow_sum per minute. 

Classification 
Type 

QoS 
Threshold 
Classification 

Class Formula Range 

Binary Bad 1 range(0,quantile(0.99)) 0-16619 

Binary Good 0 range(quantile(0.99),infinity) 16619-infinity 

Multiclass Bad 2 range(0,quantile(0.75)) 0-11328 

Multiclass Acceptable 1 range(quantile(0.75),quantile(0.99)) 11328-16619 

Multiclass Good 0 range(quantile(0.99),infinity) 16619-infinity 

 

Table 20  QoS Threshold boundary ranges for bytes_sum per minute. 

Classification 
Type 

QoS 
Threshold 
Classification 

Class Formula Range 

Binary Bad 1 range(0,quantile(0.99)) 0-3432942 

Binary Good 0 range(quantile(0.99),infinity) 3432942-infinity 

Multiclass Bad 2 range(0,quantile(0.75)) 0-221748999 

Multiclass Acceptable 1 range(quantile(0.75),quantile(0.99)) 221748999-
3432942 

Multiclass Good 0 range(quantile(0.99),infinity) 3432942-infinity 

The prediction results are described in Table 21 and their respective confusion matrixes are 
described in Table 22 and Table 23.  Predictions with bytes_per_flow_sum were better than 
bytes_sum, but neither did a very good job. 

Table 21 QoE from QoS Predictions with Thresholding Results 

Classification Classifier Features (per minute 
aggregations) 

F1 
score 

Accuracy 
score 

Binary Custom made bytes_per_flow_sum 0.64 0.64 

Multiclass Custom made bytes_per_flow_sum 0.65 0.65 

Binary Custom made bytes_sum 0.63 0.63 

Multiclass Custom made bytes_sum 0.28 0.28 
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Table 22 QoE from QoS Predictions with Thresholding on bytes_per_flow_sum per minute Confusion 
Matrixes 

Binary Classification Confusion Matrix Multiclass Classification Confusion Matrix 

 

 

 

 

Table 23 QoE from QoS Predictions with Thresholding on bytes_sum per minute Confusion Matrixes 

Binary Classification Confusion Matrix Multiclass Classification Confusion Matrix 

 
 

3.3.4.2 Neural Network 

MLPClassifer is scikit’s neural network classifier [16].  It is a Multi-Layer Perceptron (MLP).  We ran it 
using parameter settings of solver=’adam’, alpha=1, max_iter=1000, 
hidden_layer_sizes=(1000,1000,1000).  We also tried solvers lbfgs and sgd, but the solver adam 
performed better so only its results are presented below.  For multiclass we set the resulting model 
to ‘softmax’ before doing the prediction (as recommended in its documentation). MLPClassifer (with 
deep hidden_layers) takes a few hours to run so it was only run on the full complement of the 
features that highly correlate with target QoE (not all combinations of these same features) 
described in Table 15 above. 
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The results are described in Table 24,  

Table 25, Figure 23, and Figure 24.  Its predictions for Binary Classification returns F1 and accuracy 
scores in the low .90s, while its predictions for Multiclass are less promising with F1 and accuracy 
scores in the mid .80s. 

Table 24 QoE from QoS Predictions with MLPClassifier Results 

Classification Classifier Features F1 
score 

Accuracy 
score 

Log 
loss 
score 

Binary MLPClassifier packets_per_flow_sum, 
BA_packets_per_flow_sum, 
BA_bytes_per_flow_sum, 
bytes_per_flow_sum 

0.92 0.92 0.38 

Multiclass MLPClassifier 

 
packets_per_flow_sum, 
BA_packets_per_flow_sum, 
BA_bytes_per_flow_sum, 
bytes_per_flow_sum 

0.86 0.86 0.60 

 

Table 25 QoE from QoS Predictions with MLPClassifier Confusion Matrixes 

Binary Classification Multiclass Classification 
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Figure 23 QoE from QoS Predictions with MLPClassifier for Binary Classification Distribution 

 

 

Figure 24 QoE from QoS Predictions with MLPClassifier for Multiclass Classification Distribution 

3.3.4.3 TPOT 

TPOT [17] is a Python Automated ML tool that optimizes ML pipelines using genetic programming. 
TPOT explores thousands of possible pipelines to find the best one for the subject input data.  It takes 
days to run so it was only run on the full complement of the features that highly correlate with target 
QoE (not all combinations of these same features) described in Table 15 above. 

The results are described in Table 26, Table 27, Figure 25, and Figure 26.  Its prediction for Binary 
Classification returns F1 and accuracy scores in the low .90s, while its predictions for Multiclass are 
less promising with F1 and accuracy scores in the mid .80s. 
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Table 26 QoE from QoS Predictions with TPOT Results 

Classification Classifier Features F1 
score 

Accuracy 
score 

Log 
loss 
score 

Binary RandomForestClassifier packets_per_flow_sum, 
BA_packets_per_flow_sum, 
BA_bytes_per_flow_sum, 
bytes_per_flow_sum 

0.93 0.92 0.26 

Multiclass ExtraTreesClassifier 
 

packets_per_flow_sum, 
BA_packets_per_flow_sum, 
BA_bytes_per_flow_sum, 
bytes_per_flow_sum 

0.86 0.86 0.41 

 

Table 27 QoE from QoS Predictions with TPOT Confusion Matrixes 

Binary Classification Multiclass Classification 

 

 

 

 

Figure 25 QoE from QoS Predictions with TPOT for Binary Classification Distribution 
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Figure 26 QoE from QoS Predictions with TPOT for Multiclass Classification Distribution 

3.3.4.4 Non-Neural ML Classifiers Basket  

A basket of Non-Neural ML Classifiers described in Table 28 are used in the analysis to best predict 
the target QoE.  Each classifier is exercised against all combinations of the high (negative) correlation 
features described in Table 15. The classifiers were compared to determine which best predicts the 
target QoE using the selected QoS features. In order to determine which classifier and feature 
combinations perform best we rank their predictions by their F1, accuracy, and log loss scores. 

Table 28 QoE from QoS Non-Neural Basket of ML Classifiers 

Classifiers Description 

LogisticRegression Logistic regression, despite its name, is a linear model for 
classification rather than regression. Logistic regression is also 
known in the literature as logit regression, maximum-entropy 
classification (MaxEnt) or the log-linear classifier. In this model, 
the probabilities describing the possible outcomes of a single trial 
are modelled using a logistic function [18]. 

DecisionTreeClassifier Decision Trees are a non-parametric supervised learning method 
used for classification and regression. The goal is to create a 
model that predicts the value of a target variable by learning 
simple decision rules inferred from the data features [19].  

KNeighborsClassifier              Classifier implementing the k-nearest neighbours vote [20]. 

LinearDiscriminantAnalysis A classifier with a linear decision boundary, generated by fitting 
class conditional densities to the data and using Bayes’ rule. The 
model fits a Gaussian density to each class, assuming that all 
classes share the same covariance matrix. The fitted model can 
also be used to reduce the dimensionality of the input by 
projecting it to the most discriminative directions [21].  

RandomForestClassifier A random forest is a meta estimator that fits a number of decision 
tree classifiers on various sub-samples of the dataset and uses 
averaging to improve the predictive accuracy and control over-
fitting. The sub-sample size is always the same as the original 
input sample size but the samples are drawn with replacement if 
bootstrap=True (default) [22]. 

GaussianNB Gaussian Naive Bayes (GaussianNB) [23]. 
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SVC The implementation is based on libsvm. The fit time scales at least 
quadratically with the number of samples and may be impractical 
beyond tens of thousands of samples [24]. 

AdaBoostClassifier An AdaBoost classifier is a meta-estimator that begins by fitting a 
classifier on the original dataset and then fits additional copies of 
the classifier on the same dataset but where the weights of 
incorrectly classified instances are adjusted such that subsequent 
classifiers focus more on difficult cases. This class implements the 
algorithm known as AdaBoost-SAMME [25].  

QuadraticDiscriminantAnalysis A classifier with a quadratic decision boundary, generated by 
fitting class conditional densities to the data and using Bayes’ rule. 
The model fits a Gaussian density to each class [26].  

 

The results are described in Table 29,  

Table 30, Figure 27 and Figure 28. Its prediction for Binary Classification returns F1 and accuracy 
scores in the low .90s, while its predictions for Multiclass returns a F1 score in the low .90s and an 
accuracy score in the high .80s. A closer look at the Multiclass confusion matrix shows that it did not 
predict any of the middle classification, i.e. 1 (acceptable), correctly. It either under estimated or 
over estimated. 

Table 29 QoE from QoS Predictions with Non-Neural ML Classifiers Basket Results 

Classification Classifier Features F1 
score 

Accuracy 
score 

Log 
loss 
score 

Binary AdaBoostClassifier packets_per_flow_sum, 
BA_packets_per_flow_sum, 
BA_bytes_per_flow_sum 

0.92 0.92 0.65 

Multiclass LogisticRegression packets_per_flow_sum, 
BA_packets_per_flow_sum,  
bytes_per_flow_sum 

0.92 0.88 0.70 

 

Table 30 QoE from QoS Predictions with Non-Neural ML Classifiers Basket Confusion Matrixes 

Binary Classification Multiclass Classification 
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Figure 27 QoE from QoS Predictions with Non-Neural ML Classifiers Basket for Binary Classification 
Distribution 

 

 

Figure 28 QoE from QoS Predictions with Non-Neural ML Classifiers Basket for Multiclass 
Classification Distribution 

3.3.4.5 Conclusion 

Overall the Non-Neural Basket of ML Classifiers method out performs the other classification 
methods.  Its predictions are better, and it takes less time to create a model than the other ML 
methods. We think its results could be improved by tweaking the input parameters the classifiers.  

In a production setting where the classifier predictions could be used to stimulate some remedial 
action, incorrect predictions could have negative consequences. Over estimation could result in 
allocation of more additional resources than required.  Whereas, under estimation could result in 
inaction, whose consequent might be user dissatisfaction or an SLA violation. Hence, the main goal is 
to use the developed ML models to predict QoE at run-time and to trigger corrective measures 
within the SliceNet framework. In particular, QoE estimations would serve as triggers for actuations 
by the SliceNet QoE Optimizer. Based on the monitored QoS parameters for the several deployed E2E 
NS (fed into the DSP's Data Lake), the corresponding QoE classification (hosted at the Analyser) could 
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be derived from the ML model generated during the train phase. On the basis of the QoE 
classification and other QoS metrics, policies would be defined within SliceNet PF that would trigger 
actions to remedy unsatisfactory QoE levels. This approach can be exploited by the multiple SliceNet 
vertical UCs, especially the eHealth one, since it correlates the several network-level metrics (QoS) 
with the quality being perceived by the customers of the NS. 

3.4 RAN Optimisation 

We analyse the RAN status, produced through the Mosaci5G FlexRAN platform, in order to create a 
regression model using the correlation and relation of different metrics with each other. The main 
purpose of the model is to predict the user channel quality indicators (CQI), denoted as wide-band 
CQI (wbCqi), with given important statistics. A properly trained wbCQI based model with high 
accuracy can be used for many applications such as: 

• Predicting the wbCQI in the near future 
o Predicting possible UE connection loss in advance and taking actions beforehand. 
o Calculate velocity and mobility of the UE from the spatio-temporal variability.  

• Predicting base station status and achievable rate 
o Mal-function devices or coverage issue in particular geographical areas.  

In particular, and using the SliceNet’s Smart City UC as an example, the wbCQI can be used to 
determine connectivity of massive number of devices and identify the mal-function devices or 
geographical areas. As our initial approach for RAN optimisation, the channel quality and therefore 
the achievable rate of a given UE will be derived from its wbCQI. It has to be noted that any other 
metric can be used in the future to create more complex models to predict the desired behaviour in 
different situations. In this context, we applied the following steps as a methodology to derive our 
model: 

1. Data cleaning (sanitization). 
2. Data pre-processing. 
3. Data analysis. 
4. Regression model training. 
5. Save/Load of trained models. 
6. Validate and Evaluate results. 
7. Generate real time predictor. 

Multiple RAN datasets have been generated at EURECOM and contributed to Crawdad [27]. 

3.4.1 Data Cleaning and Pre-processing  

As stated above, Mosaic5G FlexRAN platform is used to produce datasets for RAN optimisation in a 
Java Script Object Notation (JSON) format with more than 100 metrics per measurement. In order to 
monitor and train on data in a given time and space, timestamp metadata is added for each 
measured data sample inside the JSON tree to identify the time elapsed between different 
measurements. In addition, some of these metrics remain unchanged regardless of user mobility, 
which is why we make use of a second order data pre-processing to remove those metrics that do 
not change over time (see Table 31). 
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Table 31 Second order RAN data pre-processing sample 

 

Even after removing (quasi-)constant metrics and keeping only the relevant and dynamic data across 
42 columns, it is noticed that some integer overflow occurred, e.g. on macStats_phr, during the 
recording, which are resolved during cleaning and sanitizing the datasets. As for the cleaning steps, 
we perform the following two operations, with Table 32 depicting an example of the cleaned dataset: 

• Aggregating of multiple columns and using the mean or median of other columns to remove 
overflows and sudden metric spike, 

• Changing date time format showing it is growing to future rather than exact dates (exact dates 
give no useful information). 

At the end of this step, the pre-processing of the dataset is completed. A total of 42 fields are left 
that might or might not be used for the regression model. The recordings contain no bad data and 
data index problem is resolved after this step. Following box illustrates the list of 42 features left in 
the dataset for the further analysis part. 

Table 32 Cleaned RAN dataset sample 

 

3.4.2 Data Analysis  

We have recorded different patterns from different scenarios of UE moving away or closer with 
respect to the eNB or remaining at the same position without any mobility. Based on these datasets, 
we generated the correlation matrix to identify metric dependencies. 

3.4.2.1 Correlation Matrix 

We created a correlation matrix from fields listed in the list below to reveal the correlation level of 
different features in a dataset against the other fields (DataFrame Corr is used for this purpose). This 
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is an important factor as it provides a list of useful and not useful fields. 

 

To identify the fields with the highest correlation with wbCQI, a new list of parameters is created 
indicating the correlation levels (from 0 to 1) with other fields. From this list (see below), it can be 
observed that 

• RSRP and RSRQ have a strong correlation with wbCQI 

• macStats_mcs1Dl abd macStats_mcs1Ul correlate quite nicely with wbCQI (which might 
change on other patterns, in particular for RAN slicing) 

• pktRx or pktTx has no correlation at all as they are not related with wbCQI 

• RSRP, RSRQ, and PHR correlate strongly among each other. 

• tbsDl correlates with with Tx related fields 

• prbUl, rnti, date_index, pdcpStats_sfn  and other are unnecessary fields that are not needed to 
generate the model 

It should be noted that the mcs1Dl is created and calculated using wbCQI directly. Therefore, it has 
almost a one to one correlation with wbCQI. Using this field in the training would cause all models to 
put their coefficients to this field and provide 100% accuracy. However, this field cannot be used as 
mcs1Dl is obtained from the wbCQI and not vice-versa. Therefore, this field is removed from the 
dataset. 

3.4.2.2 Final Dataset 

After removing the unnecessary columns from the dataset, only 15 fields will be used for the 
prediction (see Table 33). In addition, we removed the wbCQI as the objective is to predict it and 
therefore, we do not want it in the predictors for the moment. 

['date_index', 'rsrp', 'rsrq', 'wbcqi', 'macStats_phr', 'dlCqiReport_sfnSn', 'macStats_totalBytesSdusDl', 
'macStats_totalTbsUl', 'macStats_mcs1Ul', 'macStats_totalPduDl', 'macStats_totalBytesSdusUl', 
'macStats_tbsDl', 'macStats_totalPrbUl', 'macStats_macSdusDl_sduLength', 
'macStats_macSdusDl_lcid', 'macStats_prbUl', 'macStats_totalPduUl', 'macStats_mcs1Dl', 
'macStats_mcs2Dl', 'macStats_prbDl', 'macStats_totalPrbDl', 'macStats_prbRetxDl', 
'macStats_totalTbsDl', 'ulCqiReport_sfnSn', 'pdcpStats_pktRx', 'pdcpStats_pktRxW', 
'pdcpStats_pktRxAiatW', 'pdcpStats_pktRxOo', 'pdcpStats_pktRxBytesW', 'pdcpStats_pktRxSn', 
'pdcpStats_pktTxBytesW', 'pdcpStats_pktTxSn', 'pdcpStats_pktTxBytes', 'pdcpStats_pktRxAiat', 
'pdcpStats_pktRxBytes', 'pdcpStats_pktTx', 'pdcpStats_pktTxW', 'pdcpStats_pktTxAiatW', 
'pdcpStats_sfn', 'pdcpStats_pktTxAiat', 'rnti', 'quality'] 
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Table 33 Final RAN optimisation dataset sample 

 

We have recorded 30000 scenarios with the top 15 fields that correlate the most with wbCQI in our 
training set, where all of them can be represented as integers making regression models much more 
reliable and easier to train. Dataset has minimum correlation of 0.415038 for field pdcpStats_pktTxSn 
and all upwards. As all fields are represented as integers (see table above), there is no need for 
transformations or even support vector machines to convert anything. 

3.4.3 Regression Models and Validation 

We modelled several different regression and tree techniques, which will be constructed, explained 
and validated in the following sub-sections. We picked the best of all approaches and created an 
ensemble model, which will depict the final model and the end-result. 

In general, regression models aim at modelling a linear relationship between one or several 
independent variables and a dependent variable (target variable). In the RAN optimisation case, the 
dependent variable is wbCQI, while the independent variables are all the other variables that are 
kept in the dataset to predict the wbCQI. 

Before we start the regression, knowing the best 15 features we have but not knowing their relation 

with wbCQI, it is a good practice to include their second and third order statistics, namely x2, x3, √x 
and x1/3, to the data frame to reveal polynomial relations that might have among each other. This will 
increase the number of features we have in the table and will make calculations more complex, yet it 
might increase our accuracy. Therefore, the total feature count in the end now is 15 + 4x15 = 75 
fields. 

At this stage, we split the dataset to training and validation sets to be sure the validation set is not 
being used for training purposes. In principle, many techniques involve a percentage-based separator 
for training and validation sets (i.e 95% to 5% etc). However, we chose to make a scenario based 
split, where training set includes patterns from different recordings and validation set has its own 
patterns. This is useful as it will provide more insight of where and when models fail to predict and 
lose their accuracy. If we would use a percentage-based split, we would not know the exact stats in 
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time series when the casualty started. Still we tried to keep a good ratio of 90% to 10% training to 
validation set size for this part. In our dataset, the training set consists of 26082 Validation set 
consists of 2959 measurements. 

3.4.3.1 LASSO - Least Absolute Shrinkage and Selection Operator 

LASSO [28] is a regression method, which penalizes the absolute size of coefficients, which results in 
a situation where parameter estimates may be exactly zero. The more penalty applied will shrink the 
estimates towards zero more rapidly. LASSO is a good approach when dealing with highly correlated 
predictors where standard regression will usually have very high coefficients because of their high 
coherence. The LASSO technique is regression analysis method and powerful when we have a large 
number of features. It is a great model when trying to avoid overfitting and it is also helpful to 
overcome computational challenges. The Lasso technique works by penalizing the magnitude of 
coefficients of features along with minimizing the error between predicted and actual observations. 
These are called regularization techniques. 

To apply the LASSO method, few parameters are adjusted such as alpha, tolerance for the 
optimisation (important as it stops the model), epoch count, and features from our dataset. Sample 
predictions resulted when applying LASSO method is shown in Table 34. Notice the predictions are 
rounded up or down to integer values as wbCQI is an integer field. 

Table 34 Sample wbCQI prediction using LASSO method 

 

According to the LASSO method, the most important 6 fields for its predictions from our dataset are 
(see Table 35): Square Root of RSRP, RSRQ, Square Root of PHR, 1/3th power of RSRP, RSRP and PHR. 
Mean error is 1.239 where around 4 predictions were very wrong, and 689 miss predictions in total 
of 2959, indicating a %76.71 success rate (see Figure 29). 

Table 35 Field coefficient indicator and highest predication error using LASSO method 
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Figure 29 Lasso wbCQI Error 

3.4.3.2 Elastic Net  

The Elastic Net is a combination of LASSO and ridge regression. It aims at overcoming individual 
limitations that are prevalent in the LASSO and Ridge, while taking advantage of each model's 
strengths. The Elastic Net enforces sparsity. Sparsity refers to the relationship between the amount 
of predictors and the count of samples. If the amount of predictors is greater than or equal to the 
amount of samples, our model is impossible to fit. Therefore, we use a subset, which is smaller than 
the number of predictors. This leads to the great advantage, that the Elastic Net does not have a 
limitation on how many predictors we can use. In our case, with this dataset, the dataset is greater 
than the number of predictors by far. However, it is nice to take advantage of another strength of the 
Elastic Net. The Elastic Net encourages a grouping effect amongst highly correlated predictors. This 
allows for a better control of the impact of each predictor. Table 36 below depicts an example of 
wbCQI predictions using Elastic Net. 

Table 36 Sample wbCQI prediction using Elastic Net method 

 

According to Elastic Net model (see Table 37), the most important fields were again square root of 
RSRP, RSRQ, square root of PHR, 1/3th power of RSRP and RSRQ. Mean error is 1.357 where about 4 
predictions were wrong, and 815 miss-prediction with a total of 2959, indicating % 72.45 success rate 
(see Figure 30).  
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Table 37 Field coefficient indicator and highest predication error using Elastic Net method 

 
 

 

 

Figure 30 Elastic Net wbCQI Error 

3.4.3.3 Tree Based Models - Random Forest and XGBoost 

Tree based learning algorithms are one of the best and mostly used supervised learning methods. 
They have the advantage that they can model non-linear relationships quite well. Random Forest 
works for both categorical and continuous input and output variables. A tree is said to be categorical 
if the target variable is categorical. In our case, we are creating a continuous random tree, as the 
target variable "quality" is continuous. The advantages of random forests are that they are easy to 
understand, useful in data exploration and not constrained by the data type. Data does not need to 
be cleaned as intensely for using random forests and random forest is a non-paramedic method, 
which means that trees have no assumptions about the space distribution and the classifier 
structure. The disadvantages of trees are that they tend to over-fit and when we use them for 
continuous variables, the tree loses information when it categorizes variables in different categories. 
Both disadvantages shall be accounted when modelling wbCQI. 

3.4.3.3.1 Random Forest Regressor 

Random Forest [29] is a versatile ML method capable of performing both regression and classification 
tasks. It also undertakes dimensional reduction methods, treats missing values, outlier values and 
other essential steps of data exploration, and proved to be a good method. It is a type of ensemble 
learning method, where a group of weak models combine to form a powerful model. 

If we have a number of instances in training set N, each sample these N instances is taken at random 
but with replacement. This will be the training set for growing our tree. From M input variables, a 
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number m<M is specified such that each node, m variables are selected at random out of M. The best 
split on m is used to split the node. The value m is then held constant while we grow the forest. Each 
tree is grown to the largest extent and we do not prune. Lastly we predict new data by aggregating 
the predictions of the n trees.  

In should be noted that the Random Forest implementation actually uses percentage base split of the 
training set to validate it against itself. The final model than can be used to predict the real validation 
set to confirm. With Random Forest Regressor, at every run we get a different model with a different 
accuracy. This has the benefit of stochasticity helping to build dynamic models that are trained on 
the fly. Figure 31 shows the wbCQI prediction using Random Forest method.  It can be observed 
that the outliers where wbCQI is quite low. Training is randomized and parameters should be 
optimized better when dataset size increases. 

 

Figure 31 Sample wbCQI prediction using Random Forest method 

For a relatively small dataset like the one used here, some sample predictions are shown in Table 38.  

Table 38 Sample wbCQI prediction using Random Forest 
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Mean error is 0.68 which is under 1 and is much better than the previous models with 483 miss 
predictions in total of  2959, indicating % 83.67 success rate (see Table 39 and Figure 32). 

Table 39 Highest predication error using Random Forest method 

 

 

 

Figure 32 Random Forest wbCQI Error 

3.4.3.3.2 XGBoost 

XGBoost stands for “Extreme Gradient Boosting” and is another Tree implementation that is used for 
wbCQI prediction. As in random forest, we grow a tree decision by decision. Yet, the difference of 
XGBoost lies within Training. As the name of the implementation implies, training is "boosted". We 
learn each variable-by-variable relation and grow a tree for each. Then we apply something called 
additive training, where we grow the tree by adding new trees in an iterative way. In our dataset for 
example, we would grow a tree for RSRP and add it to a tree that we already grew for RSRQ. We 
need to keep score of each leaf and tree structure. Therefore, we built this model in an iterative way. 
This is a far more complex optimisation than just optimizing with a gradient. Naturally, we add the 
trees that optimize our result. Also, XGBoost takes advantage of regularisation methods, which many 
other implementations do not. It has to be noted that XGBoost has subsampling percentage drop to 
avoid overfitting. Table 40 below depicts an example of wbCQI predictions using XGBoost. 

 



Deliverable D5.7 SLICENET H2020-ICT-2016-2/761913 

© SLICENET consortium 2019 Page 57 of (70)  

Table 40 Sample wbCQI prediction using XGBoot method 

 

Mean error is 0.66 (the best results obtained). Only 4 predictions are wrong and model on average 
performs much better than the others with only 345 miss predictions in total of 2959, indicating % 
88.34  success rate (see figure Table 41 and Figure 33). 

Table 41 Highest predication error using XGBoost method 

 

 

 

Figure 33 XGBoost wbCQI Error 
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3.4.3.3.3 Combined Model  

Not all the models presented in above sub-sections perform the best under all circumstances. 
Therefore, we developed an optimizer that will test all contributions from 0% to 100% of all models 
to combine them together and try to find a contribution level where the validation set will be 
predicted the best. Combined model concluded that 78% of XGBoost, 21% of Random Forest and 
only 1% of Elastic Net would provide the best combined model. As expected, XGBoost and Random 
Forest have the highest contributions as their performances are significantly better. However, the 
results reveal that regression models shall include methods that achieve lower percentages so as to 
provide better yet more accurate predictions. Table 42 depicts a sample of the predictions obtained 
through the combined method. 

Table 42 Sample wbCQI prediction using Combined method 

 

Mean error is 1.03 which is much higher than expected with 344 miss predictions in total of 2959, 
indicating % 88.37 success rate (see Table 43). Even though the combined method has the best 
success rate on the validation data, the mean error remains high, which in turn limits the applicability 
of model. 

Table 43 Highest predication error using Combined method 
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4 Related 5G Standards 

This section reviews the relationship of the SliceNet’s Cognition Sub-Plane to related 5G standards. 

4.1 Overview 

SliceNet Cognition Sub-Plane design and methodology is aligned with several of the main 
standardization bodies and associated documents in regards to ML and cognition for the 
management of network systems. 

The ETSI Experiential Networked Intelligence (ENI) Industry Specification Group (ISG) focuses on the 
specification of a cognitive network management system for the optimisation and adjustment of NO 
systems over the time based on metrics extracted from the underlying network system. Given the 
current trends on both research and industry, where technologies such as Software Defined Network 
(SDN), NFV and slicing are of paramount importance, the ENI ISG proposes an architecture that 
adopts a “observe-orient-decide-act” approach to guide an assisted system and influence in its 
behaviours by providing recommendations, for example, in the form of policies [30]. Figure 34 (right) 
depicts a simplified view of the proposed approach. SliceNet Cognition Sub-Plane perfectly matches 
ENI’s architecture; the Cognition Sub-Plane acts as the ENI block, adopting a MAPE-K loop to direct 
the actions of an assisted system, which is the rest of the SliceNet architecture (see Figure 34 (left)). 
The communication between the two blocks is also achieved thanks to a collection of APIs for said 
purpose, allows for the flow of information to the recommendation system with relevant metrics 
from the assisted system as well as to force the recommendations back to the assisted system. The 
main difference between the two approaches stems from the way in which the recommendation 
system influences the assisted system. ENI’s approach advocates for a more declarative approach, in 
which the recommendation block suggests changes on policies or system states, which are then left 
to the discretion of the assisted system. On the other hand, SliceNet’s Cognition Sub-Plane, although 
is also being governed by a policy system, engages with the assisted system in a more imperative 
way. More specifically, the QoE Optimizer module, which is responsible for determining the remedial 
actions once QoE violations occurs or undesired situations are detected, contacts the assisted system 
(the Orchestration Plane) with the exact action that needs to be carried out, leaving the specific 
details on how to achieve this to the logic of the assisted system. This difference, although subtle, 
allows SliceNet to be more focused on its goals, which from the perspective of the Cognition Sub-
Plane, is the QoE-aware management of NSes as offered to vertical clients. 

 

Figure 34 Mapping between SliceNet’s Cognition Sub-Plane and ETSI ENI architecture 

The NGMN also defines as one of the key requirements for 5G systems the concept of Autonomic 
Networking (AuN). Given the complexity of 5G systems, in which multiple network technologies and 
service requirements coexist, it is essential to push the concept of AuN from an E2E perspective for 
automating the configuration, management, operation and awareness of 5G systems. For this, in 
[31], NGMN introduces the presence of Autonomic Management and Control (AMC) in the overall 
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E2E 5G network architecture. Similar to ENI, it proposes a framework in which an underlying network 
infrastructure layer is governed by another entity that provides insights about the overall system and 
then enforces actions to the infrastructure layer. In this regard, NGMN divides the said entity into 
two different roles (Figure 35 (right)). First, an Automated Management layer, in which reasoning, 
learning and adaption procedures take place. Then, the created insights are distributed to an AMC 
layer, which focuses on the efficient implementation and automation of configuration and 
monitoring workflows. The key elements of the AMC layer are the network Decision Entities (DEs), 
which, given the inputs disseminated from the Automated Management layer (e.g. policies), 
autonomously take decisions for self-configuration, self-healing, self-diagnosis, etc. of the network 
layer. Lastly, a common Knowledge Base (KB) is present for the sharing of data between the layers. 
SliceNet’s Cognition Sub-Plane combines both layers capabilities, in which insights are gained 
through specialized analytical functions, overall behaviours are defined thanks to policies and (re-
)configurations are determined through the capabilities of a dedicated DE, namely the QoE 
Optimizer. The difference between the two approaches, aside from the separation/aggregation of 
roles, resides in the specialization of SliceNet’s Cognition Sub-Plane, which focuses on the 
management of NSes rather than general network management. Nevertheless, the two approaches 
are perfectly compatible, highlighting the alignment of SliceNet with 5G architecture standards. 

 

Figure 35 Mapping between SliceNet’s Cognition Sub-Plane and NGMN AMC framework 

In regards to data-driven network operations, control and management, ITU-T specifies a generic 
framework for big-data-driven networking (bDDN) in [32]. In this document, the ITU-T defines a 
three-plane framework. Rather than a traditional layered framework, the proposed framework and 
its planes engage in a tri-dimensional manner for network operation and management, in which the 
three defined planes – big-data, management and network planes (see Figure 36) – take joint actions 
and responsibilities for the management of a network infrastructure in the presence of enormous 
sources of data which may provide valuable insights to govern the network operation. The main 
protagonist of the bDDN framework is the big data plane. The inclusion of such plane arises from the 
fact that traditional control and management layers do not properly handle the challenges of big 
data, such as data aggregation, analysis, federation and storage. With this plane as the central 
element, different bDDN domains are defined, representing a network system in which management 
and control operations are governed thanks to big-data-based analysis and reasoning. SliceNet’s 
Cognition Sub-Plane follows such an approach, with the developed Data Lake acting as the big-data 
plane. Then, the responsibilities of big-data-based analysis and operation are distributed across the 
multiple elements of the Cognition Sub-Plane. In this regard, SliceNet combines some of the 
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capabilities of the big-data plane and the management plane into a single plane, namely the 
Cognition Sub-Plane. This arises from the fact that some of the operations related to bDDN do not 
have a clear separation of roles as all the involved elements need to benefit from the shared 
knowledge and analysis. Thus, SliceNet combines both big-data monitoring, analysis and operation-
based into the same plane to achieve a more holistic data-driven management of slices. In addition, 
it further evolves the standard by not focusing on generic networking but rather embracing network 
slicing and providing solutions for the specific challenges that such technology implies. 

 

Figure 36 Mapping between SliceNet’s Cognition Sub-Plane and ITU-T bDDN framework 

4.2 In-Progress Contributions to Standards 

4.2.1 ITU-T Alias  

Two contributions of the WP5 have been submitted to the standards organization ITU-T Focus Group 
ML5G under study group 13 related to two ML models developed within SliceNet project. The 
submitted contributions are the following: 

1.       Anomaly prediction and integration for eHealth UC based on vertical feedback.  

2.       Noisy neighbour detection and integration in a virtualized infrastructure. 

During the ITU FG ML5G web-conference, held the 20th November 2019, we presented the two 
proposed contributions and an overview of SliceNet architecture and of the cognitive closed loop. 
Additionally, the group expressed their interest in the inventories and about the control plane of 
SliceNet, the interfaces, the APIs, and the vertical feedback.  The next step will be to update the 
contributions in order to express more in details the following topics: 

• Defining the vertical input and feedback. 

• Mapping the vertical feedback to Slice parameters. 

• Detailing the APIs for data monitoring and actuation via SliceNet control plane. 

4.2.2 ETSI INT AFI  

WP5 submitted a document (contribution number INT(19)044010) about SliceNet architecture with 
focus on the Cognition Sub-Plane  to the standards organization ETSI TC INT AFI (working group on 
Autonomic Management & Control). The presentation has been done during ETSI INT #44 meeting. 
The group expressed their interest in the work related to comparison and alignment between 
Generic Autonomic Network Architecture (GANA) and SliceNet Architecture. If we can agree on the 
alignment, a new Work Item can be opened at ETSI TC INT to work on a new Technical Report. 
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5 Related 5G projects 

This section reviews the SliceNet’s Cognition Sub-Plane compatibility with other 5G projects and its 
innovations beyond these projects. During Phase I of the 5GPPP programme, several projects 
addressed the broad concept of Self Organizing Networks (SONs), in which ML/cognition-aided 
network management is enclosed. In particular, three projects dealt specifically with network 
management, being Sesame, SelfNet and CogNet. 

Starting with Sesame [33], this project has been devoted to the management of multi-tenant small 
radio cells. It defines a Cloud Enabled Small Cell (CESC) that combines the capabilities of traditional 
physical SCs with data centre (DC) capabilities to enhance the virtualization of the Physical Network 
Functions (PNFs) at the network edge. Then, a CESC Manager (CESCM) entity is introduced to allow 
for the management of the cells and its elements. To enable a flexible management, the CESCM 
integrates several SON capabilities, mainly SLA monitoring, to stimulate the multiple Element 
Management Systems (EMSs), which will operate autonomously the underlying network functions 
with the goal of SLA maintenance. Although Sesame follows the SON approach for self-operation of 
the network, it does not employ ML/cognition techniques to gain insights on the monitored SLAs and 
help to make smart decisions. SliceNet does follow the SON principles, in which several elements 
automate the operation of the underlying physical/virtual network. In addition, SliceNet incorporates 
several ML/cognition-based elements, i.e. the Cognition Sub-Plane, to enhance the SON capabilities, 
gaining better insights about the network state and providing proper context for the automated 
decisions. 

Both projects SelfNet [34] and CogNet [35] incorporate ML capabilities to enhance the management 
of the underlying infrastructure. In particular, SelfNet is devoted to the management of key network 
technologies for 5G systems, including SDN and NFV-enabled networks, with a special focus on SONs 
for self-monitoring, self-optimisation, self-protection and self-healing. Both its control and 
orchestration components are enriched with some analysis capabilities (based on ML) that allow for 
a better self-control/management of the network and data layers. Nevertheless, SelfNet is not fully 
dedicated to the cognitive management of networks. In this regard, CogNet is totally dedicated to 
the cognitive management of network infrastructures, with a special emphasis on the NFV aspect of 
the underlying substrate. To this end, CogNet defines a complete ML-based framework that provides 
monitoring, analysis and actuation capabilities to influence on the operation of an NFVI. Similar to 
the methodology followed in SliceNet, CogNet also follows a data-driven and policy-based framework 
for ML/cognition. The main difference between the two is that CogNet is focused on the generic 
cognitive management of an NFVI while SliceNet’s Cognition Sub-Plane is focused on the QoE-aware 
management of 5G networks, which requires specialized analysis and actuation components to 
provide the necessary context. Although both projects expand the SON framework with cognition 
capabilities, their scope is significantly different. SelfNet focuses on the networking aspects of a 5G 
system while CogNet focuses on the NFV side of the infrastructure. Beyond these aspects, SliceNet is 
devoted to the E2E cognitive management of NSes build on top of a 5G system, including both 
networking and NFV aspects. Not only that, SliceNet Cognition Sub-Plane takes special care to 
incorporate the slice/vertical context in its analysis and actuations so as to fully provide a QoE-aware 
management of NSes. 

In summary, SliceNet Cognition Sub-Plane has further expanded the architectural proposals of past 
projects by going beyond a simple network infrastructure but encompassing the E2E aspect of the 
service delivery, by tackling the cognitive management of NSes, an aspect that has not been tackled 
in Phase I. Moreover, a key aspect of the developed Cognition Sub-Plane is the “verticals-in-the-loop” 
philosophy adopted by SliceNet, which makes the verticals an integral part of the full system. Due to 
that, the multiple analysis functions of SliceNet’s Cognition Sub-Plane are specialized for the QoE 
monitoring/analysis of verticals’ slices, with properly curated monitored data to reflect the 
requirements of the managed slices. Figure 37 depicts a schematic of the position of the different 
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projects that summarizes their respective scope related to cognitive management, SON, and their 
infrastructure focus. 

 

Figure 37 Comparison of management and managed infrastructure scopes 
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6 Cognition Sub-Plane and the SliceNet Architecture 

As shown in previous deliverables D5.5 [1]  and D5.6 [2], as well as in Section 2 of this deliverable, 
SliceNet Cognition Sub-Plane has accomplished its goal to provide a framework for the QoE-aware 
management of NSes on top of a shared 5G network infrastructure. Two main developments have 
been key for achieving this objective: the development of ML analytical models to gain insights about 
the QoE of deployed slices and the development of an actuation framework devoted to the 
maintenance of quality levels per slice. 

Multiple ML models serve as advanced QoE sensors that determine relevant metrics and KPIs to 
determine the quality of the underlying slices or events/changes on the infrastructure that may 
affect the health of the slice. In this regard, SliceNet Cognition Sub-Plane has contributed to the 
progress of QoE awareness/analysis of vertical slices by analysing the requirements of selected 
vertical UCs and mapping its requirements onto metrics at the slice level that may affect their quality. 
This work can help with other UCs related to similar vertical sectors as samples of the metrics to be 
employed for QoE monitoring of slices supporting specific vertical services. In addition, aside from 
the specific models developed for SliceNet’s vertical UCs, SliceNet’s Cognition Sub-Plane also focused 
on the generic aspect of QoS to QoE classification, which is a very relevant to optimizing QoE-aware 
management of NSes. Indeed, current Internet service trends (e.g. Youtube, Skype) usually employ a 
QoE rating to classify the quality of the service. Then, it is up to the service/network operator to 
determine, in case of bad quality, which network parameters are responsible for the degraded 
service (i.e. QoS metrics). Such a task is usually complex, as there is not a direct correlation between 
user QoE and network QoS metrics. Hence, the model developed within SliceNet’s Cognition Sub-
Plane for this objective (the QoS to QoE classification model) sets a solid framework and 
methodology that could be expanded and contextualized to tackle the task of correlating QoE and 
QoS in other vertical use cases. 

On the other side of the equation, lays the actuation framework of SliceNet’s Cognition Sub-Plane. 
Thanks to the two main components – the PF and the QoE Optimizer – SliceNet’s Cognition Sub-Plane 
is able to detect events that effect the QoE of slices (mainly through the outputs of the multiple 
analytical functions), determine if certain conditions are met and apply remedial actions to overcome 
undesired situations. This is possible thanks to the policy system, which provides a great deal of 
flexibility on how the management of QoE per slice happens. Following an ECA model, it allows for 
mixing and matching monitoring/analysis outputs to specific remedial actions for a plethora of cases. 
In this regard, SliceNet’s Cognition Sub-Plane could be easily expanded to support other cases of 
QoE-aware management by properly setting new policies that would automate the whole actuation 
workflow. 

These two big elements (analysis and actuation) can be easily combined thanks to the Data Lake 
approach followed by SliceNet’s Cognition Sub-Plane. Indeed, the Data Lake approach has been a key 
design feature for the successful development and prototyping of the Cognition Sub-Plane. By 
sharing and aggregating the monitoring data coming from the NSP level, it is possible to centralize 
the queries of analytical functions (i.e. ML models), which then feedback their outputs to the 
centralized Data Lake for the consumption by the QoE Optimizer. Such an approach not only allows 
for a relative agnostic analysis-to-actuation workflow, in which analytical functions only have to be 
concerned with inserting elaborated data back to the Data Lake and the QoE Optimizer only has to be 
concerned with extracting said data from the Data Lake, but it also allows for expanding the types of 
analysis and actuation that can happen in the SliceNet’s Cognition Sub-Plane. Indeed, new analytical 
functions can be easily incorporated into the picture by properly configuring which data would be 
consumed from the Data Lake and how the generated outputs are inserted back as elaborated 
events. Then, thanks to new policies, the QoE Optimizer would be made aware of the new data that 
it needs to query from the Data Lake and the expected action in cases where adverse conditions are 
inferred from the new inputs feed into previously generated ML models. Figure 38 depicts an 
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example of this environment, showcasing how previous deployed analytical functions and actuations 
can coexist with the inclusion of new ones. This approach can be exploited by future developments in 
order to tackle the full loop of QoE-aware management related to other vertical UCs that were not 
originally under the scope of the SliceNet project. 

 

Figure 38 Inclusion of new QoE-aware management strategies thanks to the Data Lake approach 

To further enrich the capacities of the developed Data Lake approach, SliceNet’s Cognition Sub-Plane 
has developed, in collaboration with the Plug and Play (P&P) controller developed within WP4 [36], a 
vertical’s feedback mechanism that allows for the vertical customers of deployed slices to express 
their experience with the provisioned infrastructure. This mechanism has been one of the main 
innovations developed within the SliceNet project to progress towards the inclusion of the verticals’ 
in the whole management/control of deployed slices. Figure 39 depicts a schematic of the whole 
feedback mechanism, including the primary components and their interactions. 

 

Figure 39 Vertical feedback mechanism workflow 
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Thanks to the capabilities exposed through the OSA, which grants a vertical customer access to the 
SliceNet’s ecosystem, this feedback mechanism allows collecting a qualitative or quantitative rating – 
a Mean Opinion Score (MOS) value – from the vertical through a dedicating function enclosed within 
a specialized plugin (QoE plugin) in the P&P controller of the slice (Step 1). The collected rating can 
then be captured by the corresponding instance of the QoE Optimizer (Step 2b) which, as explained 
before in previous WP5 deliverables, has several policies in place that dictate under which Event and 
Condition what Action should be carried out to remedy bad quality situations. In the case of a vertical 
feedback, the policy would state that, given a specific MOS value (e.g. “Bad”), the QoE Optimizer 
should trigger the specified (re-)configuration operation towards the rest of the SliceNet System (i.e. 
the DSP Orchestration system) so as to maintain optimal quality levels (Step 7). This policy is initially 
distributed from the PF upon instantiation of the slice and all software artefacts responsible for its 
control and management. The parameters of the policy (i.e. the ECA items) would be configured 
manually through the Policy Administration Point (PAP) according to the requirements of the slice 
and the service it needs to support. 

Indeed, by setting up policies which tie the vertical’s feedback with an action in turn (re-)configures 
the most relevant QoS parameters that are affecting the expressed QoE, it is possible to fully realize 
the “verticals-on-the-loop” vision that SliceNet is advocating. In this regard, SliceNet’s Cognition Sub-
Plane has proposed a novel framework to incorporate the presence of vertical customers into the 
QoE management of slices, one of the key requirements for 5G infrastructures. Due to the attractive 
nature of the mechanism, SliceNet is currently engaging with standardization bodies so as to 
promote the feedback framework as part of future standards, as explained in Section 4.2. To fully 
realize the concept, it would however require the proper analysis of the received QoE feedback in 
order to influence the policy system and the related actions to apply the most suitable (re-
)configuration according to current slice status. Such a workflow is also represented in Figure 39. 
Starting from the QoE plugin, the collected MOS value would need to be inserted onto the shared 
Data Lake (Step 2a). Upon insertion, a specialized analytical function/ML model would collect the 
value along with the QoS metrics of the affected E2E slice (Step 3). The goal of such a model is to 
analyse the expressed feedback and the monitored QoS at the slice level, in order to identify the 
main cause(s) for unsatisfactory quality levels (Step 4). After this analysis, the model would then 
recommend to the PF which QoS parameter(s) need to be influenced as part of policies actions (Step 
5). Given these gained insights, the PF would then update the Action field of the policies related to 
the expressed vertical feedback for the PDPs responsible for slice quality maintenance, i.e. the QoE 
Optimizer (Step 6). With this updated policy, the QoE Optimizer would then be able to trigger the 
most suitable action according to the most updated insights gained through the expressed feedback 
from the vertical once received, following the same procedure as in Step 7. The current 
implementation of the Cognition Sub-Plane does not account for this dynamic update of policies 
given analysis of verticals’ feedback. Nevertheless, SliceNet’s Cognition Sub-Plane has proposed a 
novel framework to incorporate the presence of vertical customers into the QoE management of 
slices, one of the key requirements for 5G infrastructures. Hence, future developments and research 
projects could adopt the developed strategy to further integrate verticals into the full provisioning 
and management loop of 5G networks. 

The aforementioned feedback mechanism is a concrete example of how SliceNet’s Cognition Sub-
Plane architecture and design supports the insertion of external data to the SliceNet ecosystem. The 
presence of data is essential for the cognitive management of a network system; we learn from big 
data research that when more data is made available that ML can be leveraged to derive better and 
more accurate insights. Depending on the size and types of management that are pursued, it may 
happen that the network system under direct control of the provider does not generate enough data, 
derived from their monitoring functions, to perform ML-based operations and gain insights about the 
system behaviour and operation. As such, it becomes essential to introduce other sources of data to 
complement the data captured within the system. In this regard, SliceNet approach has been to open 
up its data warehouse (i.e the Data Lake) to the inclusion of other sources of data; the data sources 
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could be from the users of the deployed services (verticals) or other network systems (as the case 
explained in Section 2.2). The data management in the developed Cognition Sub-Plane is focused on 
gaining insights per deployed NS, as such, the multiple sources of data allow for providing a more 
accurate context for the per NS management. Indeed, this last aspect, the per NS management, has 
been the main focus of the developed Cognition Sub-Plane. The designed and developed architecture 
has been structured in a way in which all of its elements – analysis, aggregation, policies and 
actuations – can be combined in a versatile way which allows for the management of completely 
independent NSes, capturing slice subjective attributes such as QoE levels, which are slice/service 
dependant. In a nutshell, SliceNet’s Cognition Sub-Plane has devoted its efforts in developing a 
framework that enables 5G infrastructure systems with the capacity of cognitive management of 
NSes, with a special focus on the QoE aspects. The flexible engagement of all the elements within the 
Cognition Sub-Plane allows for tackling multiple vertical UC, as it has been demonstrated in past WP5 
deliverables and reiterated in Section 2 of this document. 

Last, but not least, SliceNet’s Cognition Sub-Plane has developed a flexible framework for QoE-aware 
management of NSes that may suit the requirements of multiple roles and administrative entities. As 
it has been demonstrated along the vertical UC presented in Section 2, the components of the 
Cognition Sub-Plane may be instantiated at both NSP and DSP levels independently, potentially 
articulating isolated MAPE-K loops per administrative role (e.g. Smart Grid UC), a hybrid MAPE-K loop 
spanning all the roles (e.g. Smart City UC) or only focusing the cognitive management in one of the 
roles (eHealth UC). This is possible thanks to the modularity and replicability of the designed 
Cognition Sub-Plane, that allows to instantiate selected components within the plane per 
administrative role, all following the same architectural principles that tie their functionalities 
together. In addition, the followed Data Lake and policy-based design facilitates the ease of adoption 
of selected components depending on the roles and their interests. From a functional and 
architectural perspective, the Cognition Sub-Plane and their components are the same in all the 
roles. Then, the specific behaviour and goals become defined through the data exchanges flows 
between modules and the policies that govern the Actuation Framework. Such flexible design can be 
followed in future developments and research projects as a framework capable to adapt to a 
plethora of vertical UC in which several combinations of administrative roles may take place. 
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7 Conclusion 

The development and prototyping of SliceNet’s Cognition Sub-Plane have been a challenging task 
that required a meticulous analysis of the required functionalities and posterior refinement of the 
designed architecture. One of the main challenges during its development was the definition of the 
overall Cognition Sub-Plane architecture since it needed to account for all the requirements posed by 
the vertical UCs that are supported. In addition, due to refinements of the overall SliceNet 
architecture and role separations, the Cognition Sub-Plane needed to be adapted in order to match 
its expected functionalities with the rest of the building blocks and planes of the general architecture. 

Speaking about the proposed design, the Data Lake approach has been fundamental in the success of 
WP5. The separation between functions allowed different partners within WP5 to focus their efforts 
in concrete parts of the Cognition Sub-Plane without overlapping each other. Once modules where 
fully developed, the integration consisted of agreeing on how the data flows are realized between 
analysis and actuations by means of the shared Data Lake and what actuations are needed by means 
of specifying proper policies. The development of analytical functions also required a strong 
knowledge of the requirements of vertical UCs, since QoE management of the slices must take the 
verticals’ context in mind. For this, the execution of specific task forces within WP5 to address the 
challenges of the analysis needed, as well as the actuations, policies and necessary integrations, per 
TUC enclosed within vertical UC has been useful. 

In regards of future work, two main open issues remain when facing the designed and prototyped 
Cognition Sub-Plane. On one hand, in order to further automatize and make more intelligent the 
actuations for QoE maintenance, a dynamic and autonomous policy system is required. This can be 
possible with the engagement of the PF with specialized analytical functions which could recommend 
policies to be issued towards the QoE Optimizer or even specify new ones by parametrizing certain 
fields of the policies thanks to the gained insights. The cognitive management/creation of policies is a 
very challenging task, which needs a careful definition of the policies semantics and parameters and 
how these can be influenced or modified by ML functions. Nevertheless, despite its challenges, it is 
an interesting approach to be followed in the future. 

The other item that remains open is the specification of a common information model that allows 
representing analytical functions and available actuations. Such information model would help in 
further automating QoE monitoring-to-actuation process by enhancing the interaction between ML 
models and the QoE optimizer, allowing for a dynamic tuning of the desired actuations. In addition, 
by standardizing the representation of analytical and actuation functions it would be possible to 
easily incorporate new analysis and actuations on the overall Cognition Sub-Plane framework, fully 
realizing the benefits of the Data Lake approach which, as explained before, allows for a lose coupling 
of analytics and actuations, make it possible to grow in capabilities as needed. For these reasons, 
future works are encouraged to follow this research and development line. 
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