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Version information 

This document is the new revised version 1.1 of the previous version 1.0.  
Reason for revision is to include recommendations from SliceNet 2nd year review as described in the 
Review Report [44] . 
Main changes are:  

- New Sections  4.1.1.4 and 6.1.2 added to describe the CPSR High Availability Architecture and 
Prototype. 

-  Updated Section 5 to clarify IPv6 capabilities 
- Updated Section 4.1.2 to clarify why the Inter-PoP Path descriptor is based on IP  
- Updated Section 1 to align with current SliceNet evolved architecture. 
- Minor updates in Section 2, 3, and 7 to align with current main technical evolutions. 

 
 

Abstract 

This document reports the design and prototype implementation of the SliceNet Control Plane 
Services and Backhaul Adapters for single administrative domain according to the SliceNet Control 
Plane architecture as defined in Deliverable D2.3. The Control Plane Services handle tasks for the 
enforcement of network functions, configuration rules and policies governing the run time 
operations of Radio Access Network (RAN), Core Network (CN), Mobile Edge Computing (MEC) and 
Backhaul network segments within the same administrative domain. The Service Based Architecture 
(SBA) principles applied to the SliceNet Control Plane are as well addressed describing how the 
Control Plane components offer or consume services communicating by an agreed Service Based 
Interface (SBI) over a common bus. 
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Executive summary 

This document deals with the “Single-Domain Multi-Tenant Slicing Control” functionality according to 
the SliceNet Control Plane architecture as defined in Deliverable D2.3 [2] . 

The functionality is thought to handle tasks for the enforcement of network functions, configuration 
rules and policies governing the run time operations of Radio Access Network (RAN) RAN, Core 
Network (CN) Core, Mobile Edge Computing (MEC) MEC and Backhaul network segments within the 
same administrative domain. 

Main achievements with this deliverable are: 

 Realization of a set of SW components called Control Plane Services (CPS) each offering 
specific configuration and control capabilities. 

 Realization of a Service Based Architecture framework to accommodate the required 
SliceNet Control Plane components and describe how the SW components offer or consume 
services communicating by an agreed Service Based Interface (SBI) over a common bus. 

 Prototyping of SW components and related documentation in terms of reference open 
source frameworks used and implementation choices. Most of the delivered components 
have been implemented from scratch as containerized application. 
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1 Introduction  

1.1 Scope  

This deliverable aims to design and prototype the “Intra Domain Slicing” functionality according to 
the SliceNet Control Plane architecture as defined in Deliverable D2.3 [2]  

With respect to the SliceNet logical architecture [1] and current evolution [45] as depicted in Figure 
1.1 the Intra Domain Slicing framework is positioned within the Control Plane layer [2] as responsible 
for  enforcement (per-slice runtime) of network functions configuration rules and policies governing 
the run time operations of RAN, Core, MEC and Backhaul network segments within the same 
administrative domain. 

 

 

Figure 1.1 Intra-Domain Slicing within the SliceNet logical architecture 

 

In details, the document deals with the implementation of Slice control functionalities by a set of SW 
components called Control Plane Services (CPS) each offering specific configuration and control 
capabilities as detailed within next chapters. The internal architecture following the Service Based 
Architecture (SBA) principles is as well addressed describing how the SW components offer or 
consume services communicating by an agreed Service Based Interface (SBI) over a common bus. 

The following Control Plane Services and Adapters are covered by this deliverable: 

 Control Plane Service Register (CPSR); 

 Inter-PoP Connections Control (IPC); 

 Quality of Service (QoS) Control; 

 Network Functions (NF) Configuration Control  

 Backhaul Adapter  

 Data Plane Programmability (DPP) Backhaul Adapter  

1.2 Document structure 

This document is structured as follows:  
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 Section 2 provides an overview on current architectures and technologies for controlling the 
different segments of 5G networks (e.g. RAN, MEC, Core, Backhaul) and highlights how 
current state of the art is advanced by this delivery. 

 Section 3 defines the main principles that have driven the design and implementation of the 
SliceNet Control Plane Architecture and of the related components in the scope of this 
deliverable. Focus is on Service Based Architecture and technology agnostic API abstraction. 

 Section 4 is the core part of the document where all the delivered components are described 
in terms of functionalities and offered operations through their exposed Service Based 
Interface; example of possible workflows involving the concerned components are also 
reported. 

 Section 5 provides a complete overview of all the Interfaces with reference to the SliceNet 
Control Plane Architecture. The interfaces directly related to the components in the scope of 
this deliverable are fully described in terms of possible operations and parameters while the 
others are reported for completeness including the reference where the detailed description 
is. 

 Section 6 provides a description of the components software prototype that has been 
implemented following the architecture, work flows and APIs definitions of Section 4.  

 Section 7 provides some concluding remarks and highlights the future work. 
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2 State of the art  

This section provides an overview of the technologies, paradigms and approaches that are being 
currently used to implement the control of communication networks, mainly focusing in 5G/4G and 
their composing network segments. Since the main goal of the SliceNet Control Plane (CP) is to 
seamlessly interconnect different network segments to provide end-to-end connectivity through the 
creation of slices, the CP has to be able to deal with the technologies associated to the control of 
such network segments. In addition, the advances on the control of end-to-end 5G/4G networks 
offered by the SliceNet CP are highlighted. 

2.1 Service-based approach 

Looking at the literature, several approaches can be found to implement efficient 5G/4G control 
planes. Such approaches span from the clean-slate proposals like [8] to more standard-aligned 
initiatives that define modifications to the architecture proposed by standardization bodies such as 
the 3rd Generation Partnership Project (3GPP). For example, the authors of [9] propose a centralized 
control by moving the control functionality of the 5G RAN to the Core in order to reduce the 
signalling between these two segments. Taking a different approach, the authors of [10] propose a 
parallelization of several procedures in the LTE networks control aiming to reduce the latency in 
different situations: latency in establishing a new data service, latency in retaining data service in a 
handover and latency in wide-area roaming. 

In contrast, the SliceNet control framework aims to extend the functionalities of the 5G/4G CP 
without compromising the modularity and standards compliance of the existing control plane. To do 
this, the SliceNet Control Plane [2] defines a set of functional modules that interact with the 
heterogeneous 5G/4G infrastructure to provide end-to-end slices in support of vertical-oriented 
services. Such modules are deployed in three layers in the SliceNet CP. The first layer contains one of 
the most innovative components proposed by SliceNet, namely, the Plug & Play (P&P) [4] , which is 
aimed to provide per slice runtime customization. The second layer is composed of the control plane 
services (e.g., CPSR, QoS Control, IPC and NF Configuration Control), which are responsible for 
implementing the configuration and control functions requested from the other planes of the 
SliceNet system (i.e., the Orchestration, the Management and the Cognition sub-planes). Finally, the 
lower layer of the SliceNet CP contains the Adapters, which are a set of modules that implement the 
functions to be invoked by the control plane services to configure each segment of the network in 
order to provide the end-to-end slices. These Adapters have been designed to be technology-
agnostic in the northbound and technology-specific in the southbound. 

The enabler of the communication between the different layers of the proposed architecture is the 
service bus. During operation, the modules of the SliceNet architecture (i.e., the ones at the 
Management, the Orchestration and the Cognition sub-planes) that need to contact the control 
plane to carry out their responsibilities connect to the SliceNet CP CPSR, which contains a reference 
to the control plane functions available, to obtain the pointers to the needed control planes 
functions. These, in turn, contact the CPSR to obtain access to the proper adapters, which contacts 
the appropriated segment and technology control at the infrastructure level. 

The rationale behind the service-based approach is to provide a technology agnostic control plane 
able to configure any kind of underlying technology, as well as achieving a highly flexible architecture 
where services can be dynamically added at any layer of the control plane. The service-based 
architecture designed for the SliceNet CP is illustrated in Figure 1.1 and further described in section 
3.2. 
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2.2 Multi-segment technology-agnostic control 

As previously stated, the goal of the SliceNet CP is to obtain an intra-domain multi-tenant slicing 
functionality, offering a set of overlay services on top of 5G/4G standard control and data planes, 
which advances the state of the art in enabling an adaptive, flexible, standard-compliant and 
interoperable network slicing architecture. To achieve this, the SliceNet CP takes advantage of the 
existing control technologies that can be found for the different segments of the 5G/4G control and 
data plane infrastructure: Radio Access Network (RAN), Mobile Edge Computing (MEC), Backhaul, 
Core and Wide Area Network (WAN). 

2.2.1 Backhaul and WAN 

Different state-of-the art paradigms and technologies are assumed to be controlled from the SliceNet 
CP. Currently, one of the most accepted models for network control is the Software Defined 
Networks (SDN) [11] . By definition, SDN is aimed to dynamically configure the connectivity requests 
coming from the application layer. Hence, the SDN controller, which has a global vision of the 
network, centralizes the logic to program the data plane forwarding behaviour according to the 
application needs. To do this, the controller manages policies and rules to configure data flows over 
the network infrastructure, which can be either physical or virtual. In this regard, along with the 
network programmability, virtualization is one of the added values that the SDN paradigm offered to 
the traditional network control, thus paving the way to the current network slicing.  

There is a number of well-known open source SDN controllers (e.g. Floodlight [12] , OpenDaylight 
[13] , ONOS [14]  and Ryu [15] ). Most of them support OpenFlow [16] as the protocol to configure 
the data plane. Nonetheless, other protocols are extensively used to implement the southbound 
interface. For example, the IETF defined the NetConf [17]  protocol to install, manipulate and delete 
the configuration of network devices. On the contrary, there is no standard defined to implement the 
northbound of the SDN controller, which is typically based on proprietary REST-based interfaces. SDN 
is assumed to be one of the technologies used in the Backhaul and in the WAN segments. 

Also in the Backhaul segment, the SliceNet CP introduces the Backhaul DPP Adapter (described in 
section 4.2.1) that is able to provide highly flexible control and configuration of the wired network 
data flows, thus enabling enhanced slicing capabilities to this segment of the network. More 
specifically, the Backhaul DPP Adapter relies on the Flow Control Agent (FCA) Controller. The FCA 
Controller offers fully-configurable fine-grained data flow grouping in support of nested 
encapsulation, which enables mobility support and multi-tenancy, thus making the 5G technology 
compliant. In light of this, the Backhaul DPP Adapter and its underlying technology overcome the 
slicing limitations of the current standard SDN controllers. 

2.2.2 RAN 

Several 5G RAN design requirements and paradigms to enable RAN slicing are elaborated in [18] . 
3GPP mentions the RAN slicing realization principles in [19] and [20]  including RAN awareness 
slicing, QoS support, resource isolation, SLA enforcement among others. A fully centralized 
architecture of CP functionalities is proposed such as OpenRAN in [21]  and as SoftAir in [22]  that 
may face the challenge of real-time control given the inherent delay between the controller and 
underlying RAN. The SoftRAN [23] architecture statically refactors the control functions into the 
centralized and distributed ones based on the time criticality and the central view requirement. The 
SoftMobile approach [24]  further abstracts the CP processing in several layers based on the 
functionalities in order to perform the control functionalities through the application programming 
interfaces (APIs). As for the UP programmability and modularity, the OpenRadio [25] and PRAN [26] 
are pioneered to decompose the overall processing into several functionalities that can be chained. 
FlexRAN [27] realizes a SD-RAN platform and implements a custom RAN south-bound API through 
which programmable Control Logic can be enforced with different levels of centralization, either by 
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the controller or the local RAN agents. To make a unified and flexible execution environment to run 
multiple virtualized RAN instances with the required levels of customization over the monolithic or 
disaggregated RAN, the RAN runtime slicing system [28] is proposed in Deliverable D4.2 [5] . 

2.2.3 Core Network 

In order to create an end-to-end Network Slice, the RAN sharing should be combined with Core 
Network (CN) slicing approaches. Many architectures and prototypes have been proposed for CN 
slicing [29] [30] , [31] . The challenge of CN slicing has been also addressed by 3GPP, realized through 
a dedicated Core network (DECOR) [32] and evolved DECOR (eDECOR) [33] . In this regard, different 
approaches for supporting network slicing in 5G system and a prototype implementation of network 
slicing in 4G LTE CN are presented in Deliverable D4.2 [5] , which provide the Adapter to be used by 
the SliceNet CP. 
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3 Principles and architecture 

This section provides relevant information related to the architecture and principles forming the 
foundations for the introductions of the Control Plane Services. 

3.1 Control Plane Services Principles and Architecture  

The SliceNet Control Plane is designed around two main principles: 

 a Service Based Architecture (SBA) approach; 

 a technology agnostic APIs abstraction.  

Figure 3.1 shows how the functionality is exploited by the introduction of  a number of CP Services 
(blue boxes) evolving the general Control Plane architecture [2]  in terms of both CP Services and 
Adapters; namely the Data Plane Programmability (DPP) is removed and the new Backhaul DPP 
Adapter is introduced in order to optimize the related functionality as further described in Section 4. 

In addition, the CP Services are instantiated per slice (described in section 3.2 ) and require a Life 
Cycle Manager for handling instances, as described in section 3.4. 

The interfaces exposed by the CP components are named as shown in Figure 3.1, and described in 
detail in the current deliverable document under Section 5. 

 

 

 

Figure 3.1 SliceNet Control Plane Services architecture 

 

3.2 Service Based Architecture 

The SliceNet CP is based on the realisation of a Service Based Architecture (SBA) that is quite aligned 
with the concepts being exercised by Next Generation Mobile Networks (NGMN) and 3rd Generation 
Partnership Project (3GPP). 
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According to the SBA principles, the system functionality in object is achieved by a set of services, 
here identified as CPSs, loosely-coupled with each other allowing individual services to be developed, 
deployed and upgraded with minimal impact to other services.  

Each Service can interact directly with other services with light-weighted Service Based Interface (SBI) 
and can be reused by other services.  

A SBI represents how the set of services is provided or exposed by a given Control Plane Service. This 
is the interface where the control plane service operations are invoked.  

Protocols used for the SBI are: HTTP/2 for application layer, TCP for transport, JSON for serialization, 
RESTful framework for the API style and OpenAPI for Interface Description Language (IDL). 

Each service instance is deployed in a SBA framework allowing service registration, authorization and 
discovery; the SBA framework is implemented by the Control Plane Service Register (CPSR) which is 
mainly a database of available services instances and their reachability. A Service registers itself to 
the CPSR when its instance is created; Service consumers ( SliceNet components) can query the CPSR 
to find available services and their addresses.  

SBA is considered an effective enabler for the system scalability as new instances of the same CP 
Service or even of new CP Services can easily be added. 

There is one instance of the CPSR while in general all the other CP Services have multiple instances. 

One instance of each CP Service is created to be serving one Slice instance; this one-to-one 
relationship is regarded as a key enabler for Slice performance and security isolation as well as for 
the overall system scalability when it comes to the number of Slices instances. 

The security access authorization to servers are based on OAuth2.0 procedures. 

3.3 Technology agnostic abstraction  

The main purpose of the CP Services is to provide the Slice control context by a set of SliceNet 
configuration endpoints exposing technology and implementation-agnostic control APIs towards slice 
management and orchestration components following the SBA approach.  

The CP Services lay on top of the intra-domain SliceNet physical and virtualised infrastructure, which 
spans across multiple network technology domains covering the RAN, MEC, Backhaul and Core 
segments of 4G/5G networks belonging to the same administrative entity. 

As shown in Figure 3.1 the set of Adapters provide a first level of abstraction over the network pillar 
functionalities which is further exploited and abstracted by CP Services which expose specific services 
by their own Service Based Interface (SBI). 

The Controllers support the interaction with specific control technologies of the SliceNet 
infrastructure segments possibly provided by different vendors. 

The Adapters translate the Controllers Northbound interface into a technology agnostic Interface, 
thus enabling a common SliceNet CP information model and control logics. 

In summary, with reference to Figure 3.1, the Controllers layer expose a technology dependant 
Northbound Interface, the Adapters layer expose a technology agnostic Northbound Interface and 
the CP Services expose a further abstracted  technology agnostic interface which offer a Slice control 
context  hiding the Slice detailed composition  in terms of network segments and vendors 
technology. 

3.4 Control Plane Services Life Cycle Management 

As described in Section 3.2, CPSs represent different per slice instances of CP oriented service, based 
on the slice requirements, deployed on demand and destroyed when they no longer need. 
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In this sense, the CPS instances are dynamic architectural components, characterized by their own 
life cycle (as opposed to the other SliceNet architecture facilities) that should be managed at runtime 
by a proper life-cycle manager. 

Based on the properties that characterize the CPS instances, the idea is to properly extend the P&P 
Manager (described architecturally in D2.4 [3]   and under prototyping in Task T6.3) in order to make 
it able to control also the life-cycle of the CPS instances, by interacting with their own orchestrator. 

P&P Manager is a component that resides on the SliceNet orchestration plane designed for handling 
the lifecycle of the P&P Control instances (described in D4.1 [4] ). The lifecycle management of the 
CPS instances through the P&P Manager is doable since the two kind of instances (P&P Control and 
CPS) present strong similarities: 

 They are on-demand components: the life-cycle of each CPS instance is strictly related to the 
life-cycle of the slice it belongs to, so that, each changes in the slice requirements, in terms of 
control features, affect the corresponding instances of CPS and,if the slice is destroyed also 
the CPS instances will be destroyed. 

 They are per-slice components: a CPS instance offers its own features to the service 
consumers in the context of a given slice. In addition, the P&P Control instances of that slice 
is one of the service consumers for the CPS instance. 

 They are implemented as software containers under the control of a proper orchestrator 
(e.g. Kubernetes). 

With this in mind, the CPS instances, from the life-cycle point of view, present the same management 
problematics as the P&P Control instances that can be addressed by the P&P Manager. All of the life-
cycle procedures performed by P&P Manager against the P&P control instances are detailed in D4.1 
[4]  and are extended in D6.3 [7]  in order to meet the management requirements imposed by the 
CPSs.   

In particular, the life-cycle management actions that the P&P Manager can perform on the CPS 
instances are creation, configuration and termination, as depicted in Figure 3.2. 
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Figure 3.2  CPS Life-cycle management steps 

 

3.4.1 CPS Creation 

The P&P Manager triggers the CPS creation process by invoking the proper API on the interface 
provided by the CPS orchestrator. It is worth noting that a call to create a new CPS instance can 
happen for different reasons during the slice life-time. 

New CPS instances are needed once a new slice is deployed. In this case, the creation of each CPS 
should happen at the same time of the creation of the slice it belongs to. For that reason, the P&P 
Manager should launch the creation process as soon as the Slice Service Orchestrator (SS-O) invokes 
the deployment of the slice (or immediately after the slice creation). To guarantee a prompt CPS 
creation, the P&P Manager should be triggered by the SS-O once it starts a new slice process 
creation. 

New slice requirements, in terms of control feature, is also a valid reason to trigger the creation of 
new CPS instances as well as the replication of the same CPS can cope the service scalability demand 
if needed. 

Starting from the SS-O request, the CPS creation consists of the following steps: 

 The P&P Manager receives a request to create a new CPS instance. As described above, it can 
happen due a new slice creation or slice requirements change or even to meet service 
scalability requirements; 

 The P&P Manager invokes the deployment of the new instance through the interface of the 
orchestrator; 
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 The orchestrator starts creating the new instance. Once the process terminates, the P&P 
Manager receives information about the CPS instance reachability and the creation process is 
completed. 

3.4.2 CPS Configuration  

Once the creation process terminated, the P&P Manager should configure the new CPS instance by 
providing relevant information about the slice and the components involved. Such information will 
include definitely the reachability of the CPSR, in order to make the CPS instance able to register 
itself as described in section 4.1.1.1.1. The configuration steps are as follows: 

 The P&P Manager sends the configuration information to the new CPS instances;  

 The CPS instance sends an ACK to confirm the configuration reception. Such ACK could be a 
simple 200 OK HTTP Code. 

3.4.3 CPS Termination 

The termination process should happen once the slice is going to be destroyed or, in general, once 
the CPS instance no longer meets the slice requirements. After the P&P Manager receives the 
termination request, the process consists of the following two steps: 

 The P&P Manager invokes the destruction of the CPS instance through the interface of the 
orchestrator; 

 The CPS orchestrator proceeds with the termination of the correspondent CPS instance. 

3.5 Registration and retention flow 

According to the Service Based Architecture principles, all the Control Plane Services and Adapters 
shall register to the Control Plane Service Register (CPSR) according to the flow depicted in Figure 
3.3. 

 

 

Figure 3.3  Registration and Retention flow 
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 Any CPS can register to the CPSR via CPSR Register function (see section 4.1.1.1.1) by 
providing the CPS profile to the CPSR. CPSR stores the received info and marks the requesting 
CPS as available to be discovered by other CPSs. 

 Each CPS service successfully registered in CPSR shall contact the CPSR periodically (heart-
beat), by invoking the CPS Update (see section 4.1.1.1.2 ) service operation, in order to show 
that the CPS is still operative. The time interval at which the CPSR shall be contacted is 
returned by the CPSR to the Service Consumer as a result of a successful registration (it is 
recommended to contact the CPSR before the heart-beat timeout)  

 When the CPSR detects that a given CPS has not updated its profile for a specific amount of 
time (longer than the heart-beat interval), the CPSR considers the CPS as de-registered (see 
section 4.1.1.1.4) and removes it from its database. 
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4 Description of Single-Domain CP components 

This section describes the Single-Domain CP components detailing the internal decomposition with 
workflow procedures and related APIs and interfaces.  

4.1 Control Plane Services 

4.1.1 Control Plane Service Register 

The Control Plane Service Register (CPSR) is the main SW component used to implement the SBA 
principles in SliceNet Control Plane layer.  It offers the SBI for registration and discovery management 
used for all the CP services. The producers register their services, and the consumers can ask where 
services are located. 

 

 

Figure 4.1 request/response and subscribe/notify 

 

The CPSR provides the following main functionalities: 

 CPS element registration and de-registration: to make the service consumer aware of the 
available Service producer instances and supported services; 

 CPS element discovery: to enable a Service Consumer to discover Service Producer 
instance(s) which provide the expected service(s); 

 CPS authorization: to ensure the Service Consumer is authorized to access the service 
provided by a specific Service Producer. 

The service register is the key part of the service framework.  

In addition to the above core features, the CPSR also supports the following advanced features:  

 Maintain the CPS profile of available service producer instances and their supported services; 

 Allows other CPS instances to subscribe to, and get notified about, the registration in CPSR of 
new CPS instances of a given type;  
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Figure 4.2 registry and discovery 

 

Examples: 

Figure 4.2 shows how the CPSR could be used by producers/consumers. Below we report some 
examples in “curl” commands how that could be done. 

Registry: 

curl –X PUT -H "Content-Type: application/json" –d ‘{<CPFProfile’s json 

data structure>}’http://localhost:8080/slicenet/ctrlplane/cpsr_cps/v1/cps-

instances/550e8400-e29b-41d4-a716-446655440000 

Discovery: 

curl -v -X GET -H "accept: application/json" -H "Content-Type: 

application/json" http://localhost:8080/slicenet/ctrlplane/cpsr_cps/v1/cps-

instances?cpsType=COR_ADAPTER&limit=10 

Answer: List of URI matching the request in json format 

Example: [{"uri":"http://192.99.55.1:8081/coretim/cps-

xyz/v2"},{"uri":"http://192.99.33.1:8081/cpsr/cps-abc/v1"}] 

The following CPS type, detailed in Table 4.1, are used during the registration of a service producer. 

Table 4.1 CPS type 

CPSType 

Enumeration value Description 

BKH_ADAPTER Backhaul Adapter 

COR_ADAPTER Core Adapter 

MEC_ADAPTER Mobile Multi Access Edge Computing Adapter 

RAN_ADAPTER Radio Access Network Adapter 

WAN_ADAPTER Wide Area Network Adapter 

DPP_ADAPTER Data Plane Programmability Adapter 

QOS_CP Control Plane Service: Quality of Service 

IPC_CP Control Plane Service: InterPoP Connection 

QOE_CP Control Plane Service: Quality of Experience 

PP_CP Control Plane Service: Plug and Play 

CNF_CP Control Plane Service: Network Function Configuration 

ID_CP Control Plane Service: Interdomain 

 

http://localhost:8080/slicenet/ctrlplane/cpsr_cps/v1/cps-instances?cpsType=COR_ADAPTER&limit=10
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4.1.1.1 CPSR: Management Service 

The CPRS allows a service producer instance in the CP architecture to register, update or deregister 
its profile. 

It also allows a service provider to subscribe to be notified of newly registered CPS Instances along 
with their CPS services. 

The service operations defined for the CPSR Management service are as follows: 

 CPS Register: It allows an CPS Instance to register its CPS profile in the CPSR; it includes the 
registration of the general parameters of the CPS Instance, together with the list of services 
exposed by the CPS Instance.  

 CPS Update: It allows an CPS Instance to replace, or update partially, the parameters of its 
CPS profile (including the parameters of the associated services) in the CPSR; it also allows to 
add or delete individual services offered by the CPS Instance. 

 CPS Deregister: It allows an CPS Instance to deregister its CPS profile in the CPSR, including 
the services offered by the CPS Instance. 

 CPS StatusSubscribe: It allows a CPS Instance to subscribe to change on the status of CPS 
Instances registered in CPSR. 

 CPS StatusNotify: It allows the CPSR to notify subscribed CPS Instances of changes on the 
status of CPS Instances. 

 CPS StatusUnsubscribe: It allows an CPS Instance to unsubscribe to changes on the status of 
CPS Instances registered in CPSR. 

NOTE: The "change of status" of the CPS Status service operations can imply a request to be notified 
of newly registered CPS Instances in CPSR, or to be notified of profile changes of a specific CPS 
Instance, or to be notified of the deregistration of an CPS Instance. 

4.1.1.1.1 CPS Registration operation 

This service operation registers service provider (CPS entity) in the CPSR by providing the CPS profile 
of the requested CPS to the CPSR, and CPSR marks the requested CPS as available to be discovered 
by other CPSs. It is also used to register services associated to an existing CPS Instance. 

 

 

Figure 4.3 registration operation 

 

With reference to Figure 4.3 the steps of register operation are described as follows: 

1. The CPS Service should send a PUT request to CPSR with the details of its URI. The payload 
body of the PUT request contains a representation of the CPS Instance to be created. 

2. On success, "201 Created" should be returned, the payload body of the PUT response 
contains the representation of the created resource and the "Location" header contains the 
URI of the created resource. Additionally, the CPSR returns a "heart-beat timer" containing 
the number of seconds expected between two consecutive heart-beat messages from a CPS 
instance to the CPSR. 

If the registration of the CPS instance fails at the CPSR due to errors in the encoding of the CPS Profile 
JSON object, the CPSR should return "400 Bad Request" status code with the ProblemDetails IE 
providing details of the error. 
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If the registration of the CPS instance fails at the CPSR due to CPS internal errors, the CPSR returns 
"500 Internal Server Error" status code with the ProblemDetails providing details of the error. 

4.1.1.1.2 CPS Update 

This service operation updates the profile of a Service Consumer, registered in the CPSR, by providing 
the updated CPSprofile of the requesting CPS to the CPSR. The update operation may apply to the 
whole profile of the CPS (complete replacement of the existing profile by a new profile), or it may 
apply only to a subset of the parameters of the profile (including adding/deleting/replacing services 
to the CPSprofile). 

To perform a complete replacement of the CPSProfile of a given CPSInstance, the Service Consumer 
should issue an HTTP PUT request. 

 

 

Figure 4.4 update operation 

 

To perform a partial update of the CPS Profile of a given Service Consumer Instance, the Service 
Consumer shall issue an HTTP PATCH request. This partial update shall be used to add/delete/replace 
individual parameters of the CPS Instance, and also to add/delete/replace any of the services (and 
their parameters) offered by the CPS Instance. 

 

 

Figure 4.5 partial update operation 

 

As shown in Figure 4.5 the steps of partial update operation are described as follows: 

1. The Service Consumer sends a PATCH request to the resource URI representing the CPS 
Instance. The payload body of the PATCH request contains the list of operations 
(add/delete/replace) to be applied to the CPS Profile of the CPS Instance; these operations 
may be directed to individual parameters of the CPS Profile or to the list of services (and their 
parameters) offered by the Service Instances. In order to leave the CPS Profile in a consistent 
state, all the operations specified by the PATCH request body shall be executed atomically. 

2. On success, "200 OK" should be returned, the payload body of the PATCH response contains 
the representation of the replaced resource. 

4.1.1.1.3 CPS Heart-Beat 

Each Service Consumer that has previously registered in CPSR should contact the CPSR periodically 
(heart-beat), by invoking the CPSUpdate service operation, in order to show that the CPS is still 
operative. 

The time interval at which the CPSR shall be contacted is deployment-specific, and it is returned by 
the CPSR to the Service Consumer as a result of a successful registration. 
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When the CPSR detects that a given CPS has not updated its profile for a configurable amount of time 
(longer than the heart-beat interval), the CPSR considers the CPS as deregistered and its services can 
no longer be discovered by other CPSs via the CPS Discovery service. 

 

 

Figure 4.6 Heart-Beat 

 

With reference to Figure 4.6 the steps of Heart beat operation are here described: 

1. The Service Consumer sends a PATCH request to the resource URI representing the CPS 
Instance. The payload body of the PATCH request contains a "replace" operation on the 
"Status" attribute of the CPS Profile of the CPS Instance and set it to the value "REGISTERED". 

2. On success, "200 OK" shall be returned, the payload body of the PATCH response contains 
the representation of the replaced resource. 

4.1.1.1.4 CPS Deregistration operation 

This service operation removes the profile of a CPS instance previously registered in the CPSR. 

It is executed by deleting a given resource identified by a "CPS Instance ID". The operation is invoked 
by issuing a DELETE request on the URI representing the specific CPS Instance. 

 

 

Figure 4.7 Deregistration operation 

 

With reference to Figure 4.7 the step of deregister operation are here described: 

1. The Service Consumer sends a DELETE request to the resource URI representing the CPS 
Instance. The request body would be empty. 

2. On success, "204 No Content" is returned. The response body would be empty. 

4.1.1.1.5 CPS Status Subscribe 

This service operation is used to: 

a) Subscription to newly registered CPS Instances 

The subscription to notifications on newly registered CPS Instances is executed creating a new 
individual resource under the collection resource "subscriptions" (Figure 4.8). The operation is 
invoked by issuing a POST request on the URI representing the "subscriptions" resource. 
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Figure 4.8 Subscription to new registered CPS instances 

 

1. The Service Consumer shall send a POST request to the resource URI representing the 
"subscriptions" collection resource. The request body shall include the data indicating the 
type of notifications that the Service Consumer is interested in receiving; it also contains a 
callback URI, where the Service Consumer shall be prepared to receive the actual notification 
from the CPSR. 

2. On success, "201 Created" is returned. 

b) Subscription to changes of CPS profile 

The subscription to notifications on changes of the profile, or deregistration, of a given CPS Instance 
is executed creating a new individual resource under the collection resource "cps-subscriptions 
(Figure 4.9). The operation is invoked by issuing a POST request on the URI representing the "cps-
subscriptions" resource. 

1. The Service Consumer sends a POST request to the resource URI representing the "cps-
subscriptions" collection resource. The request body includes the data indicating which parts 
of the profile of the CPS Instance should trigger a notification, and/or the indication to be 
notified when the CPS Instance is deregistered; it also contains a callback URI, where the 
Service Consumer is prepared to receive the actual notification from the CPSR.  

2. On success, "201 Created" is returned. 

 

 

Figure 4.9 Subscription to change of CPS profile 

 

4.1.1.1.6 CPS Status Notify 

This service operation notifies each Service Consumer that was previously subscribed to receive 
notifications of newly registered CPS Instances, or notifications of changes of the CPS profile of a 
given CPS Instance, or notifications of deregistration of an CPS Instance from CPSR. The notification is 
sent to a callback URI that each Service Consumer provided during the subscription.  

The operation is invoked by issuing a POST request to each callback URI of the different subscribed 
CPS Instance. 
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Figure 4.10 Status Notify 

 

With reference to Figure 4.10 the step of status notify operation are here described: 

1. The CPSR sends a POST request to the callback URI 

For notifications of newly registered CPS Instances, the request body includes the data 
associated to the newly registered CPS, and its services, according to the criteria indicated by 
the Service Consumer during the subscription operation. These data contain, among others, 
the CPSInstanceID of the CPS Instance, an indication of the event being notified 
("registration"), and the services offered by the CPS Instance. 

For notifications of changes of the profile of a CPS Instance, the request body includes the 
CPSInstanceID of the CPS Instance whose profile was changed, an indication of the event 
being notified ("profile change"), and the new profile data. 

For notifications of deregistration of the CPS Instance from CPSR, the request body includes 
the CPSInstanceID of the deregistered CPS Instance, and an indication of the event being 
notified ("deregistration"). 

2. On success, "204 No content" is returned by the Service Consumer. 

4.1.1.1.7 CPS Status UnSubscribe 

This service operation removes an existing subscription to notifications. 

It is executed by deleting a given resource identified either by a "subscriptionID" (for subscriptions to 
newly registered CPS Instances), or a "cpsSubscriptionID" (for subscriptions to changes of the profile, 
or deregistration, of a given CPS Instance). The operation is invoked by issuing a DELETE request on 
the URI representing the specific subscription. 

 

 

Figure 4.11 Status UnSubscribe (subscriptionID) 

 

 

Figure 4.12 Status UnSubscribe (cpsSubscriptionID) 
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With reference to Figure 4.11 and Figure 4.12 the steps of unsubscribe operation are described as 
follows: 

1. The Service Consumer sends a DELETE request to the resource URI representing the 
individual subscription. The request body would be empty. 

2. On success, "204 No Content" is returned. The response body would be empty. 

4.1.1.2 CPSR: Discovery (CPS Discovery) 

The CPSR Discovery service allows a CPS Instance to discover services offered by other CPS Instances, 
by querying the CPSR. 

The service operation defined for the CPSR Discovery service is: 

CPS Discover: It provides to the CPS service consumer the IP address(es) or FQDN of the CPS 
Instance(s) or CPS Service(s) matching certain input criteria. 

4.1.1.2.1 CPS Discover 

The Service Consumer shall send an HTTP GET request to the resource URI "cps-instances" collection 
resource (Figure 4.13). The input filter criteria for the discovery request shall be included in query 
parameters. 

On success, "200 OK" shall be returned. The response body shall contain a validity period, 
during which the search result can be cached by the Service Consumer, and an array of CPS 
profile objects, that satisfy the search filter criteria (e.g., all CPS Instances offering a certain 
CPS Service name). If the Service Consumer is not allowed to discover the CPS services for the 
requested CPS type provided in the query parameters, the CPSR shall return "403 Forbidden" 
response. 

 

 

Figure 4.13 CPS Discovery 

 

4.1.1.3 Security 

The authorization access to CPS is based on OAuth 2.0 frameworks [34] . CPSR will be also the OAuth 
2.0 Authorization server in the SliceNet Control plane. 

The grant type used will be “Client Credential Grant” [34]  Access token is based on JSON web Token 
[35] , secured with digital signatures based on JSON Web Signature [36] . 

In terms of roles: CPSR is the OAuth 2.0 authorization server; CPS consumer is the OAuth 2.0 client; 
the CPS service producer is the OAuth 2.0 resource server. 

Note that Resource Server (in Figure 4.14 CPSx) is authenticated itself during registration procedure 
by Authorization Server, then it could check the validity of token received and provide services to 
CPSy client. 
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Figure 4.14 Authorization Flow 

 

4.1.1.4 CPSR High Availability 

The CPSR is a critical service in SliceNet, meaning that loss of CPSR availability in case of SW failure or 
hosting node crashes or extreme delays in response time during high volumes of requests, might 
cause overall SliceNet System failure. 
In order to overcome such potential problems the following high availability architecture is proposed. 

The CPSR high availability architecture is inspired to cloud-native concepts and requirements. 
According to this approach, the high availability requirements include both 

- smooth resilience in case of failure, and 

- smooth horizontal scalability in case of changing throughput demands, 

so to provide a seamless behavior towards the external interfaces in all possible operational 
situations. 

Specifically, high availability is enabled through the adoption of a clustering mechanism for the 
specific instances of the CPSR service, where an external Load Balancing function takes care to 
distribute incoming workload to the different cluster members according to configurable balancing 
algorithms. 

The clustering operation is guaranteed by an independent clustering logic, present on all the single 
cluster member instances, which takes care to: 

- Manage the joining of a member to the cluster; 

- Manage the withdrawal of a member from the cluster; 

- Manage the failure of a cluster member. 

In case of the previous events the clustering logic will re-arrange the cluster topology so as to 
guarantee continued operativity of the CPSR service in terms of data availability and lossless 
fulfillment of existing transactions. 

The decision to have new members joining, or existing members leaving the cluster will be taken by a 
specific cloud orchestration logic. 

In order to achieve a cloud-native behavior based on a cluster architecture, a distributed DB 
architecture is also needed. Such DB can be either in-memory or based on permanent storage, but in 
both cases, it will be itself based on a clustering mechanism, and will appear to the CPSR cluster 
members as a single and consistent DB storage. 
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The picture below shows the mentioned CPSR architecture. 

 

Figure 4.15 CPSR High Availability Architecture 

A possible implementation of this architecture also leveraging on available Open Sources is proposed 
in section 6.1.2 

4.1.2 InterPop Connection Control Service  

The interPoP Connections (IPC) CPS replaces the original Forwarding Graph Enabler (FGE) component 
originally included in the SliceNet CP architecture described in D2.3. In particular, the IPC is 
responsible, for each slice instance, to deliver a proper interconnection of the slice Network 
Functions (i.e. mostly VNFs and MEC applications) deployed in different segments and domains, 
namely edge (e.g. MEC) and Core ones. While it is assumed that per-slice intraPoP Network Functions 
are properly interconnected by means of forwarding graph enforcement and provisioning features of 
the Resource Orchestrator (as described in deliverable D2.4 [3] , the IPC CPS allows geographically 
distributed slice Network Functions to be properly interconnected according to their end-to-end 
forwarding graph requirements.  

Therefore, with respect to the original FGE component, the IPC CPS scope is focused to interPoP 
network provisioning to fulfil intra-domain slice requirements in terms of interconnection of 
constituent Network Functions across core and edge PoPs, with specific QoS and topology (i.e. 
forwarding graph) constraints. 

For the provisioning of interPoP connections, the IPC CPS is expected to receive per-slice network 
interconnection requests from the Resource Orchestrator or the Slice Orchestrator and interact with 
the appropriate underlying network Adapters (i.e. Backhaul Adapter) for handling those requests. For 
this, with reference to Figure 3.1, the IPC CPS exposes the CP-IPC-S interface and related services at 
its northbound, and mostly leverages on the CP-BKHL-A interface and related services at its 
southbound. 
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Figure 4.16 Backhaul Network 

 

As depicted in Figure 4.16 the interPoP Connections consists of set of the pairs of endpoints on the 
PoPs to be interconnected for a given slice and the related constraints the interconnecting paths 
have to satisfy. In the figure above the interPoP Connections for a slice describe the pair of public IP 
addresses of the gateways (i.e. endpoints represented with red squares) on each PoP to 
interconnect, the constraints in terms of QoS to take in consideration along the path in the Backhaul 
interconnecting segment. For a slice there might be more pairs of PoPs to interconnect.   

A general descriptor of an InterPoP Connection, received and processed by the IPC CPS, contains the 
slice identifier and the list of InterPoP paths to be interconnected through the Backhaul network: 

 Slice Id: univocally identifies the slice through the backhaul network. 

 InterPoP Paths: are the set of paths across the backhaul network. Each InterPoP path consists 
of: 

o a pair of endpoints: an endPoint on the PoP consists basically of an IP address and an 
encapsulation identifier (e.g. VLAN) to identify the per-slice incoming/outgoing 
traffic. 

o a set of constraints: bandwidth and latency to evaluate along the path 
interconnecting the endpoints. 

Further details about data types are described in section 5.4. 

The Inter-PoP Path descriptor is based on IP endPoints only so to abstract details of different 
underlaying backhaul technologies according to the Control Plane abstraction layers principles. 

4.1.2.1 IPC Service based interface 

The IPC CPS Service Based Interface is exposed as part of the SliceNet CP technology agnostic APIs, 
and offer the following operations to its service consumers (mostly SliceNet management and 
orchestration components): 

 Provision InterPoP Connections, to create a new interPoP connection among two or more 
PoPs where the Network Functions (i.e. VNFs and MEC applications) of a given slice have 
been deployed and provisioned; 

 Update InterPoP Connections, to dynamically update an existing interPoP connection, mostly 
intended for on-demand modification of one or more of the constraints related to the 
network connectivity for the given slice, like QoS parameters but also endpoint traffic 
identification attributes (e.g. IP addresses or VLAN identifiers) if applicable; 
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 Remove InterPoP Connections, to delete an existing interPoP connection, e.g. as a 
consequence of an overall slice decommissioning/termination operation; 

These IPC CPS exposed operations derive from a substantial revision and grouping of the original 
technology agnostic FGE interface main operations described in D2.3. In particular, the following 
Table 4.2 the relate and map the IPC CPS listed above with the set of D2.3 FGE operations exposed 
through the technology agnostic APIs. 

Table 4.2 Mapping between IPC CPS operations and D2.3 FGE operations 

IPS CPS exposed operations Original FGE exposed operations (ref. D2.3) 

Provision InterPoP Connection Provision Forwarding Graph 

Update InterPoP Connection Add nodes to Forwarding Graph 
Remove nodes from Forwarding Graph 
Provision link in Forwarding Graph 
Remove link in Forwarding Graph 
Configure routing scheme 

Remove InterPoP Connection Delete Forwarding Graph 

 

4.1.2.1.1 Provision InterPoP Connections 

This operation allows to properly interconnect two network functions in a slice between PoPs intra 
single-domain, through an interPoP Connections descriptor representing the Backhaul SDN network 
between infrastructure pillars. 

Whenever required, e.g. if the slice orchestration or the resource orchestration components 
described in D2.4 (e.g. NFV and MEC orchestrator) [3]  need to  enforce a set of slice interPoP 
Connections across NFV infrastructures PoPs (e.g. managed by one or more Virtualized Infrastructure 
Managers), the IPC CPS offers this operation  by interacting with infrastructure backhaul adapters at 
the SliceNet CP southbound to enforce the proper forwarding rules and thus enable the end-to-end 
(still at intra-domain level) forwarding graph for the whole set of Network Functions pertaining the 
given slice. 

The Service Consumer shall send a POST request to the IPC CPS to the resource URI representing the 
inter-PoP Connections for a concerned Slice Id. The request body shall include the interPoP 
Connections, as detailed in Section 5.4 

On success, "200 OK" shall be returned as result. The response body shall be empty. 

 

 

Figure 4.17 Provision InterPoP Connections 

 

4.1.2.1.2 Update InterPoP Connections 

During the lifecycle of a slice instance, the set of Network Functions (i.e. VNFs and MEC applications) 
deployed at core and edge locations may need to follow, in terms of location where they are running, 
the evolution of the vertical service (or use case) that the slice is supporting. Moreover, the slice 
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requirements in terms of performance (e.g. QoS requirements) may also vary and depend on the 
evolution of the vertical service, and therefore this could be reflected into the need of dynamic 
modifications of interPoP connections QoS and performance attributes. Therefore, in general, the 
lifecycle of a slice instance includes runtime modifications and structural changes that may result 
into: 

1. deployment of new Network Functions in new locations (e.g. a new edge PoP),  
2. deletion/termination of Network Functions running in a given location (e.g. an edge PoP 

close to a geographical area where there are no more end-users for the given slice),  
3. migration of existing Network Functions from one location to another (e.g. across edge PoPs 

for mobility purposes), 
4. dynamic modification of InterPoP connection performance and QoS constraints (e.g. 

bandwidth, latency, etc). 

The first three modification options above (i, ii and iii) have an impact in the end-to-end topology of 
the slice, in terms of how the Network Functions are interconnected in a geographically distributed 
graph topology. However, these runtime modifications can be implemented from an IPC CPS 
perspective as a collection of Provision and Remove of interPoP connections, properly managed and 
coordinated by SliceNet slice and resource orchestration components. In other terms, we assume 
that for these i, ii and iii the SliceNet orchestration components have the required logic and the 
information (e.g. leveraging on instantiated services and slices detailed information, in terms of used 
resources, network functions, network connectivity information) to map an update of the end-to-end 
topology of the slice into a set of Provision or Remove of interPoP connections. For what concerns 
the option iv, that refers to dynamic updates of interPoP QoS constraints, the IPC CPS is conceived to 
expose a dedicated update operation, that will not lead to a modification of the end-to-end topology 
of the slice, but in case only to a modification of the connection path within the backhaul segment. 

The Service Consumer, that in this case can be the slice orchestrator or the Resource orchestration in 
the SliceNet orchestration plane described in D2.4, shall send a PUT request to IPC_CP to the 
resource URI representing the inter-PoP Connections to be modified for a concerned Slice Id. The 
request body shall include the inter-PoP Connections to be updated along with the constraints to be 
modified, as detailed in Section 5.4 

On success, "200 OK" shall be returned as result. The response body shall be empty. 

 

 

Figure 4.18 Update InterPoP Connections 

 

4.1.2.1.3 Remove InterPoP Connections 

This service operation is the counterpart of the “Provision InterPoP Connections” one and it is 
conceived to be used to delete whole slice inter-PoP Connections, thus coordinating the interactions 
with underlying network Adapters (i.e. Backhaul Adapter) to decommission the related forwarding 
rules.  IPC receives requests from the Resource Orchestrator or any other authorized SliceNet 
functional component. 
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It is executed by deleting the given inter-PoP Connections for a Slice Id Figure 4.19). The operation is 
invoked by issuing a DELETE request on the URI representing the interPoP connections. The request 
body shall include the inter-PoP Connections to delete. 

On success, "200 OK" shall be returned. The response body shall be empty. 

 

 

Figure 4.19 Remove InterPoP Connections 

 

4.1.2.2 IPC internal architecture and functionalities 

IPC Control is internally structured in several SW modules in charge to cover specific functionalities. 

 

 

Figure 4.20 InterPoP Connections internal structure 

 

 ipc_NBI handles the northbound API interface with other control plane service consumers for 
registering IPC instance to CPSR, for receiving the inter-PoP Connections related requests for 
a slice. 

 ipc_SBI handles the southbound API interface towards the Backhaul adapter for a slice, for 
handling the intent-based operations.  
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 ipc_Map has the logic for mapping the inter-PoP Connections information to Intent 
information and vice versa. 

 ipc_Core is the engine module which handles all service operations demanded to the IPC 
Control Service, interworking with the other IPC internal SW modules for registering the slice 
IPC instance identifier to CP Service Register, controlling the service operations from 
northbound to southbound interface. It is stateless, so it is supposed to do not store any data 
about slice and related service operations ongoing. 

4.1.2.3 IPC use cases workflows 

This section describes the interworking between IPC slice instances and other CPSs  in order to 
handle the interPoP connections towards the underlying backhaul adapters. The actors involved in 
the IPC CPS workflows are: slice orchestration and (NFV / MEC) resource orchestration components 
(as main triggers of the workflows), the CPSR, the IPC CPS services, the backhaul adapters, the set of 
SDN controllers responsible for the configuration of the backhaul network (they could be in principle 
more than one). 

The main pre-requisites are: 

 IPC_CP instances up and running, there is 1-to-1 relationship between IPCs and Slices, it 
means one IPC instance for each slice; 

 Backhaul Adapters are registered into CPSR; 

 Slice components (e.g. NFV Network Services, VNFs, MEC applications) 

 instantiated on all network segments, as performed by slice and (NFV / MEC) resource 
orchestration components; 

 

 

Figure 4.21 IPC use cases workflows 
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4.1.2.3.1 Provision InterPoP Connections 

The InterPoP connection provisioning workflow is shown in Figure 4.22, and it describes the 
procedure to enable the interconnection of Network Functions deployed in multiple remote PoPs 
through a backhaul network. The workflow is triggered by the slice orchestration and (NFV / MEC) 
resource orchestration components soon after the individual sub-slices (as set of Network Functions 
in the different segments/PoPs) have been deployed, and it is implemented through the following 
main steps:  

 

 

Figure 4.22  Provision InterPoP Connections flow 

 

1. Slice Orchestrator/Resource Orchestrator retrieves IPC_CP address, via CPSR discovery 
function: inputs are NF_Type =  “IPC_CP” and slice Id. 

2. MP/RO calls IPC_CP API to provide InterPoP Connections for the specific slice Id. 
3. IPC_CP retrieves Backhaul Adapter address, via CPSR function: inputs are 

NF_Type=“BKH_ADAPTER” and slice Id. 
4. IPC_CP maps InterPoP Connections data to Intent data. 
5. IPC_CP calls Backhaul Adapter API to provide SDN Intent 
6. Backhaul Adapter calls Backhaul SDN Controller API for provision Intent 
7. Operation result is returned back up to the Slice Orchestrator/Resource Orchestrator. 

4.1.2.3.2 Update InterPoP Connections 

The InterPoP connection update workflow is shown in Figure 4.23, and it refers to the procedure for 
the dynamic modification of a given slice interconnection among PoPs in support of an evolution of 
the slice characteristics, mostly in terms of QoS attributes. The workflow is triggered by the slice 
orchestration and (NFV / MEC) resource orchestration components whenever the slice requirements 
in terms of performances have to be dynamically modified, e.g. to increase its capacity in terms of 
bandwidth. This operation is normally issued as part of the cognition loops implementation within 
the SliceNet management and orchestration platform. The workflow is implemented through the 
following main steps: 
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1. The Slice Orchestrator or the Resource Orchestrator discovers the IPC CPS instance to invoke 
for the dynamic interPoP connection update operation, through a proper interaction with 
the CPSR. 

2. The Slice Orchestrator or the Resource Orchestrator invokes the selected IPC CPS instance 
and issue an IPC_Update_InterPoP_Connections_Request. This request contains (in addition 
to the slice identifier) the list of interPoP connections to be updated, and for each of them it 
includes the new constraints to be applied and guaranteed in the backhaul segment, in terms 
of QoS performances 

3. The IPC CPS service retrieves the original interPoP connection affected by the update 
operation, to ease the mapping to the SDN intents originally issued to the backhaul 
adapter(s) 

4. In parallel, the IPC CPS service also retrieves the backhaul adapter(s) it was previously 
invoking for the provisioning of the interPoP connection affected by this update operation. 
Optionally, the IPC CPS can check the status of the adapter(s) directly on the CPSR. 

5. The IPC CPS service maps the updated interPoP connection constraints, in terms of QoS 
requirements and attributes, to a new SDN intent to be issued to the backhaul adapter(s) 

6. The IPC CPS service invokes the selected backhaul adapters to issue a 
BackhaulAdapter_Update_SDN_Intent_Request. This request contains (in addition to the 
slice identifier) the details of the new constraints to be applied to the original SDN intent 
identifier created at the provisioning phase. According to the specific nature and endpoints 
of the update request, more than one backhaul adapters may be required to be invoked, e.g. 
to cover the case of backhaul networks controlled by more than one SDN controller (e.g. in 
case of multi-vendor backhaul network) 

7. The Backhaul adapter receives the SDN intent update request, and match the original intent 
identifier to retrieve the operations involved on the given SDN controller. In parallel, the 
adapter also produce a new intent according to the constraints received from the IPC CPS 
service. Then, it proceeds to delete the original intents, and to enforce the new ones in 
support of the update request received. For the sake of service continuity, the Backhaul 
adapter may follow a make-before-break approach, thus creating a new intent first, and 
deleting the old one later. This is subject to internal adapter policies. 

8. At this point, the result of the SDN Intent update operation is forwarded back to the IPC CPS 
service 

9. The steps from 3 to 8 are iterated for each interPoP connection to be updated and included 
in the request received at step 2. 
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Figure 4.23  Update InterPoP Connection 

 

4.1.2.3.3 Remove InterPoP Connections 

The InterPoP connection termination workflow is shown in Figure 4.24, and it implements the 
procedure for removing an existing network connectivity service in the backaul segment that serves 
for the interconnection of slice Network Functions deployed in multiple PoPs. The workflow is 
triggered by the slice orchestration and (NFV / MEC) resource orchestration components as part of 
an overall slice decomissioning operation, and it is implemented through the following main steps: 

 Slice Orchestrator/Resource Orchestrator retrieves IPC_CP address, via CPSR discovery 
function: inputs are NF_Type =  “IPC_CP” and slice Id. 

 Slice Orchestrator/Resource Orchestrator calls IPC_CP API to delete Inter PoP Connections 
for the specific slice Id. 

 IPC_CP retrieves Backhaul Adapter address, via CPSR function: inputs are 
NF_Type=“BKH_ADAPTER” and slice Id. 

 IPC_CP maps InterPoP Connections data to Intent data (e.g. mapping the IP addresses 
received in the InterPoP Path to the endpoints of an Intent). 

 IPC_CP orders Backhaul Adapter via API to remove the Intent. 

 Backhaul Adapter matches the received endpoints with intent ID. 

 Backhaul Adapter requests Backhaul SDN Controller API to delete SDN Intent ID 
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Figure 4.24 Remove InterPoP Connection Flow 

 

4.1.3  QoS Control Service 

QoS Control Service provides the SW component implementing the SliceNet distributed per-slice 
access for dynamic QoS setting. The QoS Control Service deploys the request to the network 
segments according to the input parameters in the exposed interfaces. 

Figure 4.25 highlights the components that can be involved in the QoS control operations: 

 

 

 

Figure 4.25  Control Plane components involved by QoS 
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4.1.3.1 QoS Service Based Interface 

Operations offered by QoS control to apply specific slice-aware control logics: 

 Set QoS constraints 

 Set Priority 

The request to set the QoS constraints can be on a per-slice basis or for an IMSI and optionally the 
EPS bearer ID associated with a slice. In principle, the request to set the QoS constraints is deployed 
to all network segments depending on the slice composition. 

The request to set the priority can be, instead, on a per-slice basis only. Depending on the flow 
information retrieved by the INVENTORY, the priority can be set for all flows through the slice or for a 
specific flow. 

The next sections describe SliceNet-specific use cases.  

4.1.3.2 QoS use cases workflow 

4.1.3.2.1 Set QoS Constraints 

A CPS consumer (e.g. Orchestration Sub-Plane components) can request from the QoS control service 
to set new QoS constraints at runtime. 

Currently, the request can be addressed to the RAN and/or Core segments.  

The QoS configuration on a RAN segment cannot be differentiated per UE ID and/or EPS bearer ID. 
The request can be only on a per-slice basis. 

On the contrary, the QoS configuration on the Core segment can be differentiated per UE ID (IMSI) 
and, optionally, by adding the EPS bearer ID. 

The Table 4.3 shows input parameters with possible combinations: 

Table 4.3 Set QoS Constraints 

Optionality Parameters QoS_RAN_ 
SLICE 

QoS_CORE_ 
IMSI 

QoS_CORE_ 
BEARED 

QoS_ALL_ 
Segments 

Required sliceId X X X X 

Optional segmentId X (=ACCESS) X (=CORE) X (=CORE)  

Optional userEqId (X)* X X (X) 

Optional epsBearerId (X)*  X (X) 

Required qosConstraints X X X X 

X = present 
(X)* = if present to be ignored 
(X) = optionally present 

 

All the other parameters combinations results as bad request. 

The parameters combinations trigger different actions in QoS as explained below: 

 QoS_RAN_SLICE: this triggers the increase, for example, of the BW in DL and/or BW in UL for 
a sliceID in the RAN segments. This operation could be also called by the CONFIG CP to re-
configure the QoS slice regarding the QoS constraints. 

 QoS_CORE_IMSI: All bearers associated to the IMSI is “routed” on other bearer matching the 
QoS constraints.  

 QoS_CORE_BEARER: Only the specific bearer of the specific IMSI is routed according to the 
QoS request.  
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 QoS_ALL_Segments: it triggers always QoS_RAN_SLICE operation and optionally 
QoS_CORE_IMSI or QoS_CORE_BEARER depending on the presence of the UE id and the 
bearer id.  
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4.1.3.2.1.1 Set QoS constraints on RAN per slice 

A caller (e.g. QoE/P&P) can require to QoS control service to set the QoS constraints of the RAN 
segments for an instantiated slice (Figure 4.26). 

The caller needs to discover the QoS control service serving the slice. 

The request to set the QoS constraints is sent to QoS control service instance specifying the RAN 
segment and the QoS parameters. 

The QoS control service discovers the RAN adapter instances serving the instantiated slice. The 
request is deployed to the RAN-adapters which takes care to map the operation towards the RAN-
controller. 

RAN adapter API and required  parameters  are further  explained in SliceNet Deliverable D4.2 [5]  

 

 

Figure 4.26 Set QoS Constraints on RAN per Slice 

 



Deliverable D4.3 SLICENET H2020-ICT-2016-2/761913 

© SLICENET consortium 2018 Page 47 of (96)  

4.1.3.2.1.2 Set QoS constraints on CORE per IMSI 

A caller (e.g. QoE/P&P) can request from the QoS control service to guarantee the QoS constraints 
for all EPS bearer IDs associated with an IMSI. The request is deployed to the MEC-CORE adapter. 

The caller needs to discover the QoS control service serving the slice ID. 

The request to set the QoS constraints is sent to QoS control service instance specifying the Core 
segment, the IMSI and the QoS parameters. 

The QoS control service discovers the MEC-CORE adapters instance serving the instantiated slice. The 
request is deployed to the MEC-CORE adapters which takes care to redirect the traffic flow to 
bearers matching the required QoS constraints. 

MEC-CORE adapter API and required parameters are further explained in D4.2 document. 

 

 

Figure 4.27 Set QoS Constraints on Core per IMSI  
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4.1.3.2.1.3 Set QoS constraints on CORE per Bearer ID 

A caller (e.g. QoE/P&P) can require to QoS control service to secure the QoS constraints for a given 
bearer id associated to an IMSI. The request is deployed to the MEC-CORE adapter. 

The caller needs to discover the QoS control service serving the slice ID. 

The request to set the QoS constraints is sent to QoS control service instance specifying the Core 
segment, the IMSI, bearer id and the QoS parameters. 

The QoS control service discovers the MEC-CORE adapter instance serving the instantiated slice. The 
request is deployed to the MEC-CORE adapter which takes care to redirect the traffic flow to bearers 
matching the required QoS constraints. 

MEC-CORE adapter API and required parameters are further explained in SliceNet Deliverable D4.2 
[5] . 

 

 

Figure 4.28  Set QoS constraints on CORE per Bearer ID 
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4.1.3.2.1.4 Set QoS constraints all segments 

A caller (e.g. QoE/P&P) may require the QoS control service to secure the QoS constraints by 
specifying the slice ID and optionally the IMSI and bearer id. 

If only the sliceID is given as input the request is deployed to the RAN segment only. 

If the IMSI and optionally the bearer id are given the request is deployed to the Core segment. 

MEC-CORE/RAN adapters API and required parameters are further explained in SliceNet Deliverable 
D4.2 [5] . 

Figure 4.28 shows an example of the operation handling, having as input the sliceID, IMSI and bearer 
id. 

 

 

Figure 4.29 Set QoS constraints all segments 
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4.1.3.2.2 Set Priority 

4.1.3.2.2.1 Set Priority per slice/flow 

Figure 4.29 shows the workflow for changing the priority of a specific traffic crossing through the 
network. In summary, any authorized SliceNet functional component can discover a registered QoS 
Service through the CPS discovery function for changing the priority of a specific slice/flow. In order 
to do so, the said caller sends the priority value and the target slice id to that control plane service. 
QoS component is, therefore, in charge to collect required parameters (depending on the adapter) by 
requesting them from the Inventory. After that, QoS service uses the agnostic API exposed by the 
BKH_DPP_ADAPTER for setting the action (change priority) including those parameters. The 
BKH_DPP_ADAPTER maps the input and transforms it in an understandable format which is sent to 
the FCA controller. Finally, the FCA controller enforces the rule (change priority) in a specific location 
which changes the priority of all specified matching traffic. BKH_DPP_ADAPTER API and required 
parameters are further explained in Section 0. 

 

 

Figure 4.30 Set Priority per Slice/Flow 

 

Following steps describe the workflow in more detail: 

 A caller (CPS Consumer) retrieves Qos Control Plane Service address, via CPSR function. 
a) SliceID 
b) CPStype=QoS_CP 

 This caller calls set_priority endpoint of the QoS service API to provide: 

a) SliceID 
b) priority_value 

 QoS Service retrieves the Backhaul DPP Adapter address by using the CPSR discovery 
function. 

a) SliceID 
b) CPStype=BKH_DPP_ADAPTER 
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 QoS Service retrieves required parameters from the inventory in order to fulfil the request to 
be sent to the BKH_DPP_ADAPTER adapter. 

a) Required BKH_DPP_ADAPTER parameters are detailed in section 5. 

 QoS Service maps those gathered parameters from the inventory. 

 Qos Service calls the agnostic BKH_DPP_ADAPTER API in order to apply a priority value over a 
specified network traffic. 

a) SliceID 
b) required_parameters 

 BKH_DPP_ADAPTER maps the retrieved data from its northbound interface to an intent. 

 BKH_DPP_ADAPTER calls FCA controller API for provision Intent. 

 FCA Controller enforces the intent to the target interface location on the data plane. 

 Operation result is returned back to the initial service consumer which is acting as a caller 

4.1.4 NF Config Control Service  

Network functions and their dynamic management and life-cycle are expected to play a key role in 
the provisioning of slices. This is due to the fact that SliceNet approach follows principles defined in 
the context of:  

 Sharing of the access medium (i.e. radio channels)  based on practices defined for Multi-
Operator Core  Network (MOCN [40] ) and  for  Dedicated Core Networks (DÉCOR [41] ). 

 Control and User Plane Separation of EPC nodes (CUPS [42] ). 

 SBA System Architecture for the 5G System [43]  

In all these cases the key aspect is the modularity implied by the separate instantiation of control and 
network functions either to allow RAN sharing among several (virtual) operators like in DÉCOR and 
MOCN or to allow for a highly granular architecture with respect to the classification of user session 
among different slices as in the case of 5G SBA. SliceNet considers E2E Slicing as superset of the 
above mentioned setups that eventually can allow an E2E Slice to be delivered in a virtual operator 
fashion, i.e. each vertical is provided with a separate and dedicated core network to which shared 
(radio) access segments are attached without any restriction regarding the administrative domain 
they are belonging as long as the related NSP stakeholders support the federation of their resources 
under the principles of SliceNet.  

By the introduction of its Control Plane [2] SliceNet has defined a way to accommodate either 
current (4G, NSA-5G) or future (SA-5G) technologies in an agnostic manner as long as the pillar [2]  
resources are attached under the abstraction layer through the appropriate adaptors and support of 
the initial and currently evolving adaptor NBI. It is expected that below the adaptation layer each NSP 
will be deploying NFs under the command of the orchestration modules for the provisioning of the 
slice dedicated core and access components (according to the definition of the slice along one or 
several NSPs). Consequently, every instantiated slice per NSP will be associated with a number of NFs 
either these are dynamically lifecycle managed or they are re-used from a shared pool. Each of these 
functions will be implementing a subset or the entire foreseen adaptor NBI interface of the pillar 
resource it belongs to.  

Depending on the slice template/design that is instantiated a number of operations are expected to 
be available per slice. These operations are not limited to a predefined subset. Several operations 
can be defined and catalogued so that they can be included in a slice template. These operations are 
defined according to an extension of the configuration descriptor model that was used in 5G-PPP 
Phase 1 SELFNET project for the onboarding process of SDN/VNF and PNF applications [38] That 
model was including, among other, a configuration descriptor defining two parts, the exposed 
operation part that the management components are aware of and utilise through SELFNET 
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Application Manager [39]  and the protocol section that was identifying the communication protocol 
(REST, CLI, Rabbit MQ, etc.) that should be used for applying the configuration to the related 
application. For SliceNet this descriptor is augmented so that the protocol section is defined as a set 
of interactions to be applied sequentially to form a workflow. The information model foresees that 
the arguments (supplied as key:value pairs) of the operation are used in the customisation of each 
one of the interactions (e.g. the body of a POST request) of the workflow. Optionally, temporary 
variables can be defined that are assigned specific values that can be retrieved from each of the 
executed transactions. Thereafter, temporary variables can be used in subsequent requests. For any 
of the NF Config CP Service instance(s) created for a slice, a bootstrap configuration with such 
descriptors is provided so that the contained workflow execution engine can customise the 
processing per invoked operation. During slice runtime, those management operations may be 
required to be applied per slice according to P&P support, cognitive processing or local (NSP) 
automated FCAPS actuation. Following CP principles, unless slice exposure level is quite extensive, 
the required configuration is applied through the NF Config Control service. The NF Config Control 
service is implemented to analyse the requested operation and execute it in the context of a defined 
workflow among those with which it has been configured during instantiation. In this way the NF 
Config CP Service allows extensibility and dynamicity to be applied per slice based on the features 
that can be used from the underlying pillar technologies.  

4.1.4.1 NF Config Control Service Based Interface 

The NF Config CPS exposes as many operations as the number of those that have been defined in the 
slice template instance and therefore there is no specific enumeration of the operations apart from a 
generic REST approach presented in paragraph 5.2 

4.1.4.1.1 NF Config CPS Workflow 

As the NF Config CPS is provided as a generic workflow execution engine an abstract use case is 
presented as a representative flow sequence. 

 

 

Figure 4.31  NF Config Workflow 
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 An NF Config client component (P&P, Cognitive or FCAPS Management component) identifies 
an operation that has been defined for a slice 

 The CPSR is contacted to resolve the NF Config CPS that has been allocated for the specific 
slice 

 The operation is invoked by providing the required parameter configuration set 

 The NF Config CPS analyses the steps that are foreseen for applying the specific operation for 
the specific slice 

 The NF Config CPS iterates over all the steps and after resolving the required adapter for 
each step it applies the configuration and invokes the adapter interface  

 Once all the steps have been performed feedback is provided to the caller. Optionally a 
callback can be supported in this context so as to allow for asynchronous operation. 

4.2 Control Plane Adapters 

4.2.1 Backhaul DPP Adapter 

The Backhaul DPP Adapter (BKH_DPP_ADAPTER) is a software component that provides a SliceNet 
centralized interface for completing a set of actions over traffic flowing across a specific point, the 
backhaul. That network traffic can either represents a specific flow or a slice which contains 
aggregated flows covering the same scope, traffic description is further explained in section 5. There 
is 1-to-many relationship between BKH_DPP_ADAPTER and slices, it means just one 
BKH_DPP_ADAPTER instance for covering several flow/flows. In order to deploy an action, 
BKH_DPP_ADAPTER will receive requests from the QoS Control Service or any other authorized 
SliceNet functional component (e.g P&P, MP) and interact with the appropriate underlying network 
controller (FCA Controller) for handling those requests. This component is in charge of providing the 
agnostic technology abstraction layer capabilities for the consumer by doing a mapping of the 
technology agnostic API to technology depending APIs provided by the underlying network 
controller.  
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4.2.1.1 Backhaul DPP Adapter internal architecture and functionalities 

Backhaul DPP Adapter is internally structured in several SW modules in charge to cover specific 
functionalities, as is depicted in Figure 4.32. 

 

 

Figure 4.32 Backhaul DPP Adapter 

 

 bkh_dpp_NBI handles the northbound API interface with other control plane service 
consumers for registering BKH_DPP_ADAPTER instance to CPSR, for receiving the action 
related requests for a slice. 

 bkh_dpp_SBI handles the southbound API interface towards the Backhaul FCA Controller for 
a slice, for handling the intent-based operations.  

 bkh_dpp_Map has the logic for mapping the intent related information to FCA Controller API 
information and vice versa. 

 bkh_dpp_Core is the engine module which handles all service operations demanded to the 
BKH_DPP_ADAPTER, interworking with the other BKH_DPP_ADAPTER internal SW modules 
for registering the slice BKH_DPP_ADAPTER instance identifier to CP Service Register, 
controlling the service operations from northbound to southbound interface. It is stateless, 
so it is supposed to do not store any data about slice and related service operations ongoing. 

4.2.2 Backhaul Adapter 

The Backhaul Adapters provide a first level of abstraction over the transport network pillar 
functionalities which is further exploited and abstracted by CP Services which expose specific services 
by their own Service Based Interface (SBI). The Backhaul Adapters translate the Controllers 
northbound interface into a technology agnostic Interface, thus enabling a common SliceNet CP 
information model and control logics, hiding the slice detailed composition in terms of network 
segments and vendors technology. 

The Backhaul Adapter maps the sliceID to the ONOS criteria parameter V-LAN id to allow the SDN 
controller isolation of traffic within backhaul network. 

The Backhaul Adapters expose the northbound interface for interconnecting multiple Point-of-
Presences (PoP) on infrastructure segments intra domain for a slice. 
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4.2.2.1 Backhaul Adapter Service Based Interface 

Operations offered by Backhaul Adapter to apply specific slice aware control logics: 

 Provision SDN Intent 

 Update SDN Intent 

 Remove SDN intent 

 SDN Topology Exposure 

Pre-requisites: 

 Backhaul adapter instance up and running, 1-to-1 relationship with SDN backhaul controller 
for each Slice ID. 

 Backhaul Adapters registered into CPSR 

 Sub-slices instantiated on all network segments, performed by Management Plane (MP) 

4.2.2.1.1 Provision SDN Intent 

An SDN intent may be expressed as a connectivity service between two endpoints with given QoS 
requirements and with a given routing scheme (e.g. an high level firewall rule to block specific user 
traffic at a border of a network domain). This operation therefore exposes what to do on top of the 
SDN controllers, without specifying how to do it.  

The Service Consumer shall send a PUT request to BKH_ADAPTER to the resource URI representing 
the Intent for a concerned Slice Id. The request body shall include the Intent object. 

On success, "200 OK" shall be returned as result. The response body shall be empty. 

 

 

Figure 4.33: Provision SDN Intent 

 

4.2.2.1.2 Update SDN Intent 

A runtime update of a provisioned Intent is required to fulfil the dynamicity in the life-cycle of the 
slice instances, in particular to satisfy the needs to change the quality of service constraints for an 
intent-based connection between two end-points of backhaul SDN network. 

The Service Consumer shall send a PUT request to BKH_ADAPTER to the resource URI representing 
the Intent to be updated for a concerned Slice Id. The request body shall include the modified Intent 
object. 

On success, "200 OK" shall be returned as result. The response body shall be empty. 

 

 

Figure 4.34 Update SDN Intent 



Deliverable D4.3 SLICENET H2020-ICT-2016-2/761913 

Page 56 of (96)  © SLICENET consortium 2018 

 

4.2.2.1.3 Remove SDN Intent 

This operation is the counterpart of the above “Provision SDN intent”. It follows the same declarative 
approach and it has to be used to enforce the decommissioning of a given SDN intent by means of 
the underlying Backhaul SDN controller. The decommissioning logic is mandated to the SDN 
controller, aiming to reduce conflict at the SliceNet CP control services level and increase the success 
of the requests. 

The Service Consumer shall send a DELETE request to BKH_ADAPTER to the resource URI 
representing the Intent for a concerned Slice Id. The request body shall include the Intent object. 

On success, "200 OK" shall be returned as result. The response body shall be empty. 

 

 

Figure 4.35 Remove SDN Intent 

 

4.2.2.1.4 SDN Topology Exposure 

This operation is conceived to expose a logical view of the backhaul/transport network segment 
topology to other SliceNet CP control services for a slice. Following the SliceNet CP abstraction 
principles, the SDN topology view offered through this operation is independent from specific SDN 
controller(s) technologies and models, and it consists of listing the endpoints (and their attributes) of 
the PoPs on the infrastructure network segments which have been interconnected through the 
Backhaul SDN network controller. 

The slice topology exposed by the Backhaul Adapter consists of the list of pairs of endpoints (and 
their attributes) used for Intent provisioning towards the Backhaul SDN Controller.  

The CP Service Consumer shall send a GET request to BKH_ADAPTER for a concerned Slice Id. The 
request body shall be empty. 

On success, "200 OK" shall be returned as result and the response body shall contain the topology 
with the list of inter-PoP endpoints. 

 

 

Figure 4.36: Get SDN Topology 
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4.2.2.2 Backhaul Adapter internal architecture and functionalities 

Only one Backhaul Adapter instance (per SDN Controller vendor technology) is registered into CPSR, 
it interworks with more CP control service instances for handling more slices on the northbound side 
and with concerned SDN controller on the southbound side. 

 

 

Figure 4.37 Backhaul Adapter interworking 

 

The Backhaul Adapter is internally structured in several SW modules in charge to cover specific 
functionalities. 

 

Figure 4.38  Backhaul Adapter internal structure  

 

 bkh_NBI handles the northbound API interface with other control plane service consumers 
for registering BKH_ADAPTER instance to CPSR, for receiving the intent related requests for a 
slice. 
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 bkh_SBI handles the southbound API interface towards the Backhaul SDN Controller for a 
slice, for handling the intent-based operations.  

 bkh_Map has the logic for mapping the intent related information to SDN Controller API 
information and vice versa. 

 bkh_SliceMgr manages the information regarding each slice instance inside the Backhaul 
Adapter, keeps track at slice instance level of data for interworking with the CP Service 
Consumer instance (e.g. IPC_CP slice instance) on NBI side and the Backhaul SDN Controller 
on SBI side. 

 bkh_Core is the engine module which handles all service operations demanded to the 
BKH_ADAPTER, interworking with the other BKH_ADAPTER internal SW modules for 
registering the slice BKH_ADAPTER instance identifier to CP Service Register, controlling the 
service operations from northbound to southbound interface. It is stateless, so it is supposed 
to do not store any data about slice and related service operations ongoing.  

4.2.2.3 Backhaul Adapter use cases workflows 

There is one Backhaul Adapter for each SDN Controller type (e.g. ONOS, OpenDayLight). The 
following workflows are intended for an adapter using ONOS on its southbound interface, they might 
be slightly different in case of another SDN controller. 

4.2.2.3.1 Provision SDN Intent 

 IPC_CP retrieves Backhaul Adapter address, via CPSR function: inputs are 
NF_Type=“BKH_ADAPTER” and slice Id. 

 IPC_CP calls Backhaul Adapter API to provide SDN Intent for Slice Id. 

 BKH_ADAPTER gets list of available hosts from Backhaul SDN controller. 

 BKH_ADAPTER maps the endpoints received from IPC_CP into corresponding Backhaul SDN 
controller Host IDs. 

 BKH_ADAPTER calls Backhaul SDN Controller API for Intent provisioning. 

 Operation result is returned to IPC_CP. 

 

 

Figure 4.39 Provision SDN Intent flow  
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4.2.2.3.2 Update SDN Intent 

 IPC_CP retrieves Backhaul Adapter address, via CPSR function: inputs are 
NF_Type=“BKH_ADAPTER” and slice Id. 

 IPC_CP calls Backhaul Adapter API to Update an SDN Intent for Slice Id. 

 BKH_ADAPTER gets list of available hosts from Backhaul SDN controller. 

 BKH_ADAPTER maps the endpoints received from IPC_CP into corresponding Backhaul SDN 
controller Host IDs. 

 BKH_ADAPTER gets list of available intents from Backhaul SDN controller. 

 BKH_ADAPTER identifies the corresponding intent to be updated. 

 BKH_ADAPTER calls Backhaul SDN Controller API to delete the existing Intent a create it again 
with updated data. 

 Operation result is returned to IPC_CP. 

 

 

Figure 4.40  Update SDN Intent flow 

 

4.2.2.3.3 Remove SDN Intent 

 IPC_CP retrieves Backhaul Adapter address, via CPSR function: inputs are 
NF_Type=“BKH_ADAPTER” and slice Id. 

 IPC_CP calls Backhaul Adapter API to delete SDN Intent for Slice Id. 

 BKH_ADAPTER gets list of available hosts from Backhaul SDN controller. 

 BKH_ADAPTER maps the endpoints received from IPC_CP into corresponding Backhaul SDN 
controller Host IDs. 

 BKH_ADAPTER gets list of available intents from Backhaul SDN controller. 

 BKH_ADAPTER identifies the corresponding intent to be removed. 

 BKH_ADAPTER calls Backhaul SDN Controller API for Intent removal 

 Operation result is returned to IPC_CP. 
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Figure 4.41 Remove SDN Intent flow 

 

4.2.2.3.4 SDN Topology Exposure 

 IPC_CP retrieves Backhaul Adapter address, via CPSR function: inputs are 
NF_Type=“BKH_ADAPTER” and slice Id. 

 IPC_CP calls Backhaul Adapter API to get the inter-PoP network topology. 

 BKH_ADAPTER gets the list of Intents from Backhaul SDN Controller. 

 BKH_ADAPTER selects all returned Host IDs having the VLAN ID attribute matching the 
required Slice Id. 

 For selected Host IDs, the BKH_ADAPTER gets the corresponding IP addresses (endpoints) 
from Backhaul SDN Controller. 

 BKH_ADAPTER returns to IPC_CP the obtained list of intents for the required slice Id. 

 

Figure 4.42 Get SDN Topology flow 
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5 Interfaces  

Note that IPv6 is supported as described by the following Control Plane Services and CPSR interfaces.  

5.1 CP-CPSR-S  

The following sub-chapters describe the interfaces of “Control Plane Service Register” according the 
specifications stored under gitlab at the following link: 

https://gitlab.com/slicenet/wp4/blob/develop/CPSR/Interface/cpsr.yaml 

5.1.1 CPSR main data structure 

5.1.1.1 Resources and methods overview 

Table 5.1 CPSR Resources and methods overview 

CPS Management 

Resource 
name 

Resource URI HTTP method or 
custom operation 

Description 

cps-instances 
(Store) 

{apiRoot}/slicenet/ctrlplane/cpsr_cps/ 
v1/cps-instances 

GET Read a collection of 
CPS Instances. 

cps-instance 
(Document) 

{apiRoot}/slicenet/ctrlplane/cpsr_cps/ 
v1/cps-instances/{cpsInstanceID} 

GET Read the profile of a 
given CPS Instance. 

PUT Register in CPSR a 
new CPS Instance, or 
replace the profile of 
an existing CPS 
Instance, by 
providing an CPS 
profile. 

PATCH Modify the CPS 
profile of an existing 
CPS Instance. 

DELETE Deregister from 
CPSR a given CPS 
Instance. 

Subscriptions 
(Collection) 

{apiRoot}/slicenet/ctrlplane/cpsr_cps/ 
v1/subscriptions 

POST Creates a new 
subscription in CPSR 
to newly registered 
CPS Instances. 

Subscription 
(Document) 

{apiRoot}/slicenet/ctrlplane/cpsr-sm/ 
v1/subscriptions/{subscriptionID} 

DELETE Deletes an existing 
subscription from 
CPSR. 

cps-
subscriptions 
(Collection) 

{apiRoot}/slicenet/ctrlplane/cpsr_cps/ 
v1/cps-instance/{cpsInstanceID}/cps-
subscriptions 

POST Creates a new 
subscription in CPSR 
to changes of the 
profile of a given 
CPS Instance. 

cps-
subscription 
(Document) 

{apiRoot}/slicenet/ctrlplane/cpsr_cps/ 
v1/cps-instance/{cpsInstanceID}/cps-
subscriptions/{cpsSubscriptionID} 

DELETE Deletes an existing 
subscription from 
CPSR. 

Notification {callbackUri} POST Notify about newly 

https://gitlab.com/slicenet/wp4/blob/develop/CPSR/Interface/cpsr.yaml
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Callback created CPS 
Instances, or about 
changes of the 
profile of a given 
CPS Instance. 

 

Table 5.2 CPS Discovery 

CPS Discovery 

Resource 
name 

Resource URI HTTP method or 
custom operation 

Description 

CPS-
instances 
(Store) 

{apiRoot}/slicenet/ctrlplane/cpsr-disc/ 
v1/cps-instances 

GET Retrieve a collection of 
CPS Instances according 
to certain filter criteria. 

 

5.1.1.2 CPRS Main Data Type 

CPS Profile 

Table 5.3 CPS profile 

CPSProfile 

Attribute 
name 

Data type P Cardinality Description 

cpsInstanceId string M 1 Unique identity of the CPS Instance (UUID 
format). 

cpsType CPSType M 1 Type of Control Plane Function (See table 
CPSType for details) 

cpsStatus CPSStatus M 1 Status of the CPS Instance (REGISTERED, 
SUSPENDED) 

slicenetId String O 0..1 slicenetId (UUID format) 

fqdn string C 0..1 FQDN of the CPS where the service is 
hosted (see NOTE 1) 

ipv4Addresses array(String) C 0..N IPv4 address(es) of the CP Function (NOTE 
1) 

ipv6Addresses array(String) C 0..N IPv6 address(es) of the CP Function (NOTE 
1) 

ipv6Prefixes array(String) C 0..N IPv6 prefix of the CP Function (NOTE 1) 

capacity integer O 0..1 Static capacity information, expressed as a 
weight relative to other CPS instances of 
the same type. 

load integer O 0..1 Dynamic load information, ranged from 0 
to 100, indicates the current load 
percentage of the CPS. 

cpsServices array(CPSService) O 0..N List of CPS Service Instances  

Note 1: At least one of the addressing parameters (fqdn, ipv4address, ipv6adress and ipv6Prefix) 
shall be included in the CPS Profile. 
Note 2: M=Mandatory, C=Constraint; O=Optional;  
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Table 5.4 CPS Types 

CPSType 

Enumeration value Description 

BKH_ADAPTER Backhaul Adapter 

COR_ADAPTER Core Adapter 

MEC_ADAPTER Mobile Multi Access Edge Computing Adapter 

RAN_ADAPTER Radio Access Network Adapter 

WAN_ADAPTER Wide Area Network Adapter 

DPP_ADAPTER Data Plane Programmability Adapter 

QOS_CP Control Plane Service: Quality of Service 

ICP_CP Control Plane Service: Interpop Connection 

QOE_CP Control Plane Service: Quality of Experience 

PP_CP Control Plane Service: Plug and Play 

CNF_CP Control Plane Service: Network Function Configuration 

ID_CP Control Plane Service: Interdomain 

 

CPS Service 

Table 5.5 CPS Service 

CPSService 

Attribute name Data type P Cardinality Description 

serviceInstanceId string M 1 Unique ID of the service instance within 
a given CPS Instance (UUID format) 

serviceName string M 1 Name of the service instance (e.g. 
interface name "qos-local", "qos-
public“) 

version string M 1 Version of the service instance (e.g. 
"v1") 

schema string M 1 Protocol schema (e.g. "http", "https") 

slicenetId String O 0..1 slicenetId (UUID format) 

fqdn Fqdn O 0..1 FQDN of the NF where the service is 
hosted (see NOTE 1) 

ipEndPoints array(IpEndPoin
t) 

O 0..N IP address(es) and port information of 
the Network Function (including IPv4 
and/or IPv6 address) where the service 
is listening for incoming service requests 
(see NOTE 1) See details on table 
IPEndPoint 

apiPrefix string O 0..1 Optional path segment(s) used to 
construct the {apiRoot} variable of the 
different API URIs (will do a table for 
that. e.g. ctrlplane/cpsr 

defaultNotificatio
nSubscriptions 

array(DefaultNo
tificationSubscri
ption) 

O 0..N Notification endpoints for different 
notification types. 

allowedCPSTypes array(CPSType) O 0..N Type of the CPSs allowed to access the 
service instance (all allowed if not 
present) 

allowedSlices array(string) O 0..N Allowed slices to access the service 
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instance (all allowed if not present) 

capacity integer O 0..1 Static capacity information, expressed 
as a weight relative to other services of 
the same type 

load integer O 0..1 Dynamic load information, ranged from 
0 to 100, indicates the current load 
percentage of the CPS. 

NOTE 1: If the fqdn and ipEndpoint attributes are not present, the FQDN and IP address related 
attributes from the CPSProfile shall be used to construct the API URIs of this service. 

 

Table 5.6 CPS Service Ip End Point 

IpEndPoint 

Attribute name Data type P Cardinality Description 

ipv4Address string C 0..1 IPv4 address (NOTE 1) 

ipv6Address string C 0..1 IPv6 address (NOTE 1) 

ipv6Prefix string C 0..1 IPv6 prefix (NOTE 1) 

transport string O 0..1 Transport protocol 

port integer O 0..1 Port number 

NOTE 1: At most one occurrence of either ipv4Address, ipv6Address or ipv6Prefix shall be included in 
this data structure. 

 

5.1.1.3 Registration Models 

CPSR is designed to support several registration models that CPSs can choose. It is up to CPS to select 
the appropriate registration model to use depending on the chosen deployment model. The heart-
beat procedure is impacted by the choice as it is tied to “profile” data structures.  
The three main models are reported below; a mixture of them is also possible. 

Registration model A: Many services instances over one single server  

 

Figure 5.1  Registration model A: Many services instances over one single server 

 

This model can be selected when each CPS instance (the couple of profile/service per slice) is 
stateful. In this model each service instance needs to maintain its heart-beat process up. 
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Registration model B: Many services instances over one single server 

 

Figure 5.2  Registration model B: Many service instances over one single server 

 

This model can be used when there are limited resources from the infrastructure, each service is 
stateless. In this model it is enough to have one single heart-beat process up, supporting all services. 

Registration model C: One service over a single server 

 

Figure 5.3 Registration model C: One service instance over a single server 

 

This model is suggested when there are special security and isolation needs but it requires large 
amount of resources from infrastructure. 

5.2 CP-CONF-S 

The NF Config CPS is exposing a north bound interface as a REST endpoint (defined in 
https://gitlab.com/slicenet/information-model/blob/master/api/function.json).  
It supports addition, update and removal of configuration regarding the supported operations with 
each operation identified for a specific slice as part of the path of the URL at which the REST request 
is performed as explained in Table 5.7 

Table 5.7  CP CONF-S supported operations 

Endpoint /function/{sliceid}/{operation}" 

Request  POST/PUT/DELETE 

Request Body A JSON array with configuration items as presented in the next table 



Deliverable D4.3 SLICENET H2020-ICT-2016-2/761913 

Page 66 of (96)  © SLICENET consortium 2018 

Consumes application/json 

Produces —- 

Response Body —- 

Return Codes 200, 404 if the operation does not exist 

 

The body of the request is structured as presented in Table 5.8 

(https://gitlab.com/slicenet/information-model/blob/master/api/model/Configuration.json): 

Table 5.8 Body request structure 

Field Type Details 

name  String The name of one of the parameters of the 
operation. It is the same with the key defined in the 
operation descriptor. 

value String The current value to be applied for the parameter 
under the above name. 

unit String An optional unit identifier for numeric parameters. 

 

5.3 CP-QOS-S 

The following sub-chapters describe the interfaces “Set Qos constraints” and “Set Priority” according 
the specifications stored under gitlab at the following links: 

https://gitlab.com/slicenet/wp4/blob/develop/QOS/interfaces/qos.yaml 

5.3.1 Set QoS constraints 

The operation allows the indication of quantitative parameters to be enforced for adequate servicing 
of user sessions in the network segments.  

The sliceId is a mandatory field; it represents the unique identifier of the Slice associated to the QoS 
instance.  

segmentId is optional, if it is not defined the QoS parameters will be enforced on all active sessions 
(or on the specific one) for all network segments (i.e. access, Core, backhaul). 

userEqId and epsBearerId are optional, if  they are not defined, QoS enforces QoS parameters on all 
active User sessions for the specific sliceId. 

QoS parameters are mandatory, they are defined as a JSON schema. 

All input paramters are described in the tables below. 

[ PUT | POST] ../qos/v1/qos-instance/{sliceId}/set_qos_constraints/{parameters} 

Example usage: 

url: http://localhost:8080/slicenet/ctrlplane 

URL parameters: 

Table 5.9 Set QoS constraints, parameters 

Field name Type Example Mandatory Description 

sliceId UUID 6b699c12-d154-49ed-
8922- f578e108f818 

YES Unique ID of the slice associated to 
QOS. 

segmentId String ACCESS NO Identify the type of the adapter, 

https://gitlab.com/slicenet/information-model/blob/master/api/model/Configuration.json
https://gitlab.com/slicenet/wp4/blob/develop/QOS/interfaces/qos.yaml
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ACCESS or CORE adapter kind 

userEqId String 49150123456789 NO dentify the User Equipment Identity 
as IMSI 

epsBearerId integer 5 NO Identify the EPS Bearer Identity 

 

JSON parameters: 

Table 5.10 Set QoS constraints, JSON parameters 

Field name Type Example Mandatory Description 

qosDirName String UPL YES The setting directive for QoS parameters can be: 
UPL=Upload directive; DWL= Download directive 

qosDirValue String 50 YES The value of setting directive   

qosUnitScale String MB YES The measurement scale of the setting directive   

 

Request example: 

In the following an example is reported for the setting of QoS parameter UPL (UpLink) to 50 MB given 
the <sliceID> UUID value, segmentId (ACCESS), userEqId (IMSI) and epsBearerId (5).     

curl -X PUT http://localhost:8082/slicenet/ctrlplane/qos/v1/qos-

instance/<sliceID>/set_qos_constraints?segmentId=ACCESS&userEqId=4915012345

6789&epsBearerId=5 -H "Content-Type: application/json" -

d'{"qosDirName":"UPL","qosDirValue":"50","qosUnitScale":"MB"}'  

Success response: 200 OK 

Error response:  400 Bad Request 

5.3.2 Set Priority 

The operation allows the settings of the priority value in the north bound interface of the QoS 
component that matches the definition of the north bound interface of the BKH_DPP_Adapter 
described in section 0.   

sliceId is mandatory, it represents the unique identifier of the Slice associated to the QoS instance. 

priorityValue is mandatory, it represents the priority value and can be set as an integer between 1 
and 9. 

QoS calls set_priority towards BKH_DPP_Adapter that will send back the result of the request to QoS. 

All input parameters are described in the table below. 

[ PUT ] ../qos/v1/qos-instance/{sliceId}/set_priority/{parameters} 

Example usage: 

url: http://localhost:8080/slicenet/ctrlplane 

URL parameters: 

Table 5.11 Set Priority, parameters 

Field name Type Example Mandatory Description 

sliceId UUID  6b699c12-d154-49ed-8922- 
f578e108f818 

YES Unique ID of the slice 
associated to QoS. 

priorityValue Integer 1,….9 YES Identify the priority value 
Identity 
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Request Example 

In the following an example is reported for the setting of the priority parameter (1) given the 
<sliceID> UUID value.    

curl -X PUT http://localhost:8082/slicenet/ctrlplane/qos/v1/qos-

instance/<sliceID>/set_priority?priorityValue=1 

Success response:  

HTTP/1.1 

200 OK 

Error response: 

HTTP/1.1 

400 BadRequest 

5.4 CP-IPC-S 

The following subchapters describe the interfaces “provision interpop connections” and “remove  
interpop connections” according to the specifications stored in gitlab at the following link:  

https://gitlab.com/slicenet/wp4/blob/develop/IPC/interfaces/ipc.yaml 

5.4.1 Provision InterPoP Connections 

This operation interconnects two network functions in a slice between PoPs intra single domain, 
through an interPoP Connections descriptor representing the Backhaul SDN network between 
infrastructure pillars. 

[ PUT ] ../ipc/v1/ipc-instance/{sliceId}/provision_interpop_connections 

Example usage: 

url:  http://localhost:8081/slicenet/ctrlplane/ipc/v1/ipc-
instance/{sliceId}/provision_interpop_connections 

URL parameters: 

operationId: provisionInterpopConnections 

The interPoP Connections object (Table 5.12) will contain the specific slice identifier and the list of 
interPoP paths to interconnect. 

Table 5.12  Provision interPoP Connections parameters 

Field name Type Example Mandatory Description 

sliceId string 6b699c12-d154-
49ed-8922-
f578e108f818 

YES Unique ID of the slice 
associated to IPC. 

InterPoP_Connections array [InterPoP_Path1, 
…,  
InterPoP_PathN] 

YES List of inter-PoP Paths. 

 

Each interPoP_Path (Table 5.13) is an element of list in the InterPoP connections, it contains a set of 
parameters: the endPoints to interconnect and related constraints. 

https://gitlab.com/slicenet/wp4/blob/develop/QOS/interfaces/qos.yaml
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Table 5.13  InterPoP Path parameters 

Field name Type Example Mandatory Description 

endPoints object [endPointA,endPointB] YES A pair of routing devices on the 
PoPs to interconnect through the 
SDN backhaul network. 

constraints array bandwidth=1GBPS NO Weights applied to a set of 
network resources, such as 
bandwidth, latency... 

 

The endPoints object (Table 5.14) contains the pair of IP addresses (either IPv4 or IPv6 format) and 
associated attributes of two nodes to interconnect. 

Table 5.14 endPoint Parameters 

Field name Type Example Mandatory Description 

ipv4Address_nodeA/ 
ipv6Address_nodeA 

string 
ipv4/ 
ipv6 

"192.168.0.3" YES Source IP address either in 
IPv4 or IPv6 format 

ipv6Prefix_nodeA string/ 
ipv6 

prefix/length in 
bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeA string “111”  YES VLAN identifier of NodeA 

ipv4Address_nodeB/ 
ipv6Address_nodeB 

string 
ipv4/ 
ipv6 

"192.168.12.4" YES Destination IP address 
either in IPv4 or IPv6 format 

ipv6Prefix_nodeB string 
ipv6 

prefix/length in 
bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeB string “222” YES VLAN identifier of NodeB 

 

The constraints paramater (Table 5.15) contains the information about the bandwidth, latency to use 
along the path interconnecting the endPoints. 

Table 5.15 constraints Parameter 

Field name Type Example Mandatory Description 

bandwidth float 1 GBPS NO Constraint that evaluates 
links based on available 
bandwidths. 

latency float 1 ms NO Constraint to keep under 
specified latency through a 
path 

 

Success response: 

HTTP/1.1 

200 OK 
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Error response: 

HTTP/1.1 

400 BadRequest 

403 Forbidden 

404 Not Found 

500 Internal Server error  

5.4.2 Update InterPoP Connections 

This operation allows dynamic modification of QoS constraints for the InterPoP Connections (e.g. 
bandwidth, latency). 

[ PUT ] ../ipc/v1/ipc-instance/{sliceId}/update_interpop_connections 

Example usage: 

url:  http://localhost:8081/slicenet/ctrlplane/ipc/v1/ipc-
instance/{sliceId}/update_interpop_connections 

URL parameters: 

operationId: updateInterpopConnections 

The interPoP Connections object (Table 5.16) contains the specific slice identifier and the list of 
interPoP paths to update. 

Table 5.16  Update interPoP Connections parameters 

Field name Type Example Mandatory Description 

sliceId string 6b699c12-d154-
49ed-8922-
f578e108f818 

YES Unique ID of the slice 
associated to IPC. 

InterPoP_Connections array [InterPoP_Path1, 
…,  
InterPoP_PathN] 

YES List of inter-PoP Paths. 

 

Each interPoP_Path (Table 5.17) is an element of list in the InterPoP connections, it contains a set of 
parameters: the interconnected endPoints and the updated constraints to use. 

Table 5.17 InterPoP Path parameters 

Field name Type Example Mandatory Description 

endPoints object [endPointA,endPointB] YES A pair of routing devices on the 
PoPs to interconnect through the 
SDN backhaul network. 

constraints array bandwidth=1GBPS NO Weights applied to a set of 
network resources, such as 
bandwidth, latency... 

 

The endPoints object (Table 5.18) contains the pair of IP addresses (either IPv4 or IPv6 format) and 
associated attributes of two interconnected nodes. 

Table 5.18 endPoint Parameters 

Field name Type Example Mandatory Description 

ipv4Address_nodeA/ 
ipv6Address_nodeA 

string 
ipv4/ ipv6 

"192.168.0.3" YES Source IP address either in 
IPv4 or IPv6 format 
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ipv6Prefix_nodeA string/ ipv6 prefix/length 
in bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeA string “111”  YES VLAN identifier of NodeA 

ipv4Address_nodeB/ 
ipv6Address_nodeB 

string 
ipv4/ ipv6 

"192.168.12.4" YES Destination IP address 
either in IPv4 or IPv6 format 

ipv6Prefix_nodeB string 
ipv6 

prefix/length 
in bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeB string “222” YES VLAN identifier of NodeB 

 

The constraints parameter (Table 5.19) contains the information about the bandwidth, latency to use 
along the path interconnecting the endPoints. 

Table 5.19 constraints Parameter 

Field name Type Example Mandatory Description 

bandwidth float 2 GBPS NO Constraint that evaluates 
links based on available 
bandwidths. 

latency float 0.5 ms NO Constraint to keep under 
specified latency through a 
path 

 

Success response: 

HTTP/1.1 

200 OK 

Error response: 

HTTP/1.1 

400 BadRequest 

403 Forbidden 

404 Not Found 

500 Internal Server error 

5.4.3 Remove InterPoP Connections 

This operation deletes the slice inter-PoP Connections. 

[ DELETE ] ../ipc/v1/ipc-instance/{sliceId}/remove _interpop_connections 

Example usage: 

url:  http://localhost:8081/slicenet/ctrlplane/ipc/v1/ipc-instance/{sliceId}/remove 
_interpop_connections 

URL parameters: 

operationId: removeInterpopConnections 

The interPoP Connections object (Table 5.20) contains the specific slide identifier and the list of 
interPoP paths to disconnect. 
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Table 5.20 remove InterPoP Connections Parameters 

Field name Type Example Mandatory Description 

sliceId string 6b699c12-d154-
49ed-8922-
f578e108f818 

YES Unique ID of the slice 
associated to IPC. 

InterPoP_Connections array [InterPoP_Path1, 
…,  
InterPoP_PathN] 

YES List of inter-PoP Paths to 
disconnect 

 

Each interPoP_Path (Table 5.21) to remove contains the endPoints to disconnect. 

Table 5.21 InterPoP Path parameters 

Field name Type Example Mandatory Description 

endPoints object [endPointA,endPointB] YES A pair of routing devices on the 
PoPs to interconnected through 
the SDN backhaul network. 

 

The endPoints object contains the pair of IP addresses (either IPv4 or IPv6 format) and associated 
attributes of two nodes to disconnect . 

Table 5.22 endPoint Parameters 

Field name Type Example Mandatory Description 

ipv4Address_nodeA/ 
ipv6Address_nodeA 

string 
ipv4/ ipv6 

"192.168.0.3" YES Source IP address either in 
IPv4 or IPv6 format 

ipv6Prefix_nodeA string/ ipv6 prefix/length in 
bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeA string “111”  YES VLAN identifier of NodeA 

ipv4Address_nodeB/ 
ipv6Address_nodeB 

string 
ipv4/ ipv6 

"192.168.12.4" YES Destination IP address 
either in IPv4 or IPv6 format 

ipv6Prefix_nodeB string 
ipv6 

prefix/length in 
bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeB string “222” YES VLAN identifier of NodeB 

 

Success response: 

HTTP/1.1 

200 OK 

Error response: 

HTTP/1.1 

400 BadRequest 

403 Forbidden 

404 Not Found 

500 Internal Server error  
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5.5 CP-RAN-A 

This is the Service Based Interface exposed by the RAN Adapter, details are described in the SliceNet 
Deliverable D4.2 [5]  

5.6 CP-MEC-A 

This is the Service Based Interface exposed by the MEC Adapter, details are described in the  SliceNet 
Deliverable D4.2 [5]  

5.7 CP-CORE-A 

This is the Service Based Interface exposed by the CORE Adapter, details are described in the   
SliceNet Deliverable D4.2 [5]  

5.8 CP-WAN-A 

This is the Service Based Interface exposed by the WAN Adapter, details are described in the SliceNet 
Deliverable D4.4 [6]  

5.9 CP-BKHL-A 

The following subchapters describe the interfaces “provision SDN intent”, “remove SDN intent” and 
“get SDN topology” according the specifications stored under gitlab at the following links:  

https://gitlab.com/slicenet/wp4/blob/develop/BKH/Interface/bkh.yaml 

5.9.1 Provision SDN Intent 

This operation provides intent based data to connect two PoP endpoints on backhaul network. 

[ PUT ] ../bkh/v1/bkh-instance/{sliceId}/provision_sdn_intent 

Example usage: 

url:  http://localhost:8081/slicenet/ctrlplane/bkh/v1/bkh-instance/{sliceId}/provision_sdn_intent 

URL parameters: 

The Intent object contains the specific slide identifier and the data related to the Intent to be 
provisioned. 

Table 5.23 intent object parameters 

Field name Type Example Mandatory Description 

sliceid String 6b699c12-d154-49ed-
8922-f578e108f818 

YES Unique ID of the slice 
associated to IPC 

intentObj object intent YES info for intent to provide  

 

An IntentObj contains the endPoints to interconnect and related constraints. 

Table 5.24 IntentObj structure parameters 

Field name Type Example Mandatory Description 

endPoints array [endPointA,endPointB] YES A pair of routing devices on 
the PoPs to interconnect 
through the SDN backhaul 
network. 

https://gitlab.com/slicenet/wp4/blob/develop/BKH/Interface/bkh.yaml
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constraints array  bandwidth=1 GBPS NO Weights applied to a set of 
network resources, such as 
bandwidth, latency. 

 

The endPoints object contains the pair of IP addresses (either IPv4 or IPv6 format) and associated 
attributes of two nodes to interconnect via Intent. 

Table 5.25 endPoints structure parameters 

Field name Type Example Mandatory Description 

ipv4Address_nodeA/ 
ipv6Address_nodeA 

string 
ipv4/ ipv6 

"192.168.0.3" YES Source IP address either in 
IPv4 or IPv6 format 

ipv6Prefix_nodeA string/ ipv6 prefix/length in 
bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeA string “111”  YES VLAN identifier of NodeA 

ipv4Address_nodeB/ 
ipv6Address_nodeB 

string 
ipv4/ ipv6 

"192.168.12.4" YES Destination IP address 
either in IPv4 or IPv6 format 

ipv6Prefix_nodeB string 
ipv6 

prefix/length in 
bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeB string “222” YES VLAN identifier of NodeB 

 

The constraints parameter contains the information about the bandwidth, latency to use for the 
Intent. 

Table 5.26 constraints Parameter 

Field name Type Example Mandatory Description 

bandwidth float 1 GBPS NO Constraint that evaluates 
links based on available 
bandwidths. 

latency float 1 ms NO Constraint to keep under 
specified latency through a 
path 

 

Success response: 

HTTP/1.1 

200 OK 

Error response: 

HTTP/1.1 

400 BadRequest 

403 Forbidden 

404 Not Found 

500 Internal Server error  
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5.9.2 Update SDN Intent 

This operation allows to update the parameters for intent between two PoP endpoints on backhaul 
network. 

[ PUT ] ../bkh/v1/bkh-instance/{sliceId}/update_sdn_intent 

Example usage: 

url:  http://localhost:8081/slicenet/ctrlplane/bkh/v1/bkh-instance/{sliceId}/update_sdn_intent 

URL parameters: 

The Intent object (Table 5.27) contains the specific slide identifier and the data related to the Intent 
to be updated. 

Table 5.27 intent object parameters 

Field name Type Example Mandatory Description 

sliceid String 6b699c12-d154-49ed-
8922-f578e108f818 

YES Unique ID of the slice 
associated to IPC 

intentObj object intent YES info for intent to update  

 

An IntentObj (Table 5.28) contains the interconnected endPoints and the constraints to update. 

Table 5.28 IntentObj structure parameters 

Field name Type Example Mandatory Description 

endPoints array [endPointA,endPointB] YES A pair of routing devices on the 
PoPs to interconnect through the 
SDN backhaul network. 

constraints array bandwidth=1 GBPS NO Weights applied to a set of 
network resources, such as 
bandwidth, latency. 

 

The endPoints object (Table 5.29) contains the pair of IP addresses (either IPv4 or IPv6 format) and 
associated attributes of two nodes interconnected via Intent. 

Table 5.29 endPoints structure parameters 

Field name Type Example Mandatory Description 

ipv4Address_nodeA/ 
ipv6Address_nodeA 

string 
ipv4/ ipv6 

"192.168.0.3" YES Source IP address either in 
IPv4 or IPv6 format 

ipv6Prefix_nodeA string/ ipv6 prefix/length in 
bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeA string “111”  YES VLAN identifier of NodeA 

ipv4Address_nodeB/ 
ipv6Address_nodeB 

string 
ipv4/ ipv6 

"192.168.12.4" YES Destination IP address 
either in IPv4 or IPv6 format 

ipv6Prefix_nodeB string 
ipv6 

prefix/length in 
bits 

NO The leftmost fields of the 
IPv6 address contain the 
prefix, which is used for 
routing IPv6 packets.  

vlan_nodeB string “222” YES VLAN identifier of NodeB 
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The constraints parameter (Table 5.30) contains the information about the bandwidth, latency to use 
for the Intent. 

Table 5.30  constraints Parameter 

Field name Type Example Mandatory Description 

bandwidth float 2 GBPS NO Constraint that evaluates links based on 
available bandwidths. 

latency float 0.5 ms NO Constraint to keep under specified 
latency through a path 

 

Success response: 

HTTP/1.1 

200 OK 

Error response: 

HTTP/1.1 

400 BadRequest 

403 Forbidden 

404 Not Found 

500 Internal Server error  

5.9.3 Remove SDN Intent 

This operation deletes intent based connection between two PoP endpoints on backhaul network.  

[ DELETE ] ../bkh/v1/bkh-instance/{sliceId}/remove_sdn_intent 

Example usage: 

url:  http://localhost:8081/slicenet/ctrlplane/bkh/v1/bkh-instance/{sliceId}/remove_sdn_intent 

URL parameters: 

The Intent object contains the specific slide identifier and the data related to the Intent to be 
removed. 

Table 5.31 remove SDN intent parameters 

Field name Type Example Mandatory Description 

sliceid String 6b699c12-d154-49ed-
8922-f578e108f818 

YES Unique ID of the slice 
associated to IPC 

intentObj object intent YES Intent to remove 

 

An IntentObj contains the endPoints to disconnect. 

Table 5.32 IntentObj structure 

Field name Type Example Mandatory Description 

endPoints array [endPointA,endPointB] YES A pair of routing devices on the 
PoPs to disconnect through the 
SDN backhaul network. 

 

The endPoints object contains the pair of IP addresses (either IPv4 or IPv6 format) and associated 
attributes of two nodes relate to the Intent to be removed. 
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Table 5.33 endPoint structure parameters 

Field name Type Example Mandatory Description 

ipv4Address_nodeA/ 
ipv6Address_nodeA 

string 
ipv4/ ipv6 

"192.168.0.3" YES Source IP address either in IPv4 
or IPv6 format 

ipv6Prefix_nodeA string/ ipv6 prefix/length 
in bits 

NO The leftmost fields of the IPv6 
address contain the prefix, 
which is used for routing IPv6 
packets.  

vlan_nodeA string “111”  YES VLAN identifier of NodeA 

ipv4Address_nodeB/ 
ipv6Address_nodeB 

string 
ipv4/ ipv6 

"192.168.12.4" YES Destination IP address either in 
IPv4 or IPv6 format 

ipv6Prefix_nodeB string 
ipv6 

prefix/length 
in bits 

NO The leftmost fields of the IPv6 
address contain the prefix, 
which is used for routing IPv6 
packets.  

vlan_nodeB string “222” YES VLAN identifier of NodeB 

 

Success response: 

HTTP/1.1 

200 OK 

Error response: 

HTTP/1.1 

400 BadRequest 

403 Forbidden 

404 Not Found 

500 Internal Server error  

5.9.4 Get SDN Topology   

This operation exposes the backhaul network topology consisting of the endpoints of the PoPs on the 
infrastructure network segments which have been interconnected through the Backhaul SDN 
network controller. 

[ GET ] ../bkh/v1/bkh-instance/{sliceId}/get_sdn_topology 

Example usage: 

url: http://localhost:8081/slicenet/ctrlplane/bkh/v1/bkh-instance/{sliceId}/get_sdn_topology 

Result: 

operationId: GetSdnTopology 

For a specified Slice Id it is returned the list of installed intents on backhaul SDN controller. 

Table 5.34 get SDN topology parameters 

Field 
name 

Type Example Mandatory Description 

sliceid String 6b699c12-d154-49ed-8922-
f578e108f818 

YES Unique ID of the slice 
associated to IPC 

intentObjs object  [Intent1, 
…,  
IntentN] 

YES List of intents for the specified 
sliceid 
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Each intent is an element of list in the intentObject, it contains a set of parameters: the 
interconnected endPoints and related constraints. 

Table 5.35 Intent parameters 

Field name Type Example Mandatory Description 

endPoints object [endPointA,endPointB] YES A pair of routing devices on the 
PoPs interconnected through the 
SDN backhaul network. 

constraints array bandwidth=1GBPS NO Weights applied to a set of 
network resources, such as 
bandwidth, latency... 

 

The endPoints object contains the pair of IP addresses (either IPv4 or IPv6 format) and associated 
attributes of two nodes to interconnect. 

Table 5.36 endPoint Parameters 

Field name Type Example Mandatory Description 

ipv4Address_nodeA/ 
ipv6Address_nodeA 

string 
ipv4/ ipv6 

"192.168.0.3" YES Source IP address either in 
IPv4 or IPv6 format 

ipv6Prefix_nodeA string/ ipv6 prefix/length in 
bits 

NO The leftmost fields of the IPv6 
address contain the prefix, 
which is used for routing IPv6 
packets.  

vlan_nodeA string “111”  YES VLAN identifier of NodeA 

ipv4Address_nodeB/ 
ipv6Address_nodeB 

string 
ipv4/ ipv6 

"192.168.12.4" YES Destination IP address either 
in IPv4 or IPv6 format 

ipv6Prefix_nodeB string 
ipv6 

prefix/length in 
bits 

NO The leftmost fields of the IPv6 
address contain the prefix, 
which is used for routing IPv6 
packets.  

vlan_nodeB string “222” YES VLAN identifier of NodeB 

 

The constraints parameter contains the information about the bandwidth, latency used for the 
Intent. 

Table 5.37 constraints Parameter 

Field name Type Example Mandatory Description 

bandwidth float 1 GBPS NO Constraint that evaluates 
links based on available 
bandwidths. 

latency float 1 ms NO Constraint to keep under 
specified latency through a 
path 
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5.10 CP-BKHL-DPP-A 

The following subchapters describe the interfaces of the control plane backhaul data plane 
programmability adapter according to the specifications stored under gitlab in the following link:  

cp-bkh-dpp-a gitlab interface design 

This is the list of Operations offered by Backhaul DPP Adapter to apply specific actions to the 
flow/flows: 

 [PUT | DELETE]  priority(parameters) 

 [PUT | DELETE]  min_bw(parameters) 

 [PUT | DELETE]  max_bw(parameters) 

Pre-requisites: 

 BKH_DPP_ADAPTER configured, registered, up and running 

 FCA_CONTROLLER configured, registered, up and running 

5.10.1 Parameters 

Offered operations described in previous section have to contain a set of parameters, which are 
internally processed by the backhaul DPP adapter in order to create an understandable intent, which 
is then provided to the FCA Controller. Those parameters are: 

 SliceID  → For having control over  slicing operations.  

 Traffic Definition. → Which kind of traffic represents the flow/flows. 

 Target machine (Management IP address)  → IP address where the action is enforced. (E.g 
“target_ip_address”:”192.168.1.1”) 

 Target interface. → Interface name where the action is enforced. (E.g 
“target_interface_name”:”eth0”) 

 Target interface direction → Action will apply to the ingress/egress traffic. 

 Action value → Depend on the use case. (E.g “priority_value:3”) 

Following table gives information about the optionality of parameters depending on the three 
different operations offered by the backhaul dpp adapter (set priority, set minimum bandwidth 
guaranteed and set a maximum of the allowed bandwidth).  

Table 5.38 parameters  

Opt Parameter PRIO MIN_BW MAX_BW 

Required sliceID X X X 

Required traffic_definition X X X 

Required target_ip_address (Management IP Address) X X X 

Required target_interface_name X X X 

Required target_interface_direction X X X 

Optional priority_value X   

Optional max_bwd  (X) X 

Optional min_bwd  X  

X = present 
(X)* = if present to be ignored 
(X) = optionally present 

 

https://gitlab.com/slicenet/cp-bkhl-dpp-a/blob/master/interface/bkh_dpp_a.yaml
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5.10.1.1 Traffic Definition 

Since BKH_DPP_ADAPTER is a component acting on traffic data plane, a specific traffic definition 
must be provided to it when setting a new action (E.g set priority). As explained before, this list of 
resource parameters can represent more than one flow by using wildcard values, achieving thus, 
slicing data plane actions. 

The following table describes all possible parameters: 

Table 5.39 traffic definition parameters 

Field name Example Compulsory Description 

sliceId “87E7EB8F” YES SliceID value of this resource. 

encapsulationID1 “00000445” NO First encapsulation ID in Hexadecimal value 
(Just needed if there is encapsulation) 

encapsulationID2 null NO Second encapsulation ID in Hexadecimal value 
(Just needed if there is encapsulation) 

encapsulationType1 “gtp” NO First encapsulation protocol name 
(Just needed if there is encapsulation) 

encapsulationType2 null NO Second encapsulation protocol name 
(Just needed if there is encapsulation) 

encapsulationLayer 1 YES Number of the encapsulation layer which this 
flow is representing. 

srcIP "192.168.0.3" NO Source ip address 

dstIP "192.168.12.4" NO Destination ip address 

l4Proto “17” NO Protocol number at Transmission layer 

srcPort “5004” NO Source port 

dstPort “5004” NO Destination port 

 

5.10.1.2 Parameters example 

This section provides an example of a JSON schema which represents a real set of parameters 
received in the northbound interface of the backhaul dpp adapter when a CP Service reaches the set 
priority function. 

{  

  "sliceID":"87E7EB8F", 

   

  "traffic_definition":{ 

        "sliceID":"87E7EB8F", 

        "encapsulationLayer":1, 

        "encapsulationType": "gtp", 

        "encapsulationID": "00000445" 

  }, 

   

  "target_ip_address":"192.168.1.1", 

  "target_interface_name":"eth0", 

  "target_interface_direction":"egress", 

   

  "priority_value":6 

} 

Therefore, all egressing traffic flowing through the interface eth0 of the specified ip address machine 
will change its priority to 6 if and only if is a GTP network traffic containing the specified 
encapsulation identifier. 
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5.10.2 Backhaul DPP Adapter Set/Remove Priority 

[ POST | DELETE ] ../dpp/v1/dpp-instance/priority/{parameters} 

 

 

Figure 5.4 set/remove priority 

 

The priority is defined as a number from 0..7 that indicates how much priority will the slice have. The 
higher the number is, the higher priority will be applied to the traffic of that slice.  The priority has 
impact in delay, probability of packet loss (reliability) and jitter.  

Required parameters when inserting a priority over a specific network traffic is defined in Section 
5.10.1  On the other hand, for deleting an existing rule which is already applying a priority action just 
the sliceID parameter will be needed. 

5.10.3 Backhaul DPP Adapter Set/Remove Min BW  

[ POST | DELETE ] ../dpp/v1/dpp-instance/min_bw/{parameters} 

 

 

Figure 5.5 set/remove minimum bandwidth guaranteed 

 

This method will set the minimum guaranteed bandwidth provided to a given network slice. All the 
traffic within that slice will share that bandwidth and compete against it. However, all the traffic of 
other slices will not interfere with this warrantied bandwidth. The bandwidth is indicated as a 
parameter in bits per second.  

Required parameters when inserting a minimum bandwidth guaranteed over a specific network 
traffic is defined in section 5.10.1. On the other hand, for deleting an existing rule which is already 
applying such action just the sliceID parameter will be needed. 

5.10.4 Backhaul DPP Adapter Set/Remove Max BW 

[ POST | DELETE ] ../dpp/v1/dpp-instance/max_bw/{parameters} 

 

 

Figure 5.6 set/remove maximum bandwidth allowed 
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This method will set the max bandwidth provided to a given network flow/flows. All the traffic within 
that slice will never pass this limitation. The bandwidth is indicated as parameter in bits per second. 

Required parameters when inserting a maximum bandwidth limit over a specific network traffic is 
defined in section 5.10.1. On the other hand, for deleting an existing rule which is already applying 
such action just the sliceID parameter will be needed. 
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6 Prototype 

Figure 6.1 shows the reference architecture used to prototype different components within this 
deliverable; detailed realization description is reported through next sub sections. 

 

 

Figure 6.1  Prototype reference architecture 

 

Protocols used for the SBI are: HTTP for application layer, TCP for transport, JSON for serialization, 
RESTful framework for the API style, OpenAPI for Interface Description Language (IDL).  

Java has been used as major implementation language. 

Swagger is the tool used to generate the models and classes described by OpenAPI language, it is 
able to generate both client and server sketch implementations that it is described by API. 

Each component contains inside at least one server implementation and one or more clients 
implementation. 

The component could be deployed as war object or as a docker object. it is possible also to deploy it 
inside a single Virtual Machine if needed. 

When the docker is used, it must contain inside a Web server that is able to run one or more war 
objects. The basic web server used is Jetty but we have done some tests with WildFly server that 
allows to support scalability and clustering if needed. 

All the components except CPSR are stateless without database dependency. 

Instead, CPSR has need a database. To be independent from specific database technology 
implementation Hibernate framework has been used. 

The binary software has been stored in the SliceNet GIT repository. 

6.1 CPSR  

CPSR realization is based on Java language. Its server interface described in terms of openAPI 3.0 
language is automatic generated by swagger tools (https://swagger.io/) as Java code. After the 
generation the major methods are completed with proper additional Java code. 

https://swagger.io/
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The server is using a database to store its data. Abstraction from database technology is operated via 
Hibernate framework (http://hibernate.org)  that can work as relational database RDBMS (working 
with SQL language) or as NoSQL technology1. In addition, it can create independence from specific DB 
vendors. Java HSQLDB (http://hsqldb.org) configured as in memory database,  or  Infinispan 
(http://infinispan.org)  can be used as DB depending on the wanted CPSR Architecture deployment: 
“no High Availability” or “High Availability” mode as further described in this section. 

Classes generated by Swagger are mapped to database tables manually. Access to database is done 
in Java via JPA. 

The WAR deploy method is used also to be independent from web server technology. 

CPSR prototype implementation does not include any security rule, so no OAuth 2.0 is needed. 

CPSR component is developed from scratch. It is distributed as container and it is available in gitlab in 
binary form. 

6.1.1  CPSR, no High Availability Architecture 

Jetty (https://www.eclipse.org/jetty) is used in this case and only HTTP is supported.  
HTTP/2 is not supported as and additional package (ALPN) would be needed.  

Figure 6.2  CPSR Prototype reference architecture with no High Availabilityshows the overall 
components used to obtain a CPSR running instance 

 

 

 

Figure 6.2  CPSR Prototype reference architecture with no High Availability 

 

 

 

                                                           

1
 Hibernate provide two main technology: sql (Hibernate ORM) and nosql (Hibernate OGM) 

http://hibernate.org/
http://hsqldb.org/
http://infinispan.org/
https://www.eclipse.org/jetty


Deliverable D4.3 SLICENET H2020-ICT-2016-2/761913 

© SLICENET consortium 2018 Page 85 of (96)  

6.1.2 CPSR, High Availability Architecture 

Wildfly (http://wildfly.org) is used in this case so to realize the CPSR High Availability Architecture as 
illustrated in section 4.1.1.4. 
WildFly High Availability services supports two features which ensure high availability of critical Java 
applications like CPSR: 

 fail-over: allows a client interacting with a Java application to have uninterrupted access to 
that application, even in the presence of node failures. 
If the application makes use of WildFly fail-over services, a client interacting with an instance 
of that application will not be interrupted even when the node on which that instance 
executes crashes. Behind the scenes, WildFly makes sure that all of the user data that the 
application make use of (HTTP session data, EJB SFSB sessions, EJB entities and SSO 
credentials) are available at other nodes in the cluster, so that when a failure occurs and the 
client is redirected to that new node for continuation of processing (i.e. the client "fails over" 
to the new node), the user’s data is available and processing can continue. 

 load balancing: allows a client to have timely responses from the application, even in the 
presence of high-volumes of requests, Load balancing enables the application to respond to 
client requests in a timely fashion, even when subjected to a high-volume of requests. Using 
a load balancer as a front-end, each incoming HTTP request can be directed to one node in 
the cluster for processing. In this way, the cluster acts as a pool of processing nodes and the 
load is "balanced" over the pool, achieving scalability and, consequently, availability. 
Requests involving session-oriented servlets are directed to the same application instance in 
the pool for efficiency of processing (sticky sessions). Using mod cluster has the advantage 
that changes in cluster topology (scaling the pool up or down, servers crashing) are 
communicated back to the load balancer and used to update in real time the load balancing 
activity and avoid requests being directed to application instances which are no longer 
available. 

Wildfly also supports HTTP/2 natively. 

  

http://wildfly.org/
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Figure Figure 6.3 shows the components used to obtain CPSR running instances in “High Availability 
mode” leveraging Wildfly open source. 
Infinispan (http://infinispan.org)  or other clustering capable DB like Mongodb 
(https://www.mongodb.com) can be used. 

 

 

Figure 6.3  CPSR Prototype reference architecture with High Availability 

 

6.2 QoS Control Service 

QoS source code is mantained in GitLab at following path https://gitlab.com/slicenet/wp4.  

QoS CP service application fits SBA (Service Based Architecture) and it is based on Container-based 
virtualization using Docker platform: it’s an open platform that enables to separate our applications 
from the infrastructure allowing to ship, test and deploy our QoS application quickly. 

Following figure represents the adopted architecture by QoS Application. 

 

http://infinispan.org/
https://www.mongodb.com/
https://gitlab.com/slicenet/wp4
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
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Figure 6.4 QoS prototype architecture 

 

QoS CPS application docker image has been built using a base image with minimal Ubuntu OS and 
customized adding following applications (See next figure): 

 

 

Figure 6.5 QoS prototype docker image 

 

 Jetty Web Server with ALPN to support HTTP and HTTP/2 protocols 

 Jersey API to support the development of RESTFUL Web Server and corresponding client in 
Java 

 Swagger API (OpenAPI 3.0 Spec) to support the data exchange between client/Server 
application using JSON/YAML languages 

 QoS business logic is a service Java based 

6.2.1 QOS prototype and test environment description 

The main purpose of the QOS module is to increase the abstraction level when delivering the Quality 
Of Service constraints to the SliceNet network over the network adapters placed in the RAN and in 
the Core segment network. 

The program is developed in Java language; it handles JSON messages, over HTTP protocol and 
RESTful interfaces, that responds to a predefined algorithm. The test environment was tided-up 
running an instance of the CPSR module in a virtual machine (Oracle VirtualBox). 

To simulate a real use case and to test the QOS functionalities, two different STUB servers, the RAN 
adapter and the CORE adapter, were also developed and put in service in the Eclispe IDE. 

https://www.eclipse.org/jetty/powered/
https://jersey.github.io/
https://jersey.github.io/
https://swagger.io/
https://swagger.io/
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Requests to the QoS were coming from a RESTful web interface (postman style) via the Google 
Chrome browser. 

In the current prototype QOS instantiation is performed manually, in the final product it will be 
performed by Management Plane layer that will trigger the Life Cycle Management of QOS according 
to the Slice instances managed in the system. 

6.3 IPC  

IPC source code is maintained in GitLab at following path https://gitlab.com/slicenet/wp4.  

IPC CP service application fits SBA (Service Based Architecture) and it is based on Container-based 
virtualization using Docker platform: it’s an open platform that enables to separate our applications 
from the infrastructure allowing to ship, test and deploy our IPC application quickly. 

Figure 6.6 represents the adopted architecture by IPC Application. 

 

 

Figure 6.6  IPC prototype architecture 

 

IPC CPS application docker image has been built using a base image with minimal Ubuntu OS and 
customized adding following applications (See Figure 6.7): 

 

 

Figure 6.7  IPC prototype docker image 

 

 Jetty Web Server to support HTTP protocol 

https://gitlab.com/slicenet/wp4
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://www.eclipse.org/jetty/powered/


Deliverable D4.3 SLICENET H2020-ICT-2016-2/761913 

© SLICENET consortium 2018 Page 89 of (96)  

 Jersey API to support the development of RESTFUL Web Server and corresponding client in 
Java 

 Swagger API (OpenAPI 3.0 Spec) to support the data exchange between client/Server 
application using JSON/YAML languages 

 IPC business logic is a service Java based 

6.3.1 IPC prototype and test environment description 

The program is developed in Java language; it handles JSON messages, over HTTP protocol and 
RESTful interfaces, that responds to a predefined algorithm. The test environment was tided-up 
running an instance of the CPSR module in a virtual machine (Oracle VirtualBox). 

To simulate a real use case and to test the IPC functionalities a prototype of the Backhaul Adapter is 
also used and put in service together with IPC prototype. Requests to the IPC were coming from a 
RESTful web interface (postman style) via the Google Chrome browser. 

In the current prototype IPC instantiation is performed manually, in the final product it will be 
performed by Management Plane layer that will trigger the Life Cycle Management of IPC according 
to the Slice instances managed in the system. 

6.4 NF Config Control Service 

The NF Config CPS has been developed as an extension of the Application Manager VNF/PNF App 
Configuration Service Class ( 96[39] ) and particularly the part of the code for REST communications.  
However, it has been disintegrated from the initial Application Manager Service so that it can be 
deployed and managed under the overall approach for SliceNet CPS Management. The prototype 
(https://gitlab.com/slicenet/wp4/tree/develop/NF-CONFIG) is based on an OSGi Karaf Blueprint 
archetype and provides support for REST services using Apache CXF and Jetty Engine.  

In the current form the module, when launched in Karaf, registers with CPSR but it runs in a stateless 
mode and has to be configured every time it starts as foreseen in paragraph 3.4.2. Configuration is 
done by posting operation descriptors as JSON content to its management endpoint (e.g. 
https://gitlab.com/slicenet/wp4/blob/develop/NF-CONFIG/descriptor.json) structured according to a 
specified schema (https://gitlab.com/slicenet/wp4/blob/develop/NF-
CONFIG/descriptorSchema.json). The descriptor is analysed and for every operation is found, a REST 
endpoint is created to make available the specific configuration option per slice. The part of the 
communication section that defines the workflow of the operation is used within each object 
launched per operation to apply the required steps. Text enclosed in curly brackets either in URLs or 
in request bodies indicates the use of a variable defined in one of the following ways: 

 A key:value parameter in the operation request body 

 A Config CPS instance specific parameter (e.g. Slice ID) 

 An intermediate value that is defined in the context of the execution of the workflow 
o JSON-Path (https://github.com/json-path/JsonPath) is used to collect the value from 

the response collected in one of the steps in the workflow process and then it is 
assigned to one of the variables of the operation processing space 

The NF Config CPS will be adapted according to integration requirements identified in the following 
period when management and orchestration modules will be provided by the corresponding tasks. It 
is also expected that the descriptor schema may need to be adapted according to the evolution of 
the overall SliceNet information model.  

https://jersey.github.io/
https://jersey.github.io/
https://swagger.io/
https://swagger.io/
https://gitlab.com/slicenet/wp4/blob/develop/NF-CONFIG/descriptorSchema.json
https://gitlab.com/slicenet/wp4/blob/develop/NF-CONFIG/descriptorSchema.json
https://github.com/json-path/JsonPath
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6.5 Adapters  

6.5.1 Backhaul Adapter  

BKH ADAPTER source code is maintained in GitLab at following link: https://gitlab.com/slicenet/wp4.  

BKH ADAPTER service application fits SBA (Service Based Architecture) and it is based on Container-
based virtualization using Docker platform: it’s an open platform that enables to separate our 
applications from the infrastructure allowing to ship, test and deploy our Adapter application quickly. 

Figure 6.8 below represents the adopted architecture by BKH ADAPTER Application. 

 

 

Figure 6.8  BKH ADTAPTER prototype architecture 

 

BKH ADAPTER application docker image has been built using a base image with minimal Ubuntu OS 
and customized adding following applications (See Figure 6.9): 

 

 

Figure 6.9 BKH ADAPTER prototype docker image 

 

 Jetty Web Server to support HTTP protocol 

 Jersey API to support the development of RESTFUL Web Server and corresponding client in 
Java 

 Swagger API (OpenAPI 3.0 Spec) to support the data exchange between client/Server 
application using JSON/YAML languages 

 BKH ADAPTER business logic is a service Java based 
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6.5.1.1 BKH ADAPTER prototype and test environment description 

The program is developed in Java language; it handles JSON messages, over HTTP protocol and 
RESTful interfaces, that responds to a predefined algorithm. The test environment was tided-up 
running an instance of the CPSR module in a virtual machine (Oracle VirtualBox). 

To simulate a real use case and to test the BKH ADAPTER functionalities a prototype of the IPC is also 
used and put in service together with BKH ADAPTER prototype. 

Requests to the BKH ADAPTER were coming from a RESTful interface on northbound interface and 
were sent to ONOS SDN Controller ONOS (version 1.14.0) on the southbound interface. 

In the current prototype BKH ADAPTER instantiation is performed manually. 

To simulate the realistic virtual network has been used Mininet (Mininet 2.2.2 on Ubuntu 14.04 LTS - 
64 bit) running real kernel, switch and application code, on a single machine (VM, cloud or native). 

 

 

Figure 6.10 Mininet and Backhaul Adapter prototype 

 

6.5.2 Backhaul DPP Adapter 

Backhaul Data Plane Programmability Adapter (BKH_DPP_ADAPTER) component has been 
prototyped and implemented by using Python 3 coding language in its main source code. The last 
release of such component can be found in the SliceNet git repository and contains all instructions 
about how to configure it and test it. As described in section 4.2.1.1, the BKH_DPP_ADAPTER is 
mainly composed by a  northbound interface for both, registering to the CPSR and receiving slice 
actions; a southbound interface for handling intent-base operations to the FCA Controller; a stateless 
engine module which is in charge of controlling service operations from the northbound interface to 
southbound interface by using internal SW modules; a mapping module which contains the logic for 
transform provisioned parameters from the northbound interface to an intent-based operations. 
Those intents are based in a (JavaScript Object Notation) JSON data-interchange format and provide 
to the FCA Controller all required information for executing an action in a specific location of the 
network. The following schema represents an example of the architecture of the intent-based object 
which is produced as an outcome of the BKH_DPP_ADAPTER in its southbound interface. 

{ 

  "Resources": [ 

  { 

      "resourceId": "87E7EB8F", 

      "encapsulationType1": "gtp", 

      "encapsulationID1": "00000445", 

      "encapsulationLayer": 1, 

      "packetStructure": "/ip:20", 

      "completePacketStructure": "/mac:14/ip4:20/udp:8/gtp:8/" 

    } 

  ], 

  "Intent": { 

    "actionType": "INSERT", 

https://onosproject.org/
https://github.com/mininet/mininet/releases/download/2.2.2/mininet-2.2.2-170321-ubuntu-14.04.4-server-amd64.zip
https://github.com/mininet/mininet/releases/download/2.2.2/mininet-2.2.2-170321-ubuntu-14.04.4-server-amd64.zip
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    "actionName": "SET_PRIORITY" 

  }, 

  "Params": [ 

    { 

      "paramName": "target_interface_name", 

      "paramValue": "enp0s25" 

    }, 

    { 

      "paramName": "target_ip_address", 

      "paramValue": "192.168.1.1" 

    } 

    { 

      "paramName": "target_interface_direction", 

      "paramValue": "egress" 

    } 

  ] 

} 

6.6 Network Controllers  

The following network controllers have been used for prototyping activities, but they are not in the 
scope of this deliverable, 

6.6.1 ONOS  

ONOS [14]  has been used as Backhaul Controller for Backhaul Adapter prototyping as described in 
Section 6.5.1. 

6.6.2 FCA Controller 

El FCA Controller consumes Intent-based requests provided by the Backhaul DPP adapter with the 
purpose of selecting the specific network endpoint related to the concrete location of the network 
where the intent will be enforced. This location is the Node that is under the control of a Flow 
Control Agent (FCA) that is responsible to enforce such an intent into the control plane of such a 
machine. To do so, the FCA Controller will place the intents in a queue and process them by routing 
them to the proper machines. Notice that the receiver can be only one machine if the intent is 
associated to a unique point of the network or multiple machines if the request is associated to a 
global network policy across the whole administrative domain. Also, this component will provide 
reliability in the delivery of the message so that it will retransmit them to the destinations in case of 
connectivity problem in order to make sure there is a consistent state of the control plane. This 
controller also provides fault tolerance against failures of the Flow Control Agent by leaving the 
message in the queues in case the control agent are not ready to consume them and thus allowing a 
recovery of the state when they are ready again. This FCA Controller is a centralized logical entry 
point to the infrastructure control which is physically distributed across all the machines controlled.  

It is noted that the previous version of FCA was developed in 5G PPP Phase 1 project SELFNET, as 
specified in SELFNET D3.4 [37] . The current version reported in SliceNet has been further developed 
and extended to have the following additional functions: 

 SliceNet FCA is able to act as a standalone actuator (without the need to employ an external 
traffic control device such as TrustNode used in SELFNET); 

 SliceNet FCA is able to enforce additional traffic control actions including Change Priority, 
Minimum Bandwidth Guaranteed, Maximum Bandwidth Allowed, in addition to Drop a Flow 
in SELFNET; 

 Multiple SliceNet FCAs can be distributed to different locations in 5G networks and 
controlled by an FCA Controller. 
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Figure 6.11 FCA Controller Architecture 

 

 fca_ctrl_NBI handles the northbound API interface with other control plane service 
consumers for receiving intent-base massages which are describing the action to apply, the 
traffic which will be affected and the deployment location. 

 fca_ctrl_Core controls the interworking between northbound interface and southbound 
interface handling those messages and processing them for being southbound compliant. 

 fca_ctrl_SBI handles the southbound API interface which in this case, follows a different 
approach for data communication which is based on Advanced Message Queuing Protocol 
(AMQP) instead of the Representational State Transfer API used in upper layer components  
for requesting and transmitting data elements. Therefore, the FCA Controller will act as a 
provider/publisher of AMQP messages which will be sent to the Flow Control Agents (FCAs) 
deployed and ready for consuming these king of messages. It is important to highlight that 
just those FCAs interested and binded to the proper routing key will be able for consuming 
and therefore enforce the incoming actions. 
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7 Conclusions 

This deliverable presents the design and prototype implementation of the SliceNet Control Plane 
Services and Backhaul Adapters for Single Domain in the context of a Service Based Architecture 
framework. 

In addition, this delivery includes the realization of the Control Plane Service Register (CPSR) in order 
to enable the Service Based Architecture framework which is used to accommodate the required 
SliceNet Control Plane components. As the CPSR is a critical service for SliceNet, a related High 
Availability architecture is described coupled with a possible implementation leveraging on existing 
open sources. 

One instance of each CPS is created to be serving one Slice instance; this one-to-one relationship is 
regarded as a key enabler for Slice performance and security isolation as well as for the overall 
system scalability when it comes to the number of Slices instances. 

The components software prototypes have been also documented in this deliverable, in terms of 
reference open source frameworks and implementation choices. 

All the delivered components have been implemented from scratch mostly as a containerized 
application. 

Finally, the lifecycle management of the Control Plane Services instances, performed manually in the 
first stage with Kubernetes command line tools, is now fully automated through the CPS Life Cycle 
Manager delivered by “SliceNet Deliverable D6.3” [7]  

As part of the next steps, the Control Plane Services and Backhaul Adapters components will be 
further integrated within the SliceNet platform in the context of WP8 activities. The interactions with 
SliceNet Control Plane Service consumers as well as with RAN, MEC and Core Infrastructure is one of 
main targets for integration. Moreover, the requirements from SmartGrid, SmartCity and eHealth use 
cases will be further investigated with the use case teams to identify additional functions for the 
delivered components required to fulfil the SliceNet verticals’ needs.  
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