

Deliverable 3.1

Design and Prototyping of SliceNet Virtualised Mobile Edge
Computing Infrastructure

Editor: University of the West of Scotland

Deliverable nature: Report (R)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery date: 28/02/2018

Actual delivery date: 30/03/2018

Suggested readers: Infrastructure providers; Communication service providers,
Digital service providers; Network operators; Vertical industries

Version: 1.0

Total number of pages: 77

Keywords: 5G, MEC; Infrastructure; Data Plane programmability; ME
platform; ME services; ME Apps; Network slicing; Virtualisation

Abstract

This document reports all the activities related to the design and prototyping of a virtualised
Mobile/Multi-access Edge Computing (MEC) infrastructure segment as part of the SliceNet
end-to-end slicing-friendly infrastructure. The design and prototyping ensures that the
SliceNet MEC infrastructure is fully compliant with the ETSI MEC architecture and offers
enablers for network slicing. SliceNet MEC architecture comprises a low-latency MEC
platform, and a programmable Data Plane, multi-tenanted infrastructure, with Management
Plane functionality support taken into account. Furthermore, representative MEC
applications are described to show the practical use cases of the SliceNet MEC architecture.

Ref. Ares(2018)1754239 - 30/03/2018

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 2 of (77) © SliceNet consortium 2018

Disclaimer

This document contains material, which is the copyright of certain SliceNet consortium
parties, and may not be reproduced or copied without permission.

All SliceNet consortium parties have agreed to full publication of this document.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the SliceNet consortium as a whole, nor a certain part of the SliceNet consortium,
warrant that the information contained in this document is capable of use, nor that use of
the information is free from risk, accepting no liability for loss or damage suffered by any
person using this information.

The EC flag in this document is owned by the European Commission and the 5G PPP logo is
owned by the 5G PPP initiative. The use of the flag and the 5G PPP logo reflects that SliceNet
receives funding from the European Commission, integrated in its 5G PPP initiative. Apart
from this, the European Commission or the 5G PPP initiative have no responsibility for the
content.

The research leading to these results has received funding from the European Union Horizon
2020 Programme under grant agreement number H2020-ICT-2016-2/761913.

Impressum

[Full project title] End-to-End Cognitive Network Slicing and Slice Management Framework
inVirtualised Multi-Domain, Multi-Tenant 5G Networks

[Short project title] SliceNet

[Number and title of work-package] 5G Integrated Multi-Domain Slicing-Friendly
Infrastructure

[Number and title of task] T3.1. Virtualised Mobile Edge Computing Infrastructure

[Document title] Design and Prototyping of SliceNet Virtualised Mobile Edge Computing
Infrastructure

[Editor: Name, company] University of the West of Scotland

[Work-package leader: Name, company] Navid Nikaein, Eurecom

[Estimation of PM spent on the Deliverable]

Copyright notice

@ 2018 Participants in SliceNet project

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 3 of (77)

Executive Summary

Mobile/Multi-access Edge Computing (MEC) has increasingly become an integral part of a 5G
mobile network due to the considerable benefits that can be gained from this architectural
enhancement, taking advantage of edge cloud computing and software networking
capabilities, among other technologies. The SliceNet MEC architecture described in this
document aims to provide an execution system for accelerated slice deployment, and offers
advantageous support for service quality assurance, which is especially beneficial for
services and use cases that demand ultra-low latency and/or high throughput for instance.

Specifically, the following achievements are reported in this deliverable:

 An advanced MEC system that is fully compliant with the ETSI MEC architecture is
defined, as part of the end-to-end SliceNet infrastructure;

 A fully functional MEC platform, named Low-Latency MEC (LL-MEC) platform, is
presented with implementation details reported, including essential MEC services
and Mobile Edge Application Framework and Software Development Kit (SDK) to
allow further programmability;

 A programmable, multi-tenanted Data Plane is designed and prototyped with
experimental empirical results illustrated, as a slicing-friendly infrastructure for MEC
and other non-Radio Access Network (RAN) segments, enabling Quality of Service
(QoS) aware slicing;

 The management and orchestration for the MEC system is discussed with specific
open source managers and orchestrators considered and candidate solutions
explored;

 Finally, a number of preliminary use cases that can explore the proposed MEC system
for improved performance are presented, as representative yet not comprehensive
examples to be further evolved and aligned with SliceNet primary use cases.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 4 of (77) © SliceNet consortium 2018

List of Authors

Company Author Contribution

UWS Jose Maria Alcaraz Calero; Qi
Wang; Zeeshan Pervez; Hector
Marco; Rubén Ricart Sánchez;
Pedro Malagon; Antonio
Matencio

Data Plane Programmability and
Virtualized Infrastructure; ETSI
Mobile Edge Computing Standard
and Compliance; Abstract; Executive
Summary; Introduction; Conclusion

ECOM Navid Nikaein; Tien Thinh Nguyen;
Xenofon Vasilokos

MEC Platform; Management and
Orchestration; ME Services and Use
Cases

DellEMC Thuy Truong; Zdravko Bozako Management and Orchestration

TEI Ciriaco Angelo Review of the Deliverable

OTE Agapiou Georgios Review of the Deliverable

ORO Marius Iordache; Elena Oproiu ME Services and Use Cases; review of
the Deliverable

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 5 of (77)

Table of Contents

Executive Summary 3

List of Authors 4

Table of Contents 5

List of Figures 7

List of Tables 9

Abbreviations 10

Definitions 14

1 Introduction 15

1.1 Objectives 15

1.2 Approach and Methodology 15

1.3 Document Structure 16

2 ETSI Mobile Edge Computing Standard and Compliance 17

2.1 The Overall Architecture 17

2.2 Key Components and Interfaces Considered in SliceNet 18

2.3 Design Challenges for Slicing-Friendly Infrastructure 19

3 Low Latency MEC (LL-MEC) Platform for Software-Defined Mobile Network 21

3.1 High-level Overview 21

3.1.1 Workflow of Bearer Establishment with LL-MEC 23

3.2 Design and Implementation 24

3.2.1 Mobile Network Abstraction 25

3.2.2 Traffic Rules Control 26

3.2.3 Radio Network Information Service 27

3.2.4 Mobile Edge Application Framework and SDK 27

3.2.5 Helper Services 30

3.2.6 LL-MEC Implementation 31

4 Data Plane Programmability and Virtualized Infrastructure 32

4.1 Data Plane Programmability Enablers 32

4.1.1 Fundamental Architecture and Enablers 32

4.1.2 Programmability of the Hardware Data Path 37

4.1.3 Programmability of the Software Data Plane 39

4.2 Data Path Architecture in SliceNet 42

4.3 Infrastructure Multi-Tenancy Support 44

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 6 of (77) © SliceNet consortium 2018

4.3.1 Overview of Multi-Tenancy Based on Integrating VIM and SDN 44

4.3.2 Multi-Tenancy Support Based on OpenDayLight Virtual Tenant Network 45

4.4 Mobile Edge-Core Network Data Plane 46

4.5 SliceNet Programmable Data Plane Prototyping 48

4.5.1 SliceNet Programmable Data Plane Prototyping Tools and Platform 48

4.5.2 SliceNet Programmable Data Plane Prototype 48

4.5.3 Empirical Results 51

5 Management Plane Considerations for Mobile Edge Segment 53

5.1 Virtual Infrastructure Management (VIM) 53

5.2 Mobile Edge App Lifecycle Management (VNFM) 55

5.3 Mobile Edge App Rules & Requirements Management (VNFM) 56

5.4 Mobile Edge Platform Element Management (VNFM) 56

5.5 Mobile Edge Orchestrator (NFVO) 58

5.5.1 Open Baton 59

5.5.2 JOX- a Juju-based Slice Orchestrator 60

5.5.3 OSM - ETSI’s Open Source Mano 62

6 Practical Case Studies – Mobile Edge Apps 65

6.1 End-to-End Mobile Network Slicing 65

6.2 RAN-Aware Video Optimization 67

6.3 IoT Gateway 68

7 Conclusions 73

References 74

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 7 of (77)

List of Figures

Figure 1. ETSI MEC reference architecture [2] ... 17

Figure 2. ETSI MEC compliance, scoping and tasks mapping ... 18

Figure 3. Data path (and 5G/4G network functions) across different network segments 20

Figure 4. High-level schematic diagram of LL-MEC .. 22

Figure 5. Workflow of bearer establishment with LL-MEC .. 24

Figure 6. Software architecture of LL-MEC .. 25

Figure 7. Reference architecture and workflow for a forwarding device to process packets [9]
 .. 33

Figure 8. OVS components [22].. 36

Figure 9. Tables relationship in OVSDB for OVS configuration [22] ... 36

Figure 10. NetFPGA SUME platform [23] ... 38

Figure 11. Netcope platform (left: NFB-200G2QL; middle: NFB-100G2Q; right: NFB-100G2C)
[24] ... 39

Figure 12. Linux kernel with DPDK vs. without DPDK [27] ... 40

Figure 13. XDP packet processing [28] ... 41

Figure 14. PF_Ring operation [30] .. 42

Figure 15. Programmable Data Plane (hardware approach) ... 43

Figure 16. Programmable Data Plane (hybrid approach) .. 44

Figure 17. Integrated SDN controller and OVS model for multi-tenancy [36] 45

Figure 18. ODL (Lithium) VTN integration with OpenStack and OVSDB for multi-tenancy [38]
 .. 46

Figure 19. MEC-CN Data Plane segregation based on availability zones 47

Figure 20. Availability zones and host aggregates in OpenStack [39] 47

Figure 21. SDNet framework design flow [43] ... 48

Figure 22. SliceNet Data Plane traffic classification and control prototype 49

Figure 23. SliceNet Data Plane traffic classification and control prototype 52

Figure 24. OpenStack logical architecture [34], [44] .. 54

Figure 25. OpenStack Magnum architecture [45] .. 55

Figure 26. Juju architecture [47] .. 57

Figure 27. Open Baton architecture [50] ... 59

Figure 28. Proposed MANO implementation for MEC in SliceNet .. 60

Figure 29. JOX architecture [51] ... 61

Figure 30. Proposed MANO implementation for MEC in SliceNet with JOX NFVO 62

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 8 of (77) © SliceNet consortium 2018

Figure 31. OSM Release THREE architecture [53] .. 62

Figure 32. OSM mapping to ETSI NFV MANO [53] ... 63

Figure 33. SliceNet MEC demonstration platform ... 65

Figure 34. LL-MEC programmability in creating slices ... 66

Figure 35. Mobile network slicing use case ... 67

Figure 36. Overall IoT network architecture .. 69

Figure 37. Workflow to establish a dedicated user-plane function ... 69

Figure 38. Latency measurements of isolated IoT slices .. 70

Figure 39. IoT gateway logical architecture ... 71

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 9 of (77)

List of Tables

Table 1. Identifiers for user/bearer establishment/modifications .. 27

Table 2. LL-MEC API endpoints in Data Plane .. 28

Table 3. LL-MEC API endpoints in Data Plane .. 29

Table 4. OVSDB tables [22] ... 36

Table 5. SliceNet traffic flow control and management operations .. 49

Table 6. SliceNet traffic flow actions supported by NetFPGA-based prototype 50

Table 7. SliceNet traffic classification (headers supported) by the P4 implementation 51

Table 8. Measured maximum sustainable TCP bitrate with discrete congestion level based on
CQI .. 68

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 10 of (77) © SliceNet consortium 2018

Abbreviations

3G Third Generation (mobile/cellular networks)

3GPP 3G Partnership Project

4G Fourth Generation (mobile/cellular networks)

5G Fifth Generation (mobile/cellular networks)

5G PPP 5G Infrastructure Public Private Partnership

AE Autoscaling Engine

AMF Access and Mobility Function

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ARP Allocation Retention Parameters

ASIC Application-Specific Integrated Circuit

BPF Berkeley Packet Filters

CN Core Network

CoAP Constrained Application Protocol

COTS Commercial Off-The-Shelf

CP Control Plane

CPU Central Processing Unit

CQI Channel Quality Indicator

CU Central Unit

DDoS Distributed Denial of Service

DL Downlink

DMA Direct Memory Access

DNS Domain Name System

DP Data Plane

DPDK Data Plane Development Kit

DU Distribution Unit

EAL Environment Abstraction Layer

eNB or
eNodeB

evolved NodeB

EPC Evolved Packet Core

EPS Evolved Packet System

ETH Ethernet

ETSI European Telecommunications Standards Institute

FCAPS Fault, Configuration, Accounting, Performance, Security

FCS Frame Check Sequence

FDD Frequency Division Duplex

FIFO First In First Out

FMS Fault Management System

FPGA Field Programmable Gate Arrays

GBR Guaranteed Bit Rate

GRE Generic Routing Encapsulation

GPRS General Packet Radio Service

GTP GPRS Tunnelling Protocol

GW Gateway

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 11 of (77)

GWCN Gateway CN (GWCN)

HDD Hard Disk Drive

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ID Identifier

IoT Internet of Things

IP Internet Protocol

IPFIX IP Flow Information Export

iSCSI Internet Small Computer Systems Interface

JCC JOX Clouds Controller

JOX Juju-based Orchestrator

JSC JOX Slices Controller

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

LAN Local Area Network

LCM Lifecycle Management

LCX Linux Container

LL-MEC Low Latency MEC

LPM Longest Prefix Match

LTE Long Term Evolution

M2M Machine to Machine

MANO Management and Orchestration

ME Mobile Edge

MEC Mobile/Multi-access Edge Computing

MEO Mobile Edge Orchestrator

MIB Management Information Base

MME Mobility Management Entity

ML2 Modular Layer 2

MPLS Multiprotocol Label Switching

MQTT Message Queuing Telemetry Transport

NAPI New API

NAS Non-Access Stratum

NB-IoT Narrow Band IoT

NETCONF Network Configuration Protocol

NFS Network File System

NFV Network Function Virtualisation

NFVI NFV Infrastructure

NGBR Non-GBR

NIC Network Interface Card

NS Network Service

NSE Network Slicing Engine

NSI Network Slice Instance

NSSI Network Slice Subnet Instance

ODL OpenDayLight

ONF Open Networking Foundation

OF OpenFlow

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 12 of (77) © SliceNet consortium 2018

OPEX Operational Expenditure

OSS Operations Support System

OVS Open vSwitch

OVSDB OVS Database

PCF Policy Control Function

PCI Peripheral Component Interconnect

PCIe PCI Express

PCRF Policy and Charging Rules Function

PGW Packet Data Network Gateway

PLMN Public Land Mobile Network

PMD Poll Mode Driver

PoP Point of Presence

PSA Portable Switch Architecture

QoE Quality of Experience

QoS Quality of Service

RAB Radio Access Bearer

RAN Radio Access Network

REST Representational State Transfer

RFC Request for Comments

RIB RAN Information Base

RNIS Radio Network Information Service

RRC Radio Resource Control

RRU Remote Radio Unit

RTP Real-time Transport Protocol

SCSI Small Computer System Interface

SDK Software Development Kit

SDN Software-Defined Networking

SISO Single-Input Single-Output

SGW Serving Gateway

SLA Service Level Agreement

SliceNet End-to-End Cognitive Network Slicing and Slice Management Framework in
Virtualised Multi-Domain, Multi-Tenant 5G Networks

SMF Session Management Function

SON Self-Organizing Networks

TCAM Ternary Content Addressable Memories

TCP Transmission Control Protocol

TEID Tunnel Endpoint Identifier

TOS Type of Service

TTI Transmission Time Interval

UDP User Datagram Protocol

UE User Equipment

UL Uplink

UP User Plane

UPF User Plane Function

USIM Universal Subscriber Identity Module

VIM Virtual Infrastructure Manager

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 13 of (77)

VLAN Virtual LAN

VNF Virtual Network Function

VNFM VNF Manager

VNFO VNF Orchestrator

VM Virtual Machine

VXLAN Virtual Extensible LAN

ZC Zero Copy

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 14 of (77) © SliceNet consortium 2018

Definitions

 Mobile/Multi-access Edge Computing (MEC) segment: This primarily refers to the
MEC infrastructure and MEC platform, together with essential MEC-level
management and orchestration. It is noted that Mobile Edge Computing is equivalent
to the ETSI (European Telecommunications Standards Institute) Multi-access Edge
Computing when focused on the mobile access.

 Slicing-friendly infrastructure: SliceNet infrastructure that explores Data Plane
programmability, software networking, cloud computing and other related
technologies to allow QoS awareness and control at the infrastructure level to
facilitate network slicing that aims to meet specific Service Level Agreement (SLA).

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 15 of (77)

1 Introduction

Mobile/Multi-access Edge Computing (MEC) pushes cloud computing capabilities and
resources to the edge of a network to allow end user and vertical applications to exploit this
new IT/Telco service environment to achieve improved Quality of Service (QoS) and/or
Quality of Experience (QoE). Therefore, MEC has emerged as a value-added paradigm to be
increasingly integral and important in an end-to-end networking architecture. SliceNet fully
adopts this vision and considers a MEC segment as an integral part of the SliceNet
architecture [1].

1.1 Objectives

Virtualised MEC infrastructure in particular features the end-to-end SliceNet infrastructure,
and more generally to future 5G systems, which regards the establishment of slice-friendly
cross-domain physical and virtual infrastructure layers, to provide an execution foundation
for the upper layers in the SliceNet architecture. Within this the context, SliceNet will
leverage and extend the MEC segment to support the emerging 5G slicing paradigm, and the
resulted vertical use cases. The following specific objectives are identified, based on the
description of the work:

 Establish a MEC segment that is fully compliant with the ETSI MEC architecture under
standardisation. This assures the standard compliance of the proposed SliceNet MEC
segment and therefore all the interoperability with other ETSI MEC-compliant
systems;

 Explore enablers for slicing friendliness and multi-tenancy for the MEC infrastructure.
Slicing-friendly infrastructure will facilitate the network slicing operations in the
system especially in terms of providing enablers for QoS-aware or even QoS-assured
network slicing. Moreover, multi-tenant isolation in the infrastructure layer will allow
the infrastructure provider to offer the same infrastructure to multiple operators,
among other potential users (tenants);

 Create an execution system to accelerate slice deployment and support QoS. A Low
Latency MEC (LL-MEC) platform will largely realise the ETSI MEC platform
functionality required to run MEC applications on the SliceNet virtualisation
infrastructure and provide MEC services. The MEC platform and the slicing-friendly
and multi-tenanted infrastructure combined together will deliver the core of the
SliceNet MEC execution system;

 Investigate the essential management and orchestration support for the MEC
infrastructure and MEC platform.

1.2 Approach and Methodology

The main technical approach taken in this task is to align the design and prototype of
SliceNet MEC segment with the ETSI MEC architecture. SliceNet MEC segment mainly
includes slicing friendly and multi-tenant aware infrastructure and LL-MEC platform,
together with essential management and orchestration at the MEC level.

 The slicing friendliness of the infrastructure is mainly achieved through programming
the Data Plane to enable traffic flow classification and rule-based control, leading to

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 16 of (77) © SliceNet consortium 2018

QoS support required by the slice to fulfil the SLA of a service. This will enable QoS-
aware slice deployment.

 The multi-tenancy in the infrastructure layer is mainly achieved through the
combination of virtual infrastructure management and software networking. The
MEC-Core network Data Plane segmentation is achieved via availability zones
provisioned by virtual infrastructure management.

 The Control Plane and Data Plane programmability is supported through OpenFlow
and FlexRAN control protocols effectively realising the ETSI MEC Traffic Rule Control
and Radio Network Information services, among other MEC services.

 Additional service quality assurance is enabled by the support of Mobile Edge
services provided by the SliceNet MEC segment. These MEC services are especially
beneficial for applications and use cases that demand ultra-low latency and/or high
throughput for instance.

1.3 Document Structure

The remainder of the document is organised as follows. Section 2 reviews the ETSI MEC
reference architecture and defines the scope and focus of this deliverable in terms of
establishing the ETSI MEC-compliant SliceNet MEC segment. Section 3 presents details in the
technical approach of designing and prototyping the SliceNet virtualised slicing-friendly and
multi-tenanted MEC infrastructure especially the programmable Data Plane. Section 4
elaborates the SliceNet LL-MEC platform achieving all the main functionalities defined in ETSI
MEC platform for MEC applications and services. Section 5 investigates the necessary
management and orchestration for the MEC infrastructure and platform, in particular,
focusing on reference implementation for each functional block in Management and
Orchestration (MANO). Section 6 describes a number of MEC applications and use cases to
highlight the potential usage of the SliceNet MEC segment and benefits that it can bring to
different application scenarios.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 17 of (77)

2 ETSI Mobile Edge Computing Standard and Compliance

This section reviews the ETSI MEC reference architecture, and identifies the scope of MEC
components and contribution in SliceNet for achieving an ETSI MEC compliant MEC segment.
Moreover, the design challenges to achieve slicing-friendly infrastructure are highlighted.

2.1 The Overall Architecture

Figure 1. ETSI MEC reference architecture [2]

Figure 1 illustrates the ETSI MEC reference architecture [2]. The following summary
highlights the key MEC functional components, which are grouped into two subsystems,
together with corresponding reference points (Mp reference points for the Mobile Edge
Platform, and Mm ones for the MEC management plane, respectively):

 Mobile Edge host subsystem: It contains Virtualization infrastructure (including the
Data Plane), a Mobile Edge Platform (including ME Service, Service Registry, Traffic
Rules Control and Domain Name System (DNS) handling) and ME applications
(services). An ME service can be provided by the Mobile Edge platform or by an ME
application (through service registration via Mp1 reference point).

 Mobile Edge management subsystem: The host-level management consists of a
Mobile Edge platform manager (including ME platform element management, ME
application rules & requirements management and ME app lifecycle management)
and a Virtualisation infrastructure manager, which manages the Mobile Edge
platform via Mm5 and the Virtualisation infrastructure via Mm7, respectively. The
system-level management contains a Mobile Edge Orchestrator (MEO), which
maintains an overview of the MEC system such as deployed ME hosts, available
resources and ME services, topology etc., and an ME app catalogue. MEO interacts

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 18 of (77) © SliceNet consortium 2018

with Mobile Edge Platform via Mm3 for the management of the ME application
lifecycle, application rules and requirements, tracking available ME services, and
Virtualisation infrastructure manager via Mm4 for managing virtualised resources of
the Mobile Edge host, including tracking available resource capacity and managing
ME application images.

In addition, an optional User app LCM proxy is proposed to allow the User Equipment (UE) to
request on-boarding, instantiation, termination and possible relocation (if supported) of the
UE’s ME application and to be informed of the state of the ME application.
An ME application package is on-boarded by the MEO, and the application can be associated
with a set of application rules (especially traffic rules), and resources, services and/or QoS
requirements (e.g., delay constraint) etc., and these requirements are validated by the MEO
(and if necessary, adjusted to be compliant with the operator’s policies). The MEO also
selects the appropriate Mobile Edge host to trigger the instantiation of the ME application
based on these requirements.

The Virtualisation Infrastructure provides the virtualisation resources to run the ME
application as a Virtual Machine (VM). The Mobile Edge Platform provides an environment
that enables the ME application to discover, advertise, provide and consume ME services
and to run on the particular virtualisation infrastructure.

The Mobile Edge Platform receives traffic rules from the Mobile Edge Platform Manager via
Mm5 (or applications/services), and poses these rules to the Data Plane via Mp2. The Data
Plane then executes the rules and consequently routes the traffic as desired for the MEC use
case, e.g., among applications, services, network entities and various networks.

2.2 Key Components and Interfaces Considered in SliceNet

Figure 2 depicts the mapping of the ETSI functional elements to the tasks in this project
based on the scoping of the tasks, which also illustrates the compliance of the SliceNet MEC
with the ETSI MEC reference architecture.

Figure 2. ETSI MEC compliance, scoping and tasks mapping

In light of the scope of this project, to achieve an ETSI MEC compliant MEC segment, most of
the functional elements in the standard reference architecture are explored.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 19 of (77)

Firstly, a Mobile Edge Platform is designed and prototyped, and a number of ME services are
also implemented to support use cases. Consequently, an ETSI MEC compliant Mobile Edge
host subsystem is achieved. It is noted that the DNS Handling element in the Mobile Edge
platform is optional and thus it is not covered. This MEC platform part is in yellow (MEC
platform) and purple (MEC applications/services) in Figure 2 and presented in Sections 3 and
6, respectively.

Secondly, regarding the virtualisation infrastructure, the aim is to achieve a programmable,
multi-tenanted Data Plane for a slice-friendly MEC infrastructure. This infrastructure and
Data Plane part is highlighted in light blue in Figure 2 and is addressed in Section 4.

Thirdly, for the Mobile Edge management subsystem in red and brown in Figure 2, it is
planned that this belongs to the Management Plane tasks to be further investigated in the
corresponding following Work Package WP6 and task T7.2. In this deliverable, however,
initial considerations regarding the Management Plane for the MEC segment are discussed
in Section 5 to inform the design and implementation of the subsequent management tasks
in other work packages.

2.3 Design Challenges for Slicing-Friendly Infrastructure

There are a number of challenges across different planes to achieve slicing-friendly
infrastructure as envisioned in SliceNet:

● Data Plane: To have different logical data paths (lanes/queues) into the networking
infrastructures in order to allow traffic to flow through such lanes/queues without
horizontal collisions/interference between lanes/queues. The Data Plane paths
should be programmed to designated QoS-aware ones and best effort ones to allow
the realisation of paths with controllable QoS and those with best effort delivery
service, respectively. They are isolated from each other so that the traffic in each
category would not affect that of the other category for effective management and
fair provisioning even for the best effort slices.

● Control Plane: To have a well-known semantics on the different priorities associated
with each of the data path lanes/queues of the network infrastructure in order to
allow the foundations of the specification of the definition of “network slicing”.

○ Hardware Isolation: To have a logical architecture generic enough to
represent the main technologies to allow hardware resource sharing, e.g.,
Virtualization and Encapsulation.

● Application Plane: to enable Coordinated Control and User Plane programmability
across Radio Access Network (RAN) and Core Network (CN) with real-time access to
radio network information the flexibility to develop control apps on the top of the
platform SDK and the support of low latency control apps and their priorities and
deadlines.

● Management Plane: To have well-known semantics on the different rules used to
identify how to select the lane/queue that is to be assigned to each of the network
flows passing by the infrastructure and to select how much traffic is allowed over a
given time period in order to allow the essential functionality of “network
management”.

○ Multi-tenancy: To have an infrastructure to allow the isolated use of shared
resources.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 20 of (77) © SliceNet consortium 2018

○ Mobility: To have an infrastructure to allow user mobility along network
resources.

● Network Segments: To have a logical architecture inclusive enough to represent the
main network segments involved in multiple administrative domains involved in the
end-to-end communications. As shown in Figure 3, it includes the following
connectivity: (Domain 1) Vertical business enterprise network -> RAN -> MEC
segment -> CN -> Inter-Domain Network -> (Domain 2) CN -> MEC -> RAN -> Vertical
business enterprise network. Moreover, it is envisioned that the 5G/4G
components/network functions will be distributed in the appropriate segments:

○ RAN: (5G) Remote Radio Unit (RRU), or Distributed Unit (DU);
(4G) Remote Radio Head (RRH)

○ Edge: (5G) Central Unit (CU);
(4G) BaseBand Unit (BBU)

○ CN: (5G) Access and Mobility Management Function (AMF), Session
Management Function (SMF), User Plane Function (UPF), Authentication
Server Function (AUSF), Unified Data Management (UDM), Policy Control
Function (PCF) etc.;
(4G) MME (Mobility Management Entity), Serving Gateway (SGW), Packet
Data Network Gateway (PGW), Home Subscriber Server (HSS), Policy and
Charging Rules Function (PCRF).

Figure 3. Data path (and 5G/4G network functions) across different network segments

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 21 of (77)

3 Low Latency MEC (LL-MEC) Platform for Software-Defined
Mobile Network

This section focuses on the design and prototyping of the SliceNet MEC platform, LL-MEC.

Considering one of the key requirements for MEC, programmability, Software-Defined
Networking (SDN) is a promising solution and already exploited extensively in non-mobile
networks. It provides a network architecture where the Control Plane has been migrated
from physical network devices with a well-defined protocol, e.g., OpenFlow [3]. OpenFlow is
an SDN standard by ONF (Open Networking Foundation), and defines the southbound
interfacing of a compliant SDN controller with the forwarding plane (Data Plane); it is further
discussed in Section 4. The underlying infrastructure can therefore be abstracted creating
opportunities for innovation and customization of network applications. The noticeable
success in non-mobile networks made by SDN gives the initiatives to apply it onto the CN of
Long Term Evolution (LTE) [4]. With the separation of Control Plane and Data Plane, SDN
virtualizes the mobile network components, such as MME, Control Plane of SGW (or S-GW)
and PGW (or P-GW) as potential MEC applications. The programmability of the core network
provided by SDN is exactly where MEC can leverage and extend its programmability in RAN
and further delegate control decisions. Not surprisingly, there have been considerable
research interests on SDN and MEC with most of them focusing on conceptual frameworks
but no open source platform for researchers as a reference to evaluate the benefits of SDN-
enabled MEC services. This gives the initiatives of LL-MEC to exploit the interplay between
MEC and SDN in exploring and demonstrating coordinated network programmability
through an ecosystem of network applications and SDK. Given the open specifications of
MEC for vendor implementation, the SDN concept is applied in LL-MEC with OpenFlow [3]
and FlexRAN [5] protocols.

3.1 High-level Overview

LL-MEC is a MEC platform thoroughly realizing SDN concept with much design ingenuity as
well as many software components. In what follows, we provide an overview of LL-MEC
architecture and the design challenges in realizing a low latency MEC platform that not only
provides an ETSI-aligned MEC platform but also acts as a CN controller providing a clean
separation between Control Plane (CP) and User Plane (UP) or Data Plane (DP) in CN [6].
Figure 4 shows that the MEC application manager lays the foundation for the upper-most
layer and provides the programming interfaces (Mp1) for applications to be developed.
Standing in the middle layer, the MEC platform includes two main core components, namely
Radio Network Information Service (RNIS) and Edge Packet Service (EPS), which manage RAN
and CN network services based on the C-plane and D-plane Application Programming
Interfaces (APIs) from the abstraction layer respectively. At the bottom-most layer, the
eNodeBs and OpenFlow-enabled switches comprises the Data Plane with the information
abstracted by the FlexRAN and OpenFlow protocols and exposed through abstraction API
(Mp2). The proposed MEC platform operates on a software-defined mobile network
consisting of multiple LTE eNodeBs and OpenFlow-enabled switches, whether it is physical or
software. Figure 4 depicts the application of LL-MEC to 4G. As seen in the figure, the control
and Data Plane are separated, which without loss of generality also applies to 5G. In order to
simplify the annotation in the figure, the Control Plane and Data Plane of SGW and PGW are
respectively annotated as X-GW-C and X-GW-U, which represent the UPF and to some

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 22 of (77) © SliceNet consortium 2018

extend SMF in 5G-CN architecture. As specified by ETSI, the Mp1 and Mp2 reference points
are the interfaces between layers. In the following, we focus on the main design and
implementation of LL-MEC, as a reference implementation of a subset of ETSI MEC
specification, and highlight the key components to address the latency challenges.

One of the key features of LL-MEC is to provide a unified applications development and
programming environment by means of SDK to allow coordinated control decisions to be
applied across different network domains, namely RAN and CN. In order to complete LL-
MEC, the abstraction protocols, i.e. FlexRAN towards RAN and OpenFlow towards CN, are
exploited to facilitate the communication among network elements. These abstraction
protocols and their corresponding APIs are developed within the MEC platform for allowing
two-way interaction between them. In this way, LL-MEC is able to fulfil the requests coming
from limitless edge applications and execute the precise tasks onto the underlying networks,
which is exactly the merit of SDN. Moreover, the LL-MEC platform has been designed to
support time-critical RAN operations and allow applications to be deployed with different
level of priorities when interacting with the platform. The required low latency aspect has
been considered throughout the design stages to fully utilise the power of LL-MEC at the
network edge.

Figure 4. High-level schematic diagram of LL-MEC

Considering latency being the primary feature for a MEC platform to enable an ecosystem of
rich edge applications with varieties of needs, LL-MEC distinguishes three types of latencies
in its design as follows:

● User latency: this represents the end-to-end user transport latency;
● Control latency: this captures the latency for the MEC to perform an action, on

behalf of an edge application, to the underlying networks, e.g. control and/or
monitoring;

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 23 of (77)

● Application latency: this represents the latency for an edge application to perform
an action to the MEC.

To this end, the key LL-MEC design challenges to realize the low latency MEC platform are
listed below:

● The separation of control and Data Plane throughout RAN and CN to have a
programmable and coordinated network;

● Coordinated control and user plane programmability across RAN and CN with real-
time access to radio network information;

● The scalability with the large number of users and services (i.e. application flows)
with QoS support;

● The flexibility for applications and services to be registered as low latency to support
the control decisions, their priorities and deadlines.

3.1.1 Workflow of Bearer Establishment with LL-MEC

Figure 5 shows the workflow of how an SDN-based mobile core network operates and
interacts with LL-MEC to handle UE initial attach procedures for bearer’s establishment. The
main point of the sequence diagram starts from the message calls initiated all the way from
X-GW-C through LL-MEC to X-GW-U. It is noted that the entity to initiate the API call is not
limited to be SGW-C, and MME can start the procedure for default and dedicated bearer’s
establishment since they have the equal understanding about the bearer setup information.

 Default Bearer: As soon as the UE becomes attached to the network with MME and
X-GW-C knowing the GTP information, X-GW-C will initiate the procedure to transmit
the UE information with the “UE Setup Rule” message to LL-MEC. And then based on
the rules, LL-MEC is able to add the UE to its internal information base and setup the
OpenFlow rules with the “OF Rules Setup” message in the corresponding switches. By
introducing the concept of SDN into mobile network through the integration of
OpenFlow-enabled switches, the default bearer can be setup by configuring the
OpenFlow rules when UE completes the attach procedure. In addition, notice in
Figure that at this point, default bear is established along the path, UE, eNodeB, and
X-GW-U switch, and that the UE can access the Internet as normal. This procedure is
the same for each “Modify Bearer Request” and “Modify Bearer Response” message
for each is the same for S5/S8 bearer

 Dedicated Bearer: When a UE attaches successfully to a mobile network, only the
default bearer is created. Additional bearers that may be created after the default
one are dedicated bearers, which also have different identities, e.g., bearer identifier
(ID) and S1 SGW/eNB Uplink (UL)/Downlink (DL) Tunnel Endpoint Identifier (TEID),
with default bearer. Another UE Setup Rules API call is required to setup the
dedicated bearer right after the “Create Bearer Response” call for the default bearer,
as shown in Figure. Like the case of default bearer, the dedicated bearer is
established when X-GW-C receives the “UE Setup Rules Response” and exists only
along the path between UE and X-GW-U switch.

 QoS Setup for Guaranteed Bit Rate: The established dedicated bearer can be either
Guaranteed Bit Rate (GBR) or Non Guaranteed Bit Rate (non GBR). For example, if the
dedicated bearer is established for voice service, it has to be GBR for guaranteed
QoS. In order to have the required QoS for UE, X-GW-C initiates a new API call (QoS
Setup Rules) through LL-MEC right after the dedicated bearer is setup. This call is

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 24 of (77) © SliceNet consortium 2018

used not only to reserve the required bandwidth but also to manage the access
control based on allocation retention parameters (ARP). This is also shown in the
bottom of Figure 5 clearly. When X-GW-U receives the configuration from LL-MEC, it
will setup the rules for UE by creating a new meter table or adding into a pre-defined
meter group. At this point, UE can access the Internet with guaranteed QoS.

Figure 5. Workflow of bearer establishment with LL-MEC

3.2 Design and Implementation

The layered architecture of the LL-MEC and its main software components are shown in
Figure 6. It can be seen that MEC application comprising the upper-most layer manages the
Data Plane based on the information gathered through Mp1. The real-time RAN information
is provided through a RNIS producer app to the MEC platform. The LL-MEC SDK abstracts the
network information through a well-defined northbound interfaces and facilitates access to
detailed network information based on which a decision can be made and enforced to the
underlying network. The LL-MEC platform includes EPS, which implements ETSI Traffic Rule
Control Service, to provide network services based on OpenFlow (OF) APIs located at the
abstraction layer. In addition, the LL-MEC platform provides additional services to manage

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 25 of (77)

events, UEs, context, stats, and switches. The eNodeBs and OpenFlow-enabled switches
form the Data Plane as the bottom-most layer. The OpenFlow library is based on Libfluid.

Figure 6. Software architecture of LL-MEC

3.2.1 Mobile Network Abstraction

The abstraction layer models and exposes the required operations for the underlying
network through a unified interface. In LL-MEC, the Data-Plane APIs naturally comprise the
abstraction layer for the edge of the network between RAN and CN by providing only the
necessary information for the development of MEC applications and platform. The control
protocols implemented in LL-MEC are divided into two domains, namely the RAN enabled by
the RNIS producer App and the CN through OpenFlow. The RNIS producer app leverages the
FlexRAN SDK to abstract view of the radio network status (e.g., topology, band, and signal
strength) by extracting the parameters of interest from the RAN with the required level of
granularity. Besides this, it also gives the possibilities to modify and control the state of the
underlying network and passes the control decisions on the fly at a very fine time granularity
(per subframe), e.g. reconfigure the resource block allocation policy for each connected UE
and apply the policy on the fly in order to adapt service priorities. On the other hand, the
OpenFlow protocol provides a fine-grain Data Plane programmability through the
abstraction of the underlying data paths and allows the switch to handle GPRS (General
Packet Radio Service) Tunnelling Protocol (GTP) packets in the core network and set the
inner packet Type of Service (TOS) field to support QoS in the transport network. Last, all of
the aforementioned features occur at the interaction between MEC platform and its
underlying network enabled by CP and DP API.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 26 of (77) © SliceNet consortium 2018

3.2.2 Traffic Rules Control

LL-MEC EPS implements the ETSI MEC Traffic Rules Control Service, and it is one of the main
components for managing Data Plane. EPS brings a native IP-service end-point to the MEC
applications and acts as a local IP agent performing network functions, like IP forwarding and
packet encapsulation/decapsulation. EPS also gives the abilities for MEC applications to
adapt the routing/forwarding for their specific purpose. Traffic coming from UEs through
OpenFlow-enabled switches goes along the routes based on the rules setup in the switches
by EPS and can be changed or shaped dynamically to optimize the routing. The way LL-MEC
abstracts the Data Plane is to utilise the OpenFlow library as the protocol and based on that
to construct the essential endpoints for LL-MEC infrastructure. As one of the core entities in
LL-MEC, EPS offers the interfaces towards its northbound and southbound, which are
described respectively as Mp1 and Mp2.

Mp1 is the control interfaces for MEC applications to instruct the basic and advanced
functionalities in the underlying network, such as default/dedicated bearers (re-
)establishment, QoS for GBR traffic, and a custom control commands from MEC applications.
Note that the S1/S5/S8 bearer establishments follow the same workflow as presented in
Figure 5. When the “Modify Bearer Request” is requested by either one of the “LTE attach
procedures” or “EPS Mobility Management Service Request”, X-GW-C will notify LL-MEC for
bearer establishment through “UE Setup Rules Request” API call, allowing LL-MEC to trigger
an OpenFlow rules to setup the switch accordingly. When this “UE Setup Rules Request” API
is called, the message must include the user identities, as indicated in Table 1 (e.g.
uplink/downlink tunnel ID and bearer ID). As soon as the X-GW-C receives the “UE Setup
Rules Response” call, the S1/S5/S8 bearer establishment is confirmed to be complete.
Similar procedure can be used to extend LL-MEC to support QoS for GBR traffics through
OpenFlow meter and group tables allowing performing various operations such as rate
limiting for a particular flow, user, or group. LL-MEC currently supports traffic redirection
allowing a MEC application to request that all traffic for a certain UE and certain service
(flow) to be redirected to a receiver inside the calling MEC application.

Mp2 is, from EPS point-of-view, used to instruct the Data Plane on how to route the traffic
through OpenFlow rules. The types of rules that EPS creates and maintains in OpenFlow
handler can be categorized into three groups:

(1) default rules, which are pushed to OpenFlow-enabled switches on connection
established for handling Address Resolution Protocol (ARP) and Domain Name
System (DNS) queries;

(2) UE specific rules, which are used to establish the default and dedicated bearers for
UE;

(3) MEC application rules, which are pushed to OpenFlow-enabled switch on events
registered by applications.

With the well-defined and full set of rules, the Data Plane can be fully separated from
Control Plane and the user/nearer latency can be thus improved through dynamic
programmability.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 27 of (77)

Table 1. Identifiers for user/bearer establishment/modifications

Identities UE eNB MME SGW PGW

UE IP YES YES YES

BEARER ID YES YES YES YES YES

S1 SGW/eNB
UL TEID

 YES YES YES

S1 SGW/eNB
DL TEID

 YES YES YES

S5 SGW/PGW
DL TEID

 YES YES YES

S5 SGW/PGW
UL TEID

 YES YES YES

SGW IP YES YES YES

PGW IP YES YES YES

3.2.3 Radio Network Information Service

Under one of the specifications by ETSI MEC [2], RNIS is a service providing up-to-date radio
network information, although the design and implementation details are under
specification. In LL-MEC, RNIS exposes the real-time RAN information, such as radio bearer
statistics, measurements related to UE, state changes of UE, and power measurements to
MEC applications by interacting with C-plane API. The granularity of information can be
adjusted based on parameters such as per cell, per UE, or per radio access bearer (RAB) and
can be requested only once, periodically, or triggered when an event occurs. In addition, the
control-plane API defines a set of functions that can be used by the Data Plane to notify the
Control Plane about events such as the initiation of a new Transmission Time Interval (TTI)
and the state change of a UE that has been powered off. In order to have a clean separation
of control and Data Plane for RAN, FlexRAN protocol and RAN Information Base (RIB) are
integrated into LL-MEC as a MEC producer app at the application level.

The FlexRAN protocol acts as an abstraction layer allowing the management of the higher-
level control operations in a technology agnostic way, similarly to how OpenFlow abstracts
the data path in the wired network. On the other hand, all the statistics and configurations
about the RAN, i.e. UEs and eNodeB, are all maintained in the RIB as shown in Figure 6 and
accessed by the applications. Furthermore, with the integration of RIB into MEC platform, LL-
MEC RNIS module can have direct and high priority access into RIB on per millisecond basis
to ease the control latency. For example, an edge application can query each user link
quality to provide a quasi real-time indication on the throughput in the next time window.

3.2.4 Mobile Edge Application Framework and SDK

One of the main benefits coming with the separation of control and Data Plane is that the
MEC applications have limitless possibilities to be developed for any specific purpose
without knowing the detailed knowledge of the underlying network. In LL-MEC, the
programming interfaces (Mp1) and the SDK built on top of it (depicted in Figure 6) enable
the application development and programming environment. The SDK offers a uniform
interface and abstracts the multiple choices of Mp1 including Representational State
Transfer (REST) API, message bus, and local API for having different requirements of

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 28 of (77) © SliceNet consortium 2018

applications developed, such as low latency and elastic. Examples include monitoring and
constantly acquiring the information through message bus, managing the traffic rules based
on application preferences through REST API within 100 ms, or optimising the content
according to the radio quality through local API within 1 ms. In addition, MEC applications,
through Mp1, can also access the basic functionalities provided by the MEC platform, such as
service registration, service discovery, event mechanism as described in [7]. Another pivotal
feature LL-MEC has is that the application can be deployed in different scheduling recipes
such as round robin, first-in-first-out, or deadline scheduler for having different priorities
when executing the task behind the scene. This significantly lowers the application latency
and meets the required control deadlines from an edge application.

LL-MEC currently supports the following API endpoints in the UP through the OF Control
Plane as shown in Table 2. LL-MEC currently supports the following API endpoints in the CP
through FlexRAN Control Plane as shown in

Table 3.

API documentation and examples can be found at:

 LL-MEC: http://mosaic-5g.io/apidocs/ll-mec

 FLEXRAN: http://mosaic-5g.io/apidocs/flexran

LL-MEC and FlexRAN SDKs integrate all of the above APIs into a set of high-level user-friendly
APIs that simplify the application development and enable an application to extend such
APIs to monitor, control, and manage the underlying network.

Table 2. LL-MEC API endpoints in Data Plane

Type Method End point Description

STATS GET /stats Get all the traffic flow
statistics in upstream and
downstream.

STATS GET /stats/id/:id Get a particular traffic flow
statistics in upstream and
downstream by ID

STATS GET /stats/imsi_bearer/:imsi_bearer Get a particular traffic flow
statistics in upstream and
downstream by IMSI and EPS
bearer ID

USER POST /bearer Add a default/dedicated
bearer context.

USER GET /bearer Get all bearer context.

USER GET /bearer/id/:id Get a specific bearer context
by id

USER GET /bearer/imsi_bearer/:imsi_bearer Get a bearer context by IMSI
and EPS bearer ID

USER POST /bearer/redirect/imsi_bearer/:imsi_bearer Redirect specific traffic flow
for one bearer by IMSI and
EPS bearer ID

USER POST /bearer/redirect/:id
/bearer/redirect/id/:id

Redirect specific traffic flow
for one bearer by its ID

http://mosaic-5g.io/apidocs/ll-mec
http://mosaic-5g.io/apidocs/flexran

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 29 of (77)

USER DELETE /bearer Remove all bearers context

USER DELETE /bearer/:id
/bearer/id/:id

Remove a specific bearer
context by its ID

USER DELETE /bearer/imsi_bearer/:imsi_bearer Remove a specific bearer
context by its IMSI and EPS
bearer ID

USER DELETE bearer/redirect/:id
bearer/redirect/id/:id

Remove the redirect flow for
one bearer by ID

USER DELETE bearer/redirect/imsi_bearer/:imsi_bearer Remove the redirect flow for
one bearer by it IMS and EPS
bearer ID

SLICE GET /slice Get all the slices and its ID
mappings

SLICE GET /slice/:id Get a specific slice and its ID
mapping by slice ID

Table 3. LL-MEC API endpoints in Data Plane

Type Method End point Description

STATS GET /stats_manager/:stats_type Get all the radio statistics in upstream and
downstream by stats type in a human
readable format.
Stats type could be all, enb_config,
mac_status

STATS GET /stats/[:type] Get all the radio statistics in upstream and
downstream for all eNBs and UES by stats
type in json format.
Stats type could be all (default), enb_config,
mac_status

STATS GET /stats/enb/:id/[:type] Get all the radio statistics in upstream and
downstream for a particular eNB and the
associated UES by stats type in json format.
Stats type could be all (default), enb_config,
mac_status. UE ID can be RNTI or IMSI.

STATS GET /stats/enb/:id/ue/:id Get all the radio statistics in upstream and
downstream for a particular eNB and UE by
their ids in json format. UE ID can be RNTI
or IMSI.

STATS GET /stats/ue/:id Get all the radio statistics in upstream and
downstream for a particular UE by its ids in
json format. UE ID can be RNTI or IMSI.

STATS POST /record/[:type/[:duration]] Record the radio statistics by type and for a
predefined duration.
Returns a record ID in the payload.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 30 of (77) © SliceNet consortium 2018

STATS GET /record/:id Ge the record radio statistics by its id

USER POST /rrm_config -
d@pathtopolicyfile

Post a RAN policy and commands to the
underlying RAN

3.2.5 Helper Services

A set of helper services are also implemented in LL-MEC to complement the platform. These
services are not the entities to provide core functionalities but necessary for having an
effective MEC server.

 Communication Service: It handles the channel between MEC application and
platform as well as the interactions among MEC applications; they are enabled by the
REST API and the SDK for the remote control apps, and CORE APIs for the local
control apps (see Figure 6). LL-MEC is using Pistache (http://pistache.io/) to handle
REST call binding and processing.

 Event Manager: It facilitates the internal communication and monitoring among
different MEC services.

 App manager: It allows LL-MEC application to be deployed with different policies,
scheduling receipt (e.g. RR, DEADLINE, and FIFO) and operation including continuous,
periodic, or event-driven app. An app can be local implementing an event callback
and start functions to get runtime to perform its task, and remote interacting with
the LL-MEC either directly through the REST API or indirectly through the SDK.
Currently, the following applications are implemented:

○ UE/Bearer Manager: It handles add/remove/redirect of a new pair of user-
bearer in LL-MEC with the associated OF rules that is transmitted to the
underlying OF-enabled switches.

○ Stats Manager: It provides fine-grain flow-level statistics on per user per
service in both upstream and downstream directions. These statistics are
extended by the RNIS producer app.

○ Context manager: It stores the context related to UEs, bearer, slice, and
switch accessible by all the other services. It is also responsible for generating
and managing the internal identifier for the pair of UE and bearer based on
the cookie in the OpenFlow rules.

○ Switch manager: It manages the connected switches to each LL-MEC
instance, allowing a MEC app to apply a particular rule to a subset of
underlying switches.

 Core Apps Manager: It provides a tight integration with OpenFlow library and event
manager.

 OpenFlow Library: It enables the communication with OpenFlow-enabled switch
based on Libfluid.

In addition, two services are currently under design and development:

 Service inventory: It identifies the available services supported by LL-MEC and the
endpoints the service has.

 Service Registry: It implemented as a database, and includes the holistic information
of the available MEC applications and gives the abilities for high-level applications to
verify if the desired information is available.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 31 of (77)

3.2.6 LL-MEC Implementation

LL-MEC is a Low Latency Mobile/Multi-access Edge Computing platform licensed under
Apache License V2.0 and delivered as part of mosaic-5g.io ecosystem. The bulk of the code is
written from scratch using C++ and currently supports x64 Linux systems. The
implementation aims to support core network programmability coordinated with RAN real-
time operation and provide flexible application programming environment at the network
edge. In addition to exposing the APIs specified in ETSI MEC, it was designed to easily expand
the control function as well as the supported OpenFlow rules. The current OF library is based
on version 1.3.

The open-source software Open vSwitch (OVS) [8] is employed as the software switch; it is
further discussed in Section 4. Given the fact that OVS does not officially support GTP tunnel
yet, GTP enabled OVS is packaged along with useful scripts in order to facilitate the
deployment of LL-MEC for community. Currently, LL-MEC provides two versions of OVS with
GTP support. The first version is based on the latest version of OVS with GTP support in Linux
kernel that is available in 4.9, and the second version is based on the OVS version 2.7 with
GTP management in the user space.

The salient features of LL-MEC that are currently supported can be summarised as follows:

 Northbound APIs and SDK

 Add/Redirect/Remove Default and dedicated bearers support

 Multiple switch support

 Flow status per user/bearer/switch

 Support of network slicing

 Support of packet TOS update

 LL-MEC S1 tester

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 32 of (77) © SliceNet consortium 2018

4 Data Plane Programmability and Virtualized Infrastructure

Following the design and prototyping of the SliceNet MEC Platform in the previous section,
this section further presents the SliceNet programmable Data Plane for MEC and other non-
RAN segments. The focus is on investigating hardware-based and hybrid (hardware and
software based) approaches, complementary to the software-based programmable Data
Plane in the MEC platform.

4.1 Data Plane Programmability Enablers

4.1.1 Fundamental Architecture and Enablers

Towards achieving Data Plane programmability, it is proposed in SliceNet that a common
reference architecture known as SimpleSumeSwitch [9] (and workflow) as shown in Figure 7
is adopted for prototyping forwarding devices (e.g., switches) to process packets at line rate
and at affordable cost. This architecture comprises a single Parser, a single Match-Action
pipeline, and a single Deparser. The different buses/channels (arrows) are coded in different
colours in Figure 7:

 (Red) Packet parsing only happens internally (between the Parser and the Deparser).

 (Purple) Digest data are introduced by the Parser, and are one of the architecture’s
outputs. SliceNet proposes to explore packet hashing to be applied for data integrity
based on digest data of a fixed size (80 bits). The hashed digest data are part of a rule
for packet processing and are accessible by the Match-Action component of the
NetFPGA to make a decision with respect to the packet being received.

 (Yellow) SUME metadata contain the metadata that indicate the port numbers of the
packet and information related to the processing of the packet, and exposes to a
programming language the programmable metrics. The SUME metadata struct is
shown as follows:
o struct sume_metadata_t {

 bit<16> dma_q_size; // measured in 32-byte words; DMA (Direct Memory Access)
 bit<16> nf3_q_size; // measured in 32-byte words
 bit<16> nf2_q_size; // measured in 32-byte words
 bit<16> nf1_q_size; // measured in 32-byte words
 bit<16> nf0_q_size; // measured in 32-byte words
 bit<8> send_dig_to_cpu; // send digest_data to Central Processing Unit (CPU)
 bit<8> drop;
 port_t dst_port; // one-hot encoded: {DMA, NF3, DMA, NF2, DMA, NF1, DMA, NF0}
 port_t src_port; // one-hot encoded: {DMA, NF3, DMA, NF2, DMA, NF1, DMA, NF0}
 bit<16> pkt_len; // (bytes) unsigned integer
}

The interpretation of the SUME metadata struct proposed is as follows:

o pkt_len - the size of the packet (not including the Ethernet preamble of Frame
Check Sequence or FCS) in bytes.

o src_port - the port on which the packet arrived.
o dst_port - the port or ports (if any) the packet should be sent out of.
o drop - if the least significant bit of this field is set to 1, the packet will be dropped.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 33 of (77)

o send_dig_to_cpu - if the least significant bit of this field is set to 1, the digest data
will be sent over DMA (Direct Memory Access) to the CPU.

o X_q_size - the size of each output queue, measured in terms of 32-byte words
(rounded up). This is the size of the output queues when the packet starts being
processed.

 (Brown) User metadata contain any additional information from the Parser to the
Match-Action pipeline and from the pipeline to the Deparser (internal only). In
SliceNet, it is proposed that this bus will be utilised to classify the packets, for
instance, to share the number of encapsulated layers available in the packet among
the Parser, Match-Action and Deparser.

 (Green) Control bus. It is used to insert the rules into the hardware in order to
determine the actions to be carried out over the packet.

Figure 7. Reference architecture and workflow for a forwarding device to process packets [9]

 Packet classification by Parser using the User metadata channel

Packet classification is a fundamental function required for QoS support. It maps a
received packet against a mapping rule to categorise the packet to the best-matched
class, and the categorization of incoming packets is based on selected fields of
selected headers of the packets according to specific classification criteria. Packet
classification can be based on packet hashing to speed up the process of determining
if an incoming packet matches a certain classification rule.

 Packet hashing by Parser using the Digest data channel

Packet hashing is a function that maps data of arbitrary size to data of fixed size. This
facilitates classification‐based QoS measurement and monitoring. On receiving a
packet, the forwarding device hashes it and looks up to check if the packet belongs to
a known flow (flow classification). If yes, statistical measurement regarding the flow
will be continued (e.g., in terms of packet count and bytes for that flow). Otherwise,
a new flow entry can be created.

Data Plane programmability entails the following enablers for network monitoring and
control:

 P4 language for Data Plane classification, monitoring and control

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 34 of (77) © SliceNet consortium 2018

P4 [10] is a common language for the description of Data Plane functionalities of
different targets. However, not every target supports every language option, which
reduces the portability. Moreover, in order to add flexibility to describe non-standard
elements available in a concrete target, the language provides mechanisms to add
external modules to the pipeline. There is an official P4 compiler, P4C, which is target
agnostic and is used as a showcase of the P4 functionalities. P4 requires a target
architecture, a structure with fixed elements and programmable modules, being the
most used Portable Switch Architecture (PSA). PSA is a target architecture that
describes common capabilities of network switch devices which process and forward
packets across multiple interface ports with a pipeline with three input stages
(parser, ingress and deparser) and three output stages (parser, egress and deparser).
There are multiple compilers available for different target technologies, using the
PSA, or a modified version, including software switches, Field Programmable Gate
Arrays (FPGA), Network Processor Units (NPU) or Application-Specific Integrated
Circuit (ASIC). In SliceNet, with respect to the reference architecture and workflow
for a forwarding device to process packets as shown in Figure 7, P4 is the
programming language for packet classification, monitoring and internal control of
the hardware.

 OpenFlow for Data Plane monitoring and control

OpenFlow [3] defines rule/policy-based traffic flow related processing, including flow
matching, flow forwarding, flow QoS metering etc. Specific control actions may
include packet forwarding to a particular port or ports, packet encapsulation and
forwarding to the controller, packet forwarding to the normal processing pipeline or
packet dropping etc. For monitoring purposes, statistics such as packet and byte
count are available. OpenFlow is applicable to both physical and virtual (hypervisor-
based) forwarding devices and it is used in SliceNet to expose the control capabilities
of the forwarding devices to the SDN controller for the purpose of Data Plane
control. SliceNet recommends that P4 be employed to programme the monitoring
and Control Plane capabilities, which are exposed by OpenFlow to the SDN
Controller.

 IPFIX/NetFlow and sFlow for Data Plane monitoring

The IP Flow Information Export (IPFIX) protocol [11][12], as standardised in IETF RFC
(Request for Comments) 7011 and a number of other associated RFCs, defines a
standard mechanism to transmit uniform IP traffic flow information from an
exporting process (in a network sensor or other reporting device) to a collecting
process for the purpose of Data Plane monitoring. The IPFIX standard specifies the
representation of different flows, IPFIX Data and Template Records sent over various
transport protocols, additional data required for flow interpretation, packet format,
and security concerns and so on. Monitoring is conducted on selected packets based
on packet selection techniques such as sampling, filtering and hashing standardised
by the Packet Sampling (PSAMP) protocol [13]. The Management Information Base
(MIB) module [14] for monitoring and the data model [15] for configuring and
monitoring IPFIX and PSAMP-compliant devices using the Network Configuration
Protocol (NETCONF) [16] are specified as well. IPFIX is based on Cisco’s NetFlow
Version 9 [17].

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 35 of (77)

sFlow [18] is an industry standard multi-vendor sampling technology embedded
within switches and routers for network traffic monitoring. sFlow is scalable in
collecting, storing and analysing traffic data, and enables monitoring links of speeds
up to 10 Gbps and beyond without impacting the network performance or adding
significant network load. A comparison of sFlow with Cisco’s NetFlow is given in [19],
which highlights a list of advanced features in sFlow across protocol layers and in
terms of performance and cost considerations.

 OVS and OVSDB for Data Plane packet forwarding and control

OVS [8] is capable of forwarding packets between VMs within the same physical host
machine or between VMs and physical infrastructure. OVS is programmable and
controllable using OpenFlow and the OVSDB (Open vSwitch Database) management
protocol, an IETF standard [19]. OVSDB allows programmatic access to the OVS
database, which holds the configuration for the OVS (daemon), to manage and
configure this OVS.

The main components in OVS and the space each component belongs to are
illustrated in Figure 8 [21]. Firstly, ovs-vswitchd is the daemon that controls all the
OVS switches in the system. The daemon implements switch features such as
mirroring, bonding and Virtual LANs (VLANs). The OVSDB management protocol is
employed by this daemon to obtain the initial configuration and new configurations
from the ovsdb-server, where the configurations are persistent. Secondly, the kernel
module, openvswitch_mod.ko, takes care of the data path consisting of physical
and/or virtual ports in the kernel space. This kernel module applies switching or
tunnelling actions, e.g., through Generic Routing Encapsulation (GRE) or Virtual
Extensible LAN (VXLAN), to the arriving packets belonging to a known flow, i.e. a flow
where the action to be performed is known. Otherwise, the packet is sent to the user
space for the ovs-vswitchd daemon to process. The OpenFlow controller is
responsible for the persistence of important flows.

The top-level configuration for the daemon is through the OVS tables in the OVSDB. The
relationship among the tables are depicted in Figure 9 [22], where each node represents a
different table. Table 4 [22] lists these tables and their purposes. It is noted that OVS
supports NetFlow, IPFIX and sFlow for Data Plane monitoring.

It is noted that the current prototyping is based on the develop branch of OVS to provide a
set of extensions. Thus, OVS is taken as it is, and extended by NetFPGA hardware-based
approach.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 36 of (77) © SliceNet consortium 2018

Figure 8. OVS components [22]

Figure 9. Tables relationship in OVSDB for OVS configuration [22]

Table 4. OVSDB tables [22]

OVSDB Table Purpose

Open_vSwitch Open vSwitch configuration

Bridge Bridge configuration

Port Port configuration

Interface One physical network device in a Port

Flow_Table OpenFlow table configuration

QoS Quality of Service configuration

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 37 of (77)

Queue QoS output queue

Mirror Port mirroring

Controller OpenFlow controller configuration

Manager OVSDB management connection

NetFlow NetFlow configuration

Secure Sockets Layer (SSL) SSL configuration

sFlow sFlow configuration

IPFIX IPFIX configuration

Flow_Sample_Collector_Set Flow_Sample_Collector_Set configuration

 Kernel Network Control for Data Plane control

In Linux, on receiving a packet, a Network Interface Card (NIC) sends it to a receive
queue (RX). The packet is then copied to the main memory via the DMA (Direct
Memory Access) mechanism. An sk_buff struct buffer is allocated for every received
packet. The system is notified of the new packet and pass the data to the buffer. The
process is based on an interrupt scheme, where several interrupts are incurred. The
packet is then sent to the Linux networking subsystem. When an application (in the
user space) needs to send or receive a packet, a system call is issued.

There are drawbacks in terms of performance in this kernel space packet processing.
Firstly, the buffer allocation based on the sk_buff struct consumes considerable bus
cycles for copying the packet from CPU to the main memory. Moreover, the sk_buff
struct is a complicated struct that was designed to be inclusive for different network
protocols and thus is not optimised for performance. Thirdly, the mode switching
between kernel and user spaces for packet sending and receiving also introduces
latencies. Finally, the numerous interrupts slow down the system too.

To address some of these problems, since version 2.6, Linux kernels employ the New
Application Programming Interface or API (NAPI), which combines interrupts with
requests. To further mitigate the performance issues in kernel network control,
further optimisations (e.g., kernel space speed-up enhancements), new approaches
(e.g., kernel bypass) and/or hardware acceleration are entailed, as explained in the
subsequent subsections.

4.1.2 Programmability of the Hardware Data Path

 NetFPGA platform

NetFPGA [23] is a line-rate, open networking platform that enables hardware-based
programmable data path. The state-of-the-art NetFPGA SUME is an FPGA-based PCI
(Peripheral Component Interconnect) Express (PCIe) board with I/O capabilities for
10 (and up to 100) Gbps operation, and the workflow is based on SimpleSumeSwitch
depicted in Figure 7. The platform can be employed as NIC, multiport switch, or
firewall, among other Data Plane networking or testing devices. The open source and
low cost nature of the platform allows prototyping 10 Gbps solutions in R&D projects
like SliceNet. More details on SliceNet prototyping are presented later.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 38 of (77) © SliceNet consortium 2018

(a) NetFPGA SUME PCIe board: physical view

(b) NetFPGA SUME PCIe board: block diagram

Figure 10. NetFPGA SUME platform [23]

Figure 10 [23] shows the NetFPGA SUME PCIe board (a) and the block diagram of the
board (b) respectively. The core element is a Xilinx Virtex 7 690T FPGA. There are five
peripheral subsystems on this full-sized PCIe adaptor:

 A PCIe x 8 Generation 3.0 interface between the board and the host device’s
motherboard for packet transfer between them.

 High-speed serial interfaces subsystem that comprises 30 serial links running
at up to 13.1 Gbps speed, connected to 4 x 10 Gbps SFP+ Ethernet interfaces,
2 x expansion connectors, and a PCIe edge connector to the FPGA.

 Memory subsystem consisting of both SRAM (3 x 36-bit QDRII+ @500 MHz)
and DRAM (2 x 64-bit DDR3 @933 MHz).

 Storage subsystems allowing both a MicroSD card and external disks through
two Serial Advanced Technology Attachment (SATA) interfaces.

 FPGA configuration and debugging subsystem has 2 x NOR Flash devices,
storing the FPGA’s programming file, initial bootup image etc., and contains
the debug and control capabilities through additional interfaces, LEDs,
buttons etc.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 39 of (77)

 Netcope platform

Netcope [24] is an alternative FPGA-based networking platform, which supports up
to 100 Gbps Ethernet interfaces. Figure 11 [24] shows the physical view of the
various Netcope boards. NFB-100G2Q has been investigated in SliceNet as an
alternative to deal with 100Gbps. It provides architecture similar to the
SimpleSUMESwitch but with other capabilities such as multiple DMA channels per
interface and DPDK Driver support. It is noted that P4 is the recommended language
for programming both NetFPGA and Netcope platforms (e.g., [25]).

Figure 11. Netcope platform (left: NFB-200G2QL; middle: NFB-100G2Q; right: NFB-100G2C) [24]

4.1.3 Programmability of the Software Data Plane

 DPDK (Data Plane Development Kit)

DPDK [26] is an open source project that provides mechanisms for fast data
processing for Data Plane applications, mostly running in the Linux user space and
being agnostic to processors (Intel and others). As illustrated in Figure 12 [27], DPDK
employs the kernel bypass approach, which allows the applications in the user space
to directly communicate with the hardware (physical) or virtual devices (NICs)
without involving the Linux kernel and thus circumvent the performance limitations
of the Linux kernel caused by interrupts, the complexity of the sk_buff struct etc.
After the interface receiving incoming packets is unbound from the Linux kernel
driver, the communications between the application and the device is organised by
the DPDK Poll Mode Driver (PMD).

The DPDK framework creates a set of libraries for specific hardware and operating
system environments through the creation of an Environment Abstraction Layer
(EAL), which in turn is created through make and configuration files. Consequently,
the user can link with the EAL library to create customised applications for the Data
Plane. There are also other libraries to support Data Plane packet processing, e.g.,
the Hash for packet classification, and the Longest Prefix Match (LPM and LPM6) for
packet forwarding based IP addresses.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 40 of (77) © SliceNet consortium 2018

Figure 12. Linux kernel with DPDK vs. without DPDK [27]

 XDP (eXpress Data Path)

In contrast to the kernel bypass approach taken e.g., in DPDK, XDP [28] through the
IO Visor Project [29] addresses the performance limitations of kernel space in packet
processing by enabling bare-metal packet processing at the lowest point in the
software stack in the kernel space for improved speed whilst achieving Data Plane
programmability. Figure 13 shows the packet processing overview in the XDP
approach. Essentially, XDP creates an integrated fast path in the kernel stack. The in-
kernel XDP Packet Processor intercepts the incoming packet before it is sent to the
normal kernel process. It processes RX packet-pages directly out of driver via a
functional interface and avoids early allocation of sk_buff’s or software queues as
seen in conventional kernel based packet processing. Basic XDP packet processor
actions include packet forwarding, dropping, normal receiving and steering (to
another CPU for processing), and generic receive offloading etc. The BPF (Berkeley
Packet Filters) program is leveraged to perform processing actions such as packet
parsing, table lookups, stateful filters creation/management, packet manipulation
e.g. encapsulation/decapsulation, and returns action. Powered by the XPD
programmability, a number of use cases can be built by exploring XDP, e.g., filtering
for mitigating DDoS (Distributed Denial of Service) attacks, packet forwarding, load
balancing, and flow sampling, lookup, inspection and monitoring based on hash, and
flow analytics. The XDP approach is agnostic to CPU/hardware.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 41 of (77)

Figure 13. XDP packet processing [28]

 PF_Ring

PF_Ring [30] is another technology that speeds up packet capture via kernel bypass.
As shown in Figure 14, PF_RING polls packets from NICs through the Linux NAPI,
which copies packets to the PF_RING circular buffer (ring), bypassing the kernel stack,
and then the user-space application reads packets from the ring. PF_RING can
distribute incoming packets to multiple rings, and thus multiple applications can read
their packets simultaneously.

PF_Ring is not in integrated in the mainstream Linux, and special kernel modules
need to be launched. In particular, the PF_RING ZC (Zero Copy) [31] module offers a
flexible packet processing framework that can achieve 1/10 Gbps line-rate packet
processing for both RX and TX at various packet sizes. ZC implements zero copy
operations for inter-process and inter-VM (Kernel-based Virtual Machine (KVM))
communications as a cloud-ready solution. Moreover, ZC can operate in either kernel
bypass or normal kernel mode. In addition, PF_Ring also provides support for a range
of FPGA vendors such as Netcope etc. through the FPGA-based card modules, among
other additional modules.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 42 of (77) © SliceNet consortium 2018

Figure 14. PF_Ring operation [30]

4.2 Data Path Architecture in SliceNet

Two different approaches have been considered in the Data Path architecture of SliceNet.
The first approach “Hardware Approach” is based on an intensive hardware-offline approach
where all the functionality required to the Data Plane is implemented in hardware. Figure 15
and Figure 16 show an overview of this approach, where two different hosts are illustrated
as an example. One compute node is allocated in the edge network and another compute
node in the core network. They are interconnected through a fibre-optical physical switch.
The antenna and RRH or RRU/DU are connected to the MEC compute by mean of another
physical switch. The solid red circles indicate possible control points (programmable points)
in the data path.

The proposal is to use a NIC that allows in hardware to bypass the Linux kernel of the Host
Machine and connect the hardware directly into the VM deployed in the edge (MEC VNF). It
is achieved by means of the Single Root I/O Virtualization (SR-IOV) technology [32]. Then, in
order to achieve slicing-friendly capabilities into the 5G infrastructure, the NIC should
provide the following. Firstly, at least VLAN tagging support should be employed in order to
allow essential multi-tenant isolation; or ideally, VXLAN/GRE encapsulation is applied to
provide a true capability to allow tenants to define networks in software and perform such
off-loading into hardware. Secondly, the NIC should provide the exposition of the different
lanes/queues directly to the VMs. This can be achieved by the VMDq technology [33]. This
approach allows every VM to have a dedicated set of queues/lanes available to be used in an
exclusive use and the scheduling of these lanes is an enabler of the slicing-friendly
infrastructure.

In this approach, the Infrastructure Provider only has the control capabilities exposed by the
hardware. It means that in order to allow a slicing-friendly infrastructure in this “Hardware
Approach”, the programmability of the scheduler is required in order to enforce the slice
QoS control. Both the NetFPGA and Netcope architectures presented before allow these

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 43 of (77)

capabilities by using a TCAM (Ternary Content Addressable Memory) structure for inserting
the Match-Action rules. It is noted that packets in this approach still need to be processed by
the Linux kernel of the Guest VM and thus this is where kernel-bypass approaches can be
employed in the Guest VM as a complement to achieve efficiency at high rates. In case of
considering a deployment where the programmability of the Data Plane is centralised in the
SDN controller, then an OpenFlow agent is required to perform the programmability of the
hardware rules of the scheduler implemented in the NIC.

Figure 15. Programmable Data Plane (hardware approach)

The second approach “Hybrid Approach” is the combination of both software and hardware
forwarding devices in order to separate the required roles to achieve a slicing-friendly
infrastructure between the software and hardware components. The proposed architecture
is shown in Figure 16 and Figure 15. It can be seen how the traffic coming from the hardware
NIC is now received in the OVS hosted in the Host machine. It would require the Linux kernel
to deal with the packets and thus would suffer from scalability issues. In order to sort out
this problem, it is proposed to ensure that DPDK (or alternatively PF_Ring) be integrated
with OVS. In this architecture, OVS is the responsible element to forward packets to the VMs
and thus introduces a control point where policies can be applied. Due to the experimental
nature of XDP, it is suggested that XDP will only be monitored in SliceNet and will not be
further explored for prototyping.

In terms of role separation between software and hardware, it is proposed to minimise the
possible use of the software-based approach, by off-loading as much as possible workload
into the hardware capabilities. Compared with the Hardware Approach, this Hybrid
Approach would yield significantly lower performance whereas it provides more flexibility in
the Control Plane since it allows having double control points layers for the Infrastructure
Provider and Network Operator. The Infrastructure Provider’s control points layer is
composed by two control points: one flexible yet slow software control point and a limited
yet fast hardware control point. The Network Operator’s control points layer, however, only
has one control points layer for the tenant in the kernel space of the VM.

SliceNet is a research and development project and thus it has been decided to explore this
approach even knowing in advance that it is not as fast as a pure hardware-based approach
in order to investigate how better make use of all these control points to maximise slicing
flexibility, along the execution of the different stages of the project.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 44 of (77) © SliceNet consortium 2018

Figure 16. Programmable Data Plane (hybrid approach)

4.3 Infrastructure Multi-Tenancy Support

4.3.1 Overview of Multi-Tenancy Based on Integrating VIM and SDN

The SliceNet infrastructure supports multi-tenancy at the virtualisation level. Different VMs
belonging to different tenants are isolated from each other, even co-located in the same
physical machine. This tenant isolation can be achieved by employing a proper Virtual
Infrastructure Manager (VIM) such as OpenStack [34]. OpenStack allows the management of
the control provided by the OVS in order to manage tenant isolation of networking resources
by using tagging and encapsulation. Furthermore, OpenStack allows the management of the
control provided by the Hypervisor in order to manage tenant isolation of memory, disk and
CPU resources. OpenStack is further discussed in Section 5.

Moreover, VMs belonging to the same tenant, even distributed in different physical
machines, are able to reach each other via virtual switches such as OVS. This VM
connectivity can be established by integrating the VIM with a compatible Software-Defined
Networking (SDN) controller such as OpenDayLight (ODL) [35], as illustrated in Figure 17
[36]. After a new VM is created and attached to the network, the SDN controller creates a
tunnel e.g., through VXLAN, between the OVS switches of the compute nodes hosting the
VMs. Once the tunnel is created, the tenant’s VMs on the different compute nodes are able
to communicate with each other. In addition, when 5G or LTE traffic flows between the VMs,
additional tunnelling e.g., the GTP tunnelling in LTE, applies.

It is noted that there are various ways to integrate ODL with OpenStack to achieve the multi-
tenancy support [37]:

 ODL-OpenStack integration using ODL Group Based Policy’s Neutron VPP Mapper

 ODL-OpenStack integrating using ODL Group Based Policy

 ODL-OpenStack integration using ODL NetVirt

 ODL-OpenStack integration using ODL Virtual Tenant Network
In principle, in all the methods, OpenStack employs ODL as its network management
provider through the Modular Layer 2 (ML2) northbound plugin, and ODL controls the Data
Plane network flows for the OpenStack compute nodes through the OVSDB southbound
plugin. The next section takes the ODL Virtual Tenant Network approach as an example to
elaborate the ODL-OpenStack integration for multi-tenancy.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 45 of (77)

Figure 17. Integrated SDN controller and OVS model for multi-tenancy [36]

4.3.2 Multi-Tenancy Support Based on OpenDayLight Virtual Tenant Network

The Virtual Tenant Network (VTN) in ODL provides multi-tenant virtual networks on an ODL
SDN controller. VTN consists of two main components: the VTN Coordinator application on
the top as part of the network application, orchestration and services layer, and the VTN
Manager plugin as part of the Network Services below the ODL APIs in the overall ODL
architecture.

The VTN Coordinator provides a REST interface to the user to employ VTN, realises the VTN
provisioning in ODL instances, and orchestrates multiple ODL to support VTNs that span
across different ODL. The VTN Manager provides a REST interface to configure and manage
the lifecycle of VTN components, and provides the integration with Neutron interface to
provide network services for OpenStack by utilising the OVSDB plugin.

Figure 18 [38] illustrates the system diagram of integrating VTN with OpenStack and OVSDB.
In this integrated system, ML2 allows the OpenStack control node to use ODL as its L2
network management provider. The ODL VTN Manager's Neutron deals with the interface
creation notification (Event) from the OVSDB plugin and creates the mapping between the
OpenFlow (OF) ports and the virtual interfaces in VTN. Moreover, the Neutron allows the
VTN Manager to associate the VMs in the OpenStack compute nodes with the virtual
networks, and install flow entries to OpenFlow switches between the VMs. In the Data
Plane, the OVS switches in the OpenStack compute nodes communicate with each other
through an optional OpenFlow network (e.g., a physical or logical OpenFlow switch) to
achieve the inter-connectivity among the VMs belonging to the same tenant.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 46 of (77) © SliceNet consortium 2018

Figure 18. ODL (Lithium) VTN integration with OpenStack and OVSDB for multi-tenancy [38]

The VTN may be leveraged by MEC in two ways: (1) associate different MEC instances to a
particular VTN (1:1 mapping), and (2) associate a single MEC to multiple VTN (1:N mapping)
and apply the programmability on the logical networks instead of the physical network. In
the latter case, the MEC platform is unaware of the separation of physical network plane
from the logical one.

4.4 Mobile Edge-Core Network Data Plane

In 5G networks, the Mobile Edges and the Core Network (CN) are geographically distributed.
SliceNet achieves this infrastructure view by exploring the different availability zones
provided by OpenStack. Essentially, an individual edge can be positioned in a specific
availability zone, and the core network is in a different zone from any individual edge.
Consequently, multiple zones corresponding to edges and the core network can be created.
For instance, for an MEC #1 edge, all MEC #1 related network nodes including MEC #1 VNFs
such as a pool of LTE BBUs (or 5G CUs) are grouped into one availability zone. For the core
network, all core network nodes including the core VNFs such as MME, SGW, PGW and PCRF
(or the 5G counterparts such as AMF, SMF, UPF and PCF) are grouped into another
availability zone. Figure 19 illustrates this MEC-CN Data Plane segregation based on
availability zones.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 47 of (77)

Figure 19. MEC-CN Data Plane segregation based on availability zones

Figure 20 [39] shows two availability zones consisting of their own compute nodes, which
can run the mentioned VNFs for the edge and the core network, respectively. Furthermore,
the difference between the concepts of Availability Zone and Host Aggregate in OpenStack is
also illustrated for the sake of clarification and justification. In brief, nodes geographically
distributed should be separated with availability zones, whilst nodes with the same
specification should be clustered with host aggregates. Clearly, availability zones are more
appropriate to be adopted in segregating the different edge and core network segments. In
addition, Regions are of a higher geographical hierarchy and are usually employed to
separate cloud computing systems of larger scale. For example, it is reported that there are
only 18 geographic Regions (and 49 Availability Zones) worldwide in the Amazon Web
Services Global Infrastructure [40]. In addition, availability zones have a unified control of
the network connectivity between all the computes involved whereas regions have different
network connectivity going out of the administrative domains, which add additional
complexity to the control in the creation of slices. Therefore, it is not recommended that the
edge and core networks are segmented based on Regions.

Figure 20. Availability zones and host aggregates in OpenStack [39]

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 48 of (77) © SliceNet consortium 2018

4.5 SliceNet Programmable Data Plane Prototyping

In order to validate and test the above design, prototyping has been conducted to achieve
slicing-friendly infrastructure especially programmable Data Plane for multi-tenanted 5G
MEC infrastructure, and the technologies are largely applicable to the Data Plane of other
non-RAN segments (MEC to core, and core network). The main prototyping is based on
NetFPGA (10 Gbps) and P4, following the SimpleSumeSwitch architecture [7] as shown in
Figure 7, to create various actions (queue setting, ToS setting) as hardware-based slicing
enablers, as described below.

4.5.1 SliceNet Programmable Data Plane Prototyping Tools and Platform

The prototyping utilised the P4 NetFPGA reference implementation recently released by the
NetFPGA Team employing the Xilinx SDNet P4 compiler. The SDNet Compiler v2017.1.1 [41]
was set up on Ubuntu (64-bit) with Vivado Design Suite installed and licensed, together with
additional supporting tools including gcc 6.2.0, Questa v10.4c, GraphViz DOT graph
visualization software library, and Wireshark. Moreover, Xilinx SDK 2016.4 [42] was
employed for the development. The design and development procedure followed the official
SDNet framework design flow presented in Figure 21 [43].

Figure 21. SDNet framework design flow [43]

4.5.2 SliceNet Programmable Data Plane Prototype

Figure 22 illustrates the system diagram of SliceNet Data Plane traffic classification and
control prototype. The prototype operates as follows.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 49 of (77)

1. The traffic classification rules are inserted in the NetFPGA’s Ternary Content
Addressable Memories (TCAM) table through a REST API.

2. An inbound packet arrives at the NetFPGA.
3. The packet is sent to the Parser for classification.
4. Once the packet have been classified based on its headers, it is sent to the

Match/Action component.
5. In the Match/Action component, the TCAM table is checked.
6. If there is any rule that matches the packet, the "action data" will be received by the

Mach/Action (step 6).
7. Match/Action applies to the packet the action received in the "action data" of the

rule (step 6) and it is sent to the Deparser component.
8. The Deparser builds the packet that is going to be sent to the PCI or to the outbound

interface depending on the specific action.
9. The digest data will be sent to the CPU for further processing.

Figure 22. SliceNet Data Plane traffic classification and control prototype

The operations listed in Table 5 allows the flow control and management of the traffic
processed by the NetFPGA in terms of lifecycle management (add, delete, clean) of the
traffic classification rules installed in the table used by the Match-Action component and
recording statistics of the flows offline. An operation defined in Table 5 is invoked on
demand by a REST API with the parameters indicated in Table 6, among others.

Table 5. SliceNet traffic flow control and management operations

End Point Description

/add Adds a new rule in a table

/delete Deletes a rule of a table

/clean Deletes all the rules of a table

/totalMatchedBytes Returns the total of bytes matched

/totalMatchedBytesPerRul
e

Returns a list of tuples with the number of bytes matched by
rule

/ruleMatchedBytes Returns the number of bytes matched by a specific rule

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 50 of (77) © SliceNet consortium 2018

/totalMatchedPackets Returns total number of packets matched

/totalMatchedPacketsPerR
ule

Returns a list of tuples the number of packets matched by
rule

/ruleMatchedPackets Returns the number of packets matched by a specific rule

/numRules Returns the total of rules in the table in a determinate
moment

/resetCounters Resets all the measures, included the variable with the total
of bytes matched

/resetCounter Returns the bytes matched by a determined rule and reset
the counter of that rule

/availableAddress Returns if exist some rule in a determined address of the
table

Table 6 shows the actions supported by the NetFPGA with respect to a flow:

 A flow can be dropped.

 A flow can be mirrored to another interface.

 The TOS value of the outermost IP header of a packet belonging to a flow can be
dynamically set to configure its priority.

 In addition to the above action, a flow can be sent to a specific queue at the FPGA to
be further processed by the CPU.

The instructions regarding these actions for matched flows are communicated through the
REST API to establish the corresponding traffic classification rules beforehand or on demand.

Table 6. SliceNet traffic flow actions supported by NetFPGA-based prototype

Action

Description

Action value

(5 bits)

Parameter 1

(48 bits)

Parameter 2

(2 bits)

Parameter 3

(3+1 bits)

DROP 1 - mirror interface -

NOPE 2 - mirror interface QueueID +

Enable

SET TOS 7 TOS (outer) mirror interface QueueID +

Enable

Headers supported by the P4 implementation are listed in Table 7, where Ethernet (ETH),
User Datagram Protocol (UDP), Transmission Control Protocol (TCP) etc. are employed. The
following different NIC Modes are supported:

 NIC Mode I supports the traffic classification of pure IP flows, which may employ
different L4 protocols.

 NIC Mode II is able to classify flows with one-level of encapsulation applied, via either
GTP or VXLAN, corresponding to 5G/LTE traffic that is GTP tunnelled or IP multi-
tenanted traffic respectively.

 NIC Mode III enables the classification of flows with two-level of encapsulations
applied, via both GTP and VXLAN, which means 5G multi-tenanted traffic.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 51 of (77)

Table 7. SliceNet traffic classification (headers supported) by the P4 implementation

NIC

Mode

Flow

Type
L2 L3 L4

1 I ETH IPv4 ICMP

2 I 1 ETH IPv4 UDP/TCP

3 II ETH IPv4 UDP/TCP GTP IPv4 UDP/TCP

4 II 2 ETH IPv4 UDP/TCP VXLAN ETH IPv4 UDP/TCP

5 III 3 ETH IPv4 UDP/TCP VXLAN ETH IPv4 UDP/TCP GTP IPv4 UDP/TCP

4.5.3 Empirical Results

Experimental tests have been conducted to empirically validate the design and prototyping.
In the tests, the following scenarios have been considered, with reference to Table 7:

 Scenario 1: NetFPGA NIC Mode I, II and III; Flow Type 1, 2 and 3 (UDP); 1 traffic
classification rule; Ethernet frame size is 1500 bytes.

 Scenario 2: NetFPGA NIC Mode I, II and III; Flow Type 1, 2 and 3 (UDP); 512 traffic
classification rules, Ethernet frame size is 1500 bytes.

 Scenario 3: NetFPGA NIC Mode I, II and III; Flow Type 1, 2 and 3 (UDP); 1 traffic
classification rule; Ethernet frame size is 144 bytes.

Scenario 1 and Scenario 3 are configured to establish a benchmarking performance for the
single-rule case (expected best-case performance in terms of rule scalability test). The
difference between them is that Scenario 1 employs flow packet size of the Maximum
Transmission Unit (MTU), whilst Scenario 3 employs small sized packets for the baseline
packet size case (expected best case performance in terms of packet size). In contrast,
Scenario 2 employs both high number of rules (512) and packet size of MTU, and thus it
represents a challenging case (expected worst-case performance).

Figure 23 shows the experimental testing results. The left, middle and right sub-figures
depict the measured results in Scenarios 1, 2 and 3 respectively. Based on those results, the
following observations can be made:

 In every scenario, the delays increase as the NIC Mode varies from 1 to 3,
corresponding to the increasing complexity levels of traffic classification logics
deployed for pure IP, multi-tenanted IP and 5G multi-tenanted flows respectively.

 When Scenario 1 and Scenario 2 are compared with each other, it can be seen that
the differences in the delays between the two scenarios are negligible (insignificant)
despite the significant difference in the number of classification rules applied.
Therefore, this approach is scalable in terms of supporting an increasing number of
traffic classification rules.

 When Scenario 1 and Scenario 3 are compared with each other, it can be concluded
that the size of the Data Plane traffic packets has an impact on the processing delays
although the differences made by this do not change the overall profile of the delays
and do not contribute to the overall delay significantly. Therefore, this approach is
also scalable in terms of the size of packets.

 In all scenarios, the Match-Action and Deparser steps combined together introduce
the majority of the delays. The delays caused by the Parser are much lower.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 52 of (77) © SliceNet consortium 2018

 In all scenarios, the delays for pure IP flows are under 3000 ns (3 ms), which is the
benchmarking performance. For multi-tenanted IP flows, the delays are about 4 ms;
and for 5G multi-tenanted ones, the delays are about 6 ms. The extra delays in the
latter two cases are the performance penalties paid to achieve multi-tenancy for IP
flows and multi-tenancy for 5G (GTP tunnelled) flows, respectively.

 To further reduce the delays, FPGA cards that are capable of realising higher speed
such as 100 Gbps would be required. Nevertheless, in this proof-of-concept
prototype, the experimental tests have shown promising results in achieving fast
programmable Data Plane for 5G multi-tenanted traffic.

Figure 23. SliceNet Data Plane traffic classification and control prototype

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 53 of (77)

5 Management Plane Considerations for Mobile Edge Segment

This section focuses on the Management Plane for MEC with description of management
components including the Virtual Infrastructure Manager (VIM), Mobile Edge App/Platform
Lifecycle Manager (VNFM), and the MEC Orchestrator (NFVO) where the functionalities and
interfaces of those components are aligned as in ETSI MEC [2]. The section also focuses on
the Management Plane considerations specifically for MEC.

5.1 Virtual Infrastructure Management (VIM)

A VIM, according to the MANO specification [2], is a virtual infrastructure manager that
provides the Infrastructure-as-a-Service (IaaS) by assembling different NFVI, each with
different technologies/vendors, and abstracting them into compute, storage and network
nodes/resources. More specifically, VIM operations include:

 managing software images, such as add/delete/update/query/copy, and allocating
those images to run on the NFVI, as requested by other functional blocks (the VIM
obtains information from NFVO for managing application images, virtual resources,
and it also interacts with VNFM to manage the NFVI resources associated with the
Mobile Edge application lifecycle);

 orchestrating the allocation (of the virtual resources assigned to Mobile Edge
applications), management and release of NFVI (compute, storage and networking)
resources. The VIM will maintain an inventory of the allocation of virtual resources to
physical resources for this operation;

 collecting and reporting performance and fault information about the NVFI;

 other operations that involve the NFVI management such as the security policies for
access control, optimizing the use of resources, application relocation from/to
external cloud environments, etc.

Existing solutions for VIM include OpenStack [34], VMware vSphere, CloudStack, Google
Kubernetes VIM, etc., all come in the form of complete software stacks.

There are some considerations regarding the VIM performance, fault, and security, for
example, how fast it can handle the provisioning of applications; how well it can allocate the
physical resources necessary to deliver network services, keep track of the allocation of
software images for applications/services onto the virtual resources, and then from virtual
resources onto the physical resources and use that information to optimize/coordinate the
use of resources; the issues of resource sharing and isolation; scaling up/down and scaling
in/out; the decision whether to spin up VMs or containers for a VNF. The VIM should also be
flexible to integrate/manage/orchestrate numerous hardware resources from different
vendors/technologies/etc. Further, with multiple domains, it should be able to support
multiple VIMs, and thus, communication and coordination among multiple VIMs should be
taken into consideration to best utilise the resources across domains.

Towards the functionalities and considerations for the VIM above, it is proposed that
OpenStack VIM is adopted for NFVI management in SliceNet. The logical architecture of
OpenStack is in Figure 24 [34], [44], mainly consists of functional blocks for Compute,
Storage and Networking.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 54 of (77) © SliceNet consortium 2018

Figure 24. OpenStack logical architecture [34], [44]

With different considerations listed in the architecture design guide [44], the logical
compute, storage and networking functionalities are fully designed and implemented in
OpenStack Nova, Cinder, and Neutron respectively.

The OpenStack Compute Nova handles the provisioning computer instances (virtual servers),
i.e. creating virtual machines, bare metal servers and some support for system containers. It
requires additional OpenStack services including Keystone for identity and authentication
services, Glance for compute image repository (as all compute instances launch from glance
images), and Neutron for provisioning the virtual/physical networks connecting the compute
instances. Nova supports a wide variety of compute technologies (hypervisor layer) such as
KVM, Xen, LXC, Hyper-V, VMware, XenServer, OpenStack Ironic and PowerVM, which
provides the flexibility in choosing a hypervisor(s). The OpenStack storage functionality is
provided by three main components: Swift for object storage, Cinder for block storage and
Glance for a repository for VM images, which can use storage from Cinder using standard
protocols such as Internet Small Computer Systems Interface (iSCSI), Fibre Channel, NFS or
object storage from Swift via the Swift API or HTTP protocols with simple PUT/GET
commands. Finally, Neutron provides networking functionality between interface devices
(e.g. vNICs) managed by other OpenStack services and supports advanced network services
like firewall, load balancing, intrusion detection, VPN, etc.

In addition, OpenStack also supports running containers on bare metal or VMs with full
storage and networking support. One can easily run containers on top of Nova as it has
everything needed to run compute instances. However, in complex environments, it is
required to have a container orchestration solution to ease the task of managing many
containers in data centre environments. For this, OpenStack offers the Magnum system [45]

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 55 of (77)

that supports multiple container orchestration tools including Docker Swarm, Kubernetes,
Mesos, etc. The architecture of Magnum system is presented in Figure 25, which mainly
shows the integration of OpenStack Heat with backend container technology
(Kubeneters/Swarm/Mesos).

Figure 25. OpenStack Magnum architecture [45]

5.2 Mobile Edge App Lifecycle Management (VNFM)

According to ETSI GS MEC 001 [46] and 003 [2], the Mobile Edge Platform lifecycle manager
is responsible for managing the life cycle of applications including informing the Mobile Edge
orchestrator of relevant application related events. VNFM operations for managing
application lifecycle include:

 Instantiating/Terminating an Application instance;

 Supporting the request to change the state (starting/stopping) of an application
instance; supporting querying information about an application instance, status of an
ongoing application lifecycle management operation, status of an application
instance, etc.;

 Operations on an Application Package Management such as querying application
package information (release date, vendor info, manifest, descriptor, files contained
in the package, etc.); providing notification as a result of changes on application
package states or the on-boarding of the application packages; fetching an
application package or selected files contained in a package.

There are many considerations on managing the Mobile Edge application lifecycle. Firstly, to
deploy an application, the consideration is on the number of instances per user and per host,
etc. Then, how to bring the application on board and where to, in order to meet all the
requirements regarding the virtual resources, latency, location (to be closer to the user),
dependencies (other Mobile Edge services need to be running before this application gets
on-boarded), etc. During the runtime of the application, mobility might occur in which VNFM
should be able to handle application instance relocation (closer to the user to meet latency
requirement), change of states, and so on. In addition, as many application instances and/or

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 56 of (77) © SliceNet consortium 2018

different types of application might be running simultaneously, fairness among them or the
users that requested to run those applications should be considered.

5.3 Mobile Edge App Rules & Requirements Management (VNFM)

The VNFM is also responsible for managing the application rules and requirements, which
includes service authorizations, traffic rules, DNS configuration, mobility support, resolving
conflicts, requirements on resources, services and/or QoS (e.g., delay constraint), and
requirement validation, etc. For this, some considerations should be taken into account.
Firstly, VNFM should be able to quickly create a ruleset for new and/or existing applications.
Then, it is important to maintain a clean set of rules and to avoid unnecessary complexity.
The VNFM should take a good care of the issues of unused/shadowed/expired rules, which
create unnecessary costs and overhead in management. A clean set of rules also means no
conflicting rules, no unwieldy rulesets that could break the applications or create risks to the
system, for example, conflicting security rules can create backdoor entry points. Also, when
there are many rules applied to the same object or one rule to different objects, etc. these
rules configuration/application should be ordered optimally. At some stages, there should be
a clean-up process to validate the existing rules and remove them if necessary (rules become
invalid or expired). Finally, the VNFM should support all of those functionalities in different
system scales.

5.4 Mobile Edge Platform Element Management (VNFM)

In Mobile Edge Platform Element Management, the VNFM is responsible for the functional
management of VNFs running at MEC, i.e. FCAPS (Fault, Configuration, Accounting,
Performance and Security Management). Technically, when a new VNF is created, the VNFM
notifies this Element Management System to provide an element management for this new
VNF, and the Element Manager associated with that VNF will take care of the management
of functional components in that VNF, e.g. the functionalities that the VNF supposes to
deliver/support.

As there are many VNFs running simultaneously in the system, and also the dynamicity of
the system (bringing up/tearing down VNFs), some considerations should be taken care of.
For instance, when a VNF is instantiated, how the VNFM can quickly provide an element
management for this new VNF, and how well this element management can handle the
functional components of the VNF; the issues of managing FCAPS for a large number of
VNFs/PNFs running on the same system, each might have different FCAPS requirement.
Besides common functionalities in FCAPS management, e.g. monitoring, managing and
reporting FCAPS for each and all VNFs/PNFs, the VNFM should take into account some other
details on each feature. For example, in fault management, beside considerations on the
strategy/toolsets/mechanism to monitor the NFV, consideration on fault collection and on
alarm mediation, the VNFM should also consider some further processing, e.g. analysis on
the root cause and fault correlation, in order to fix the issue optimally. However, the virtual
environment with many-to-many relationship between VNFs, VMs and physical resources,
and a fault could be VNF/VM/NFVI related, it is high complex to do such analysis, not to
mention some services that are created by service function chaining across both VNFs/PNFs
and in different domains. For configuration, the VNFM should be intelligent enough to
automate the (re-)configuration operations, especially for those that react to runtime
events, but also guarantees the configuration integrity. For accounting management, it

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 57 of (77)

should extend to track network utilisation to ensure that individual parties can be
appropriately billed for their use, especially the case of different parties coexist on the same
device through virtualisation, etc. Then, the VNFM can extend to manage FCAPS with a
global view and in an optimal way, e.g. configuration and performance optimisation can be
automated responding to faults and accounting (billing). Finally, the management approach
i.e. centralized/distributed/policy-based/self-managed (or self-healing) should also be taken
into consideration.

In SliceNet, it is proposed to have Juju [47] as a VNFM in MEC. Juju is an open source
application modelling tool to quickly and efficiently deploy, configure, scale, integrate, and
perform operational tasks on a wide choice of public and private clouds along with bare
metal servers and containers. The central mechanism behind Juju is Charms. Charms contain
all necessary instruction for deploying and configuring a service. A collection of Charms that
link services together is called a Bundle, which allows to deploy whole chunks of app
infrastructure in one go. According to [48], a Charm corresponds to a service definition and a
collection of Charms and Bundles corresponds to the NS catalogue in ETSI model, and the
process of uploading and deploying Charms into Juju corresponds to the NS on-boarding and
instantiation process respectively. A global Charm catalogue containing all available Charms
and Bundles can be found in Juju store [49].

Figure 26. Juju architecture [47]

Juju manages the service lifecycle with hooks (or scripts) implemented inside Charms.
Currently, there are five unit hooks including install, config-changed, start, upgrade-charm,
and stop. There hooks are called during the lifecycle of a service, specified in the Charm’s
configuration file. Besides, for each interface (e.g., loadbalancer) that a Charm supports,
there are four relation hooks, named after the interfaces: ifaceName-relation-joined,
ifaceName-relation-changed, ifaceName-relation-departed and ifaceName-relation-broken
to handle cases where the interface is connected to it, or disconnected, or the configuration
or settings of that interface are changed.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 58 of (77) © SliceNet consortium 2018

For management, Juju creates a special node, called Juju Controller during
bootstrap/installation stage. This controller houses the database, manages all the machines
in the running models and responds to all events that are triggered throughout the system.
It also manages scale out, configuration and placement of all models/applications, user
account and identification, access and sharing.

In conclusion, we think that with Charms and Bundles mechanism and Juju Controller (also
other supported functionality), Juju is a suitable tool to adopt as a VNFM in MEC MANO in
SliceNet.

5.5 Mobile Edge Orchestrator (NFVO)

As in ETSI GS MEC 003 [2], the Mobile Edge Orchestrator (NFVO) is the core component in
the Mobile Edge system level management. With an overview of complete Mobile Edge
System, this NFVO is responsible for the following:

 maintaining a global view of MEC system, including the view on all deployed Mobile
Edge hosts, available services and resources on each edge host, instantiated
applications running on each host and also the network topologies;

 on-boarding of application packages, e.g. Mobile Edge application installations,
application integrity check and authentication, application rules and requirements
validation, also preparing the VIM(s) to handle the applications, while keeping track
of the on-boarded packages;

 triggering application instantiation and termination;

 making decision on selecting a host(s) for application instantiation based on latency
requirement, available resources and services;

 triggering application relocation if supported.

The main purpose of having MEC is to bring services closer to the users, in order to provide
low latency services. However, mobility often occurs as users keep moving (ambulances,
cars, phones, etc.); the communication between geographically edge hosts should be taken
into account. Also, each edge host has its own NFVI managed by the local VIM, there should
be multiple VIMs for multiple edge hosts, and thus multi-VIM management and
orchestration, load balancing among edge hosts (also come with the issues how to select the
best host for which applications, host relocation for the running application, etc.) should be
taken into consideration. In addition, in 5G, the number of users grows significantly, there
will be more Mobile Edge hosts added in a large scale, and for this, security and scalability
should be supported, also the issue of monitoring and collecting KPIs from millions of edge
objects should be counted. Overall, depending on the environments/conditions, the most
suitable strategy to design and implement the NFVO, e.g. centralized/decentralized NFVO,
distributed NFVO platform (with local NFVO for each edge and a centralized NFVO master),
etc., is selected. However, in any decision, the NFVO should take into consideration the
issues of mobility, scalability, load balancing, and orchestration on many different types of
VIMs simultaneously; it should also be flexible to changes; and support for availability zones
is a requirement for an orchestrator due to the edge and core networks segregation based
on availability zones.

Based on a preliminary investigation, SliceNet proposes three solutions to explore: Open
Baton [50], Juju-based orchestrator (JOX) [51], and OSM implemented in MEC as an NFVO.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 59 of (77)

5.5.1 Open Baton

Open Baton [50] is an open source platform providing an aligned implementation of the ETSI
MANO specification. The architecture of Open Baton is presented in Figure 27 which shows
the interoperability (integrating heterogeneous VIMs and VNFMs via a plug and play model
with the exposed Restful API and SDKs) and extensibility (flexible for supporting any kind of
use case) of the framework. In addition, it supports a publish/subscribe Event Engine for
dispatching of the lifecycle events execution, a Fault Management System (FMS) for
automatic runtime management of faults which may occur at any level, an Autoscaling
Engine (AE) for automatic runtime scaling operation of VNFs, a Network Slicing Engine (NSE)
to ensure a specific QoS for a Network Slice Instance (NSI) or Network Slice Subnet Instance
(NSSI), and a Monitoring Plugin to allow whatever monitoring system preferred. The
communication between the components is via RabbitMQ, which implements the Advanced
Message Queuing Protocol (AMQP). Importantly, the NFVO is completely designed and
implemented and fully compliant with the ETSI MANO, and thus it is suitable to adopt this as
the NFVO functional block for MEC MANO in SliceNet.

Figure 27. Open Baton architecture [50]

Open Baton is an extensible and customizable NFV MANO-compliant framework supporting
different types of VIM (which can be easily added via a VIM instance Point of Presence
(PoP)), VNFM, monitoring system, etc. Therefore, it is proposed in SliceNet that this
framework will be adopted in SliceNet MANO where it uses existing Open Baton NFVO and
integrates with OpenStack VIM; and either uses the provided generic VNFM and/or
integrates with Juju VNFM to complete the comprehensive functional blocks in the ETSI
MANO. Some other supported components (SSL, FM, AE, etc.) can be enabled, if needed. For
multi-VIMs, the other VIMs can be integrated into this framework by providing their own
VIM drivers via a plug and play model provided by Open Baton as shown in Figure 27.
Alternatively, they can be integrated and managed by OpenStack (Docker Swarm,
Kubernetes, Mesos) as shown in Figure 28, which illustrates the integration of the open
source implementation selected for the three MANO functional blocks.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 60 of (77) © SliceNet consortium 2018

Figure 28. Proposed MANO implementation for MEC in SliceNet

5.5.2 JOX- a Juju-based Slice Orchestrator

JOX [51] is an open-source, event-driven orchestrator for the virtualized network that
natively supports network slicing that can be used not only for MEC platform and its
application, but also for RAN and CN segments. Inside the JOX core, a set of services is used
to operate and control each network slice, while at the same time it supports the necessary
interplay between resource and service orchestration, VNFM and VIMs. From the
implementation perspective, JOX is tightly integrated with the Juju VNFM framework
provided by Canonical.

Figure 29 [51] shows the architecture of JOX including:

 the JOX core with a set of core services to support of slice-specific life-cycle
management, data handling, monitoring and template management;

 JOX Plugin Framework where each plugin element interacts with the corresponding
agent via a message bus;

 the Northbound REST API to enable monitoring, control and programming of each
slice.

In more details, in JOX, a slice is represented by a JSlice object that is defined as a set of
models (called JModels) together with a policy specification. Every JModel is a bundle of
resources, services, service chains and policy. JOX Slices Controller (JSC) is responsible to
host and control all the instantiated JSlices. This is the place where global optimizations can
be performed. JOX Clouds Controller (JCC) is responsible to host and control all the
instantiated JClouds. JCC offers services to the JSC. Every JCloud object hosts all the
underlying cloud resources and interacts with the physical infrastructure and the cloud
control mechanisms through two channels: (i) the VNFM for a set of basic functionalities,
and (ii) directly with the VIM for fine-grain monitoring and control.

JOX interacts with the Juju VNFM using the Juju-python 2.25 API. A specific Juju plugin is
responsible to update the status of network slices services in runtime depending on the
events/messages received by JOX driven by the JSlice owner. In order to interact with VIMs
for the cloud infrastructure, the RAN and the MEC, JOX relies on a message-bus-based plugin
framework. The message bus implementation is based in the RabbitMQ solution (v3.5.7
AMQP), while we use the Pika library to exploit the RabbitMQ services.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 61 of (77)

Figure 29. JOX architecture [51]

Different from Open Baton, JOX inherently supports lifecycle management of network slices
and orchestration for the mobile network. Specifically, it supports basic operations defined
by 3GPP in TR28.801 to manage the lifecycle (preparation, instantiation, configuration,
activation, runtime and decommissioning phase) of a NSI, where all phase related API
methods are exposed via the Northbound API. Besides, JOX also supports orchestration for
the Mobile Network where it exploits RAN and CN specific plugins to efficiently orchestrate
the edge network resources and services, e.g. orchestrating a new slice across multiple
eNBs, partitioning the radio resources and deploying a dedicated CN for this newly
generated slice. Furthermore, JOX also supports optimising the operational environment, for
example, running a slice-specific logic or global optimisation on all slices applications on top
of the Northbound API.

Besides the implementation proposal in Figure 28, SliceNet has also investigated the option
of JOX framework with JOX NFVO, Juju VNFM and multi-VIMs as shown in Figure 30. It is
noted that JOX can also be used for RAN and CN segments. As JOX is a single JOX NFVO,
single Juju VNFM and multi-VIMs, it can also integrate with other VIMs via the plugins
framework.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 62 of (77) © SliceNet consortium 2018

Figure 30. Proposed MANO implementation for MEC in SliceNet with JOX NFVO

5.5.3 OSM - ETSI’s Open Source Mano

Open Source MANO (OSM) [52], [53] is an ETSI-hosted project to develop an Open Source
NFV MANO software stack aligned with ETSI NFV, suitable for all VNFs, operationally
significant and VIM-independent. The architecture of OSM is shown in Figure 31 [53], where
it can be approximately mapped to ETSI NFV MANO logical view as in Figure 32 [53].

Figure 31. OSM Release THREE architecture [53]

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 63 of (77)

Figure 32. OSM mapping to ETSI NFV MANO [53]

The OSM has defined an expansive scope for the project covering both design-time and run-
time aspects related to service delivery for telecommunications service provider
environments. The run-time scope includes:

 An automated Service Orchestration environment that enables and simplifies the
operational considerations of the various lifecycle phases involved in running a
complex service based on NFV;

 A superset of ETSI NFV MANO where the salient additional area of scope includes
Service Orchestration but also explicitly includes provision for SDN control;

 Delivery of a plugin model for integrating multiple SDN controllers;

 Delivery of a plugin model for integrating multiple VIMs, including public cloud based
VIMs;

 Delivery of a plugin model for integrating multiple monitoring tools into the
environment;

 One reference VIM that has been optimised for Enhanced Platform Awareness (EPA)
to enable high performance VNF deployments;

 An integrated “Generic” VNFM with support for integrating “Specific” VNFMs.

 Support to integrate Physical Network Functions into an automated Network Service
deployment;

 Being suitable for both Greenfield and Brownfield deployment scenarios;

 GUI, CLI, Python based client library and REST interfaces to enable access to all
features;

The design-time scope includes:

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 64 of (77) © SliceNet consortium 2018

 Support for a model-driven environment with Data Models aligned with ETSI NFV
MANO;

 The capability for Create/Read/Update/Delete (CRUD) operations on the Network
Service Definition;

 Simplifying VNF Package Generation;

 Supplying a Graphical User Interface (GUI) to accelerate the network service design
time phase, VNF onboarding and deployment.

As shown in Figure 31, with the plugins model for VIMs and SDNs, the Resource
Orchestration Engine is connected to specific interface provided by the VIMs and SDN
controllers for managing and coordinating resource allocations across multiple geo-
distributed VIMs and multiple SDN controllers. In addition, the VNF Configuration and
Abstraction (VCA) layer enables configurations, actions and notifications to/from the VNFs
and/or Element Managers. When backed by Juju, it provides the facility to create generic or
specific indirect-mode VNFMs, via Charms that can support the interface the VNF/EM
chooses to export. Overall, the OSM Release THREE substantially enhances interoperability
with other components (VNFs, VIMs, SDN controllers, monitoring tools) and provides a plug-
in framework to make platform maintenance and extensions significantly easier to provide
and support, and thus it is proposed in SliceNet that this framework will be adopted in
SliceNet MANO.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 65 of (77)

6 Practical Case Studies – Mobile Edge Apps

Studying the benefits of MEC as well as its practical cases was not possible due to the lack of
implementation of ETSI MEC platform. We analyse three sample case studies that can be
enabled with MEC in general and LL-MEC in particular. As a next step, the proposed SliceNet
will be investigated leveraging the flexibility offered by the LL-MEC platform.

The considered demonstration scenario is illustrated in Figure 33 and consists of 2
commercial LTE-enabled smartphones (Huawei Nexus 6p), National Instrument/Ettus USRP
B210 as RF front-end, and 4 Linux-based PC running OAI eNodeB, OAI core network, Open
vSwitch v2.7, and Mosaic5G LL-MEC. The experiment is deployed in FDD SISO mode with
5MHz channel bandwidth. The target frequencies will be band 7 (Europe) radio
environment.

Figure 33. SliceNet MEC demonstration platform

6.1 End-to-End Mobile Network Slicing

Future 5G networks are envisioned to support a wide range of vertical segments with a
diverse set of performance and service requirements. Network slicing can be seen as an
enabler to share the physical network across multiple logically isolated networks. We
consider LL-MEC as a platform to deploy network slicing leveraging 3GPP Gateway CN
(GWCN) towards the enhanced dedicated core network (eDECOR 3GPP TR 23.711) to
achieve isolation and performance guarantee in the Data Plane. In eDECOR, a UE indicates a
slice ID that allows the eNodeB to select the appropriate CN elements for its traffic. The slice
ID is indicated by the UE based on the encoded information in the UE, i.e. in the Universal
Subscriber Identity Module (USIM), or can be simply mapped to the Public Land Mobile
Network (PLMN). Moreover, the UE communicates the slice ID during the RRC connection
procedure as well as in the Non-Access Stratum (NAS) procedure, which allows both eNB and
MME to contain the UE within the requested slice(s) and treat it accordingly.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 66 of (77) © SliceNet consortium 2018

We assume no traffic differentiation within a slice and thus the same policy is applied to all
the UEs within the slice whereas the policy between different slices are generally mutually
independent. When realizing an E2E network slicing, the significant challenges come mostly
from RAN due to the dependency on dedicated hardware (i.e. radio frontend), the time-
varying radio resources, and mobility management among the others. Figure 34 shows how
network programming (i.e. RAN and CN) is enabled in LL-MEC to create two network slices,
where one gets higher over-the-air performance and served locally by MEC and the other
gets the best-effort performance and directed to the backend server. This experiment is
related to the SliceNet Smart Grid use-case, where the reaction time to an event is
significantly reduced with the help of MEC.

Figure 34. LL-MEC programmability in creating slices

More specifically, we design a slice policy enforcement algorithm to apply different resource
allocation strategies to RAN and implement it as a low latency MEC application interfacing
with the LL-MEC platform through the SDK. The Data-Plane programmability is enabled by
the EPS and the real-time control decision can be delegated back to RAN.

Two slices are created and assigned with one Commercial Off-The-Shelf (COTS) UE each, and
the percentage of radio resources and switching bandwidth for each slice are adjusted
according to the applied slicing policy. To demonstrate the benefits of end-to-end slicing, we
consider both uncoordinated and coordinated programmability for RAN and CN and change
the enforced policy on-the-fly to measure the resulted downlink throughput. As illustrated in
Figure 35, for uncoordinated case, the policy is first enforced at t=10s with 1Mbps for slice 1
and 15 Mbps for slice 2. Then at t=20s, a second policy is enforced only to RAN to lower the
rate down to 8Mbps for both slices (equivalent to 50% of radio resources per slice). Finally, a
third policy is enforced only to CN at t=33s to increase the switching bandwidth to 6 Mbps.
In case of coordinated programmability, only one policy is enforced at t=18s to both RAN
and CN to create a best-effort slice with 1Mbps and low latency slice with 15 Mbps.

The results confirm the benefits of MEC and SDN to allow coordinated programmability and
enable the network slicing. In the case of uncoordinated slicing, some bandwidth is occupied
but not used efficiently due to the asynchronous resource allocation between RAN and CN.
However, for coordinated slicing, it can be clearly seen the performance gap between these
two slices and the resources are appropriately allocated to each slice according to their
specific requirements. While the results demonstrate the power of programmability in
changing the behaviour and performance of the network, it has to be mentioned that
unauthorized or inconsistent control decisions made from MEC applications can potentially
lead to inefficient network utilization and performance or even a network failure. This

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 67 of (77)

suggests that access control policy enforcement and conflict resolution among different MEC
applications are definitely required in the production environment.

(a) Uncoordinated Slicing

(b) Coordinated Slicing

Figure 35. Mobile network slicing use case

6.2 RAN-Aware Video Optimization

As a showcase of mobile network slicing, RAN-aware content optimization is chose as the
second use case. To demonstrate the benefits of LL-MEC, we consider video optimization as
one of the MEC applications and study the benefit of RAN information reported by the
eNodeB on improving user QoE. For example, the application can monitor the cell load
status and radio link quality obtained from RNIS in order to enforce a new resource
allocation policy or change the content quality. In the latter case, the video transcoding is
further adapted based on the RAN status so as to improve the network efficiency (e.g. by
avoiding TCP congestion control) and user QoE (e.g. avoid buffer freeze).

This use case is built on the top of the low latency network slice described above. We
implement a simple video streaming application over HTTP on top of LL-MEC and choose
Channel Quality Indicator (CQI) as a flag to reflect radio link quality of each UE. When UE
accesses the video service, LL-MEC has the ability to (a) program the routing path and
redirect the traffic to one of the MEC applications if the requested service matches (e.g.
destination IP address), and (b) adapt dynamically the streaming rate according to the
estimated UE throughput. Multiple approaches to provide throughput guidance can be
applied on the top of LL-MEC RNIS producer app such as a statistical method, e.g.
exponential moving average or even a discrete link quality to throughput mapping. This
experiment is related to the SliceNet eHealth use-case, where the video streaming rate is
adapted to the radio link condition with the help of MEC.

In Table 8, we show the maximum TCP bitrate of a video stream through a discrete mapping
between user CQI and sustainable TCP throughput identified during experiments. This value
is then used as a predicted user throughput allowing the video server to adjust the
transcoding accordingly. The observed buffer freeze and perceived QoE (results are not
shown here) at the user confirm such a RAN-aware content optimization enabled by LL-MEC.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 68 of (77) © SliceNet consortium 2018

Table 8. Measured maximum sustainable TCP bitrate with discrete congestion level based on CQI

CQI Downlink (Mb/s) Uplink (Mb/s)

11- 15 15.224 8.08

9- 11 11.469 6.04

7- 9 9.88 4.47

4- 7 5.591 2.49

0-4 1.08 0.69

The results reveal the benefit of the coordinated slicing and joint programmability managed
by authorized MEC applications to achieve an effective mobile network. It is noted that the
timescale of detecting CQI changes is much less than the one in TCP congestion mechanism.
Instead of recovering congestion reactively, adapting the service demand proactively is also
feasible through RNIS.

6.3 IoT Gateway

The MEC technology may be extended to the IoT services, as a platform used to aggregate
and process the different IoT packets, with respect of scalability of resources. A specific
implementation of IoT related to MEC is the Smart City vertical (Smart Lighting use case),
which is in fact the massive Machine Type Communications UCs, aligned with the 3GPP. The
MEC framework provides the networks communication aspects, 3GPP network, as an Mx
interface between the UE app (users in general, sensors) and the MEC system. In case of
different application and communication systems, it may be used also non-3GPP
communication networks, as the LoRa or Wi-Fi.

The scenario is based on the massive IoT sensors deployment (tens of thousands of lighting
poles with sensors), connected through seamless type technology to the provider network
(MEC), by using dedicated IoT Gateways that plays the role of the network connectors. The
scenario is relevant if the application used for the UCs is also considered critical and there
are not local Data Centres. In the E2E vision, the IoT sensors may generate tens of millions of
messages in a month, that are translated into thousands of messages per second, requiring
a place of data processing before sending them to the edge or core application. There is also
a requirement for security, as the application hosted in cloud (virtualized environment) are
exposed to malicious attacks. These aspects and are treated at the locally, at the IoT
Gateways level, that will handle the gap between the devices (sensors) and cloud apps.

The IoT Gateway, as a connector, must support any application and any device and it may be
a physical device or a software application and pass raw data into a secure way to the
central application (IoT platform, dashboard, command and control). In this aspect, the IoT
Gateway module integrates a two-way communication between any 3rd party edge/core
platform apps and the devices (sensors), assuring the interoperability and scalability and
simplified communication, distributes the messages of different services and expose
multiple IoT protocols.

The overall IoT network architecture for our use case, Smart Lighting, whose particularities
and functional blocks were explained above, is presented on Figure 36.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 69 of (77)

Figure 36. Overall IoT network architecture

As a third use case, we consider LL-MEC as a platform to deploy such an IoT Gateway at the
edge leveraging the newly-introduced network slicing concept. Figure 37 shows a simplified
workflow diagram on how the IoT traffics are directed to a dedicated user-plane function
denoted as dedicated X-GW-U (De-X-GW-U) LL-MEC, based on the slice ID. Following the
reception of the slice ID through attach request, the SMF, also referred as MME/SGW-C in
4G, maps the UE slice ID (stored in HSS) to the De-X-GW-U, and initiates a set of OpenFlow
rules for this newly instantiated switch. Then, the tunnel information setup for De-X-GW-U is
included in Initial Context Setup Request and sent to eNodeB. At this point, the dedicated
Data Plane of the UE is established between the eNodeB and switch. This experiment is
related to the Smart City use case, where a large number of sensory devices are served with
the help of MEC.

Figure 37. Workflow to establish a dedicated user-plane function

In this use case, 2000 UEs are considered, which are grouped into two slices of 1000 UEs.
The massive LL-MEC S1-U emulator is used for sending sensory data to dedicated switches
depending on the UE slice ID. The result of latency measurement is shown in Figure 38 with
and without slicing. It can be observed that with the dedicated Data Plane, not only traffic
isolation and scalability can be achieved, but also performance can be greatly improved by
lowering the latency and its variability. With the help of LL-MEC, current architecture is
ready to deploy IoT gateway for different island of sensory devices. As a result, IoT devices
can be directed to a dedicated gateway for S1-U capabilities based on slice ID and achieve
traffic isolation and security in terms of data privacy.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 70 of (77) © SliceNet consortium 2018

Figure 38. Latency measurements of isolated IoT slices

With MEC platform, an IoT Gateway control module can be deployed at the edge of the
network for an efficient aggregation and management of messages sent by devices (sensors)
towards the cloud and processing applications. It is designed to connect any type of sensors
using different radio access network (4G, LTE-M, NR, LoRaWAN, etc.) or different dedicated
UPF (see above). This device is built to assure bidirectional communication. Taking this into
account, any admin or 3rd party applications can send commands through cloud to
sensors/devices in the field.

Such an IOT gateway shall support divers IoT protocols. A general solution should have at
least four main available connectivity protocols:

 MQTT (Message Queuing Telemetry Transport): MQTT is a lightweight connectivity
protocol for IoT applications. It is based on the TCP/IP stack which uses the
publish/subscribe method for transportation of data. MQTT consists of two broad
categories of participating devices - they are called brokers and clients. MQTT works
on a paradigm called the publish/subscribe method. A client can publish data
regarding a certain parameter to the broker under a topic. Another client interested
in this topic can subscribe to this topic and receive regular updates on messages
under the topic.

 CoAP (Constrained Application Protocol): CoAP is a web transfer protocol based on
the REST model. It is mainly used for lightweight M2M communication owing to its
small header size. CoAP is built upon the UDP stack, which is the primary difference
when compared with HTTP or MQTT. This makes it faster and more resource
optimized rather than resource intensive. However, this also makes it less reliable
than HTTP or MQTT, and QoS factors remain static in case of CoAP.

 REST: RESTful HTTP - Hyper Text Transfer Protocol, the most popular protocol for
communication over the Internet. It runs on a client-server model, with the server
responding to any client demands and it is necessary for this protocol to be built
upon the TCP/IP stack.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 71 of (77)

 LoRaWAN: LoRaWAN is a media access control protocol for wide area networks. It is
designed to allow low-powered devices to communicate with Internet-connected
applications over long-range wireless connections. Using those protocols mentioned
above, all sensors should connect to IoT Gateway over different type of access
networks. E.g. 2G/3G/4G, LTE-M, LoRaWAN, NB-IoT or Bluetooth/Wi-Fi.

Figure 39 below depicts the IoT Gateway connectors architecture.

Figure 39. IoT gateway logical architecture

As mentioned above, an IoT Gateway should be a component that can allow bidirectional
communications.

1. First flow, should gather data from all kind of sensors. Connectivity module is the
interface that can be configured for specific protocol (according to each use case and
access type). Message filtering is a function that sorts messages based on tags, id`s
and forward the message to queue. Queues are configured based on
clients/applications who listen for specifics messages. Endpoint block should expose
an interface where some data can be extracted by anyone with access to it.

2. Second flow, should relay also on endpoint block where can call some methods or
functions such that sensors can receive commands or some specific configurations
through APIs.

IoT Gateway exposes a REST API with the following functionalities:

 Device management (command operations, parameters, inventory, etc.);

 API Key operations;

 Queues management;

 Alerts management;

 Web portal.
Software package for this type of application can be installed on a virtual machine with
following amount of resources:

 CPU: 8 cores;

 RAM: 8 GB;

 Storage: 750 GB (depends on the type of architecture – if, for example, choose to use
a database as cache system for faster search and indexing).

The IoT gateway is a key component of every IoT solution. Before decision regarding
hardware for the gateway platform, it is important to analyse message flow and the data
formats of the payloads and try to filter out or aggregate as much data as it can. In addition,
while the choice of proper hardware for IoT solution is very important, picking up the right

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 72 of (77) © SliceNet consortium 2018

gateway software and infrastructure is a factor that will highly affect the total maintenance
and cost of entire system.

Specific 5G IoT use case requirements, based on the principle of deploying applications
lower in the network, in order to meet various customers’ requirements, starts from today
implementations, as we face today’s high latency apps implementations. 5G applications in
this context requires medium or low latency or data processing, as close as possible to the
client, using a MEC architecture.

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 73 of (77)

7 Conclusions

This deliverable has presented the main activities related to the design and prototype of an
open virtualised Mobile/Multi-access Edge Computing (MEC) infrastructure segment as part
of the SliceNet end-to-end slicing-friendly infrastructure. An exhaustive analysis of the
different programmable data path mechanisms has been carried out to provide a concrete
design and prototype including selected suitable enablers towards allowing implementation
of QoS-aware Network Slices in the MEC-Core network segment. It will enable the Slice
Control and Slice Management capabilities envisioned in SliceNet to be created on top. An
ETSI MEC platform has been prototyped to enable CP and UP programmability and the
capabilities to facilitate the deployment of diverse applications over the edge of the network
while enabling a slice-friendly infrastructure. Moreover, a number of considerations about
the network Management Plane have been provided for the approach taken in the SliceNet
consortium to address the management of MEC architecture. Prototyping details and
empirical results have been provided to validate the essential technical approaches
proposed in the MEC architecture. More empirical results will be presented in scientific
publications.

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 74 of (77) © SliceNet consortium 2018

References

[1] SliceNet, Deliverable 2.2 - Overall Architecture and Interfaces Definition, Jan. 2018.

[2] ETSI GS MEC 003, “Mobile Edge Computing (MEC); Framework and Reference
Architecture”, Mar. 2016, available online at
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010
101p.pdf

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner, “OpenFlow: Enabling innovation in campus networks,”
SIGCOMM Comput. Commun. Rev., 2008.

[4] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “Softcell: Scalable and flexible cellular core
network architecture,” in Proc. the 9th ACM Conference on Emerging Networking
Experiments and Technologies (CoNEXT’13), 2013.

[5] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis, “Flexran: A
flexible and programmable platform for software-defined radio access networks,” in
Proc. the 12th International on Conference on Emerging Networking EXperiments and
Technologies (CoNEXT’16), 2016.

[6] C.-Y. Chang, K. Alexandris, N. Nikaein, K. Katsalis, and T. Spyropoulos, “MEC
architectural implications for LTE/LTE-A networks,” in Proc. ACM Workshop Mobility
Evol. Internet Archit. (MobiArch), New York, NY, USA, Oct. 2016, pp. 13–18.

[7] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini, and C. Bonnet, “Low latency MEC
framework for SDN-based LTE/LTE-a networks,” in Proc. IEEE International Conference
on Communications Conference, ser. ICC ’17, 2017.

[8] Open vSwitch, Feb. 2018. [Online]. Available: http://openvswitch.org/

[9] SimpleSumeSwitch Architecture, Feb. 2018. [Online]. Available:
https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-Overview

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D.
Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-
independent packet processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp.
87–95, Jul. 2014

[11] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP flow information export
(IPFIX) protocol for the exchange of flow information,” IETF, Fremont, CA, USA, RFC
7011, Sep. 2013. [Online]. Available: http://www.ietf.org/rfc/rfc7011.txt

[12] B. Trammell and E. Boschi, “An introduction to IP flow information export (IPFIX),” IEEE
Commun. Mag., vol. 49, no. 4, pp. 89–95, Apr. 2011. [Online]. Available:
http://dx.doi.org/10.1109/MCOM.2011.5741152

[13] Claise, B., Ed., Johnson, A., and J. Quittek, "Packet Sampling (PSAMP) Protocol
Specifications", RFC 5476, Mar. 2009.

[14] Dietz, T., Kobayashi, A., Claise, B., and G. Muenz, “Definitions of Managed Objects for
IP Flow Information Export", RFC 6615, Jun. 2012.

http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
http://openvswitch.org/
https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-Overview
http://www.ietf.org/rfc/rfc7011.txt
http://dx.doi.org/10.1109/MCOM.2011.5741152

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 75 of (77)

[15] Muenz, G., Claise, B., and P. Aitken, "Configuration Data Model for the IP Flow
Information Export (IPFIX) and Packet Sampling (PSAMP) Protocols", RFC 6728, Oct.
2012.

[16] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network
Configuration Protocol (NETCONF)", RFC 6241, Jun. 2011.

[17] Claise, B., Ed., "Cisco Systems NetFlow Services Export Version 9", RFC 3954, Oct. 2004.

[18] sFlow specifications, Feb. 2018. [Online]. Available:
http://www.sflow.org/developers/specifications.php

[19] Comparison of sFlow with other technologies, in Traffic Monitoring using sFlow, Feb.
2018. [Online]. Available: http://www.sflow.org/sFlowOverview.pdf

[20] B. Pfaff and B. Davie, “The Open vSwitch Database Management Protocol”, RFC 7047,
Dec. 2013.

[21] A. Bregman, Open vSwitch: Introduction – Part 2, Oct. 2016, [Online]. Available:
http://abregman.com/2016/10/19/open-vswitch-introduction-part-2/

[22] Open vSwitch Manual, Feb. 2018. [Online]. Available:
http://www.openvswitch.org//ovs-vswitchd.conf.db.5.pdf

[23] N. Zilberman, Y. Audzevich, G. Covington, and A. Moore, “NetFPGA SUME: Toward 100
Gbps as Research Commodity”, IEEE Micro, vol.34, no.5, pp.32,41, Sep.-Oct. 2014

[24] Netcope Technologies, “Netcope FPGA Boards,” Feb. 2018. [Online]. Available:
http://www.netcope.com/en/products/fpga-boards

[25] The P4 Language Consortium, “P4→NetFPGA: A low-cost solution for testing P4
programs in hardware.” [Online]. Available: https://p4.org/p4/p4-netfpga-a-low-cost-
solution-for-testing-p4-programs-in-hardware.html

[26] DPDK, Feb. 2018. [Online]. Available: https://dpdk.org/

[27] Introduction to DPDK: Architecture and Principles, Feb. 2018. [Online]. Available:
https://blog.selectel.com/introduction-dpdk-architecture-principles/

[28] XDP, Feb. 2018. [Online]. Available: https://www.iovisor.org/technology/xdp

[29] IO Visor Project, Feb. 2018. [Online]. Available: https://www.iovisor.org/

[30] RF_Ring, Feb. 2018. [Online]. Available: https://www.ntop.org/products/packet-
capture/pf_ring/

[31] PF_Ring Zero Copy, Feb. 2018. [Online]. Available:
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/

[32] Overview of Single Root I/O Virtualization (SR-IOV), Apr. 2017. [Online]. Available:
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-
single-root-i-o-virtualization--sr-iov-

[33] Intel, “Virtual Machine Device Queues”, Technical White Paper, Feb. 2018. [Online].
Available: https://www.intel.co.uk/content/www/uk/en/virtualization/vmdq-
technology-paper.html

[34] OpenStack, Feb. 2018. [Online]. Available: https://www.openstack.org/

https://tools.ietf.org/html/rfc6241
http://www.sflow.org/developers/specifications.php
http://www.sflow.org/sFlowOverview.pdf
http://abregman.com/2016/10/19/open-vswitch-introduction-part-2/
http://www.openvswitch.org/ovs-vswitchd.conf.db.5.pdf
http://www.netcope.com/en/products/fpga-boards
https://p4.org/p4/p4-netfpga-a-low-cost-solution-for-testing-p4-programs-in-hardware.html
https://p4.org/p4/p4-netfpga-a-low-cost-solution-for-testing-p4-programs-in-hardware.html
https://dpdk.org/
https://blog.selectel.com/introduction-dpdk-architecture-principles/
https://www.iovisor.org/technology/xdp
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.openstack.org/
https://www.openstack.org/

SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1

Page 76 of (77) © SliceNet consortium 2018

[35] OpenDayLight, Feb. 2018. [Online]. Available: https://www.opendaylight.org/what-we-
do/current-release/lithium

[36] “Brocade SDN Controller OpenStack Integration Guide”, Feb. 2018, available online at
http://workflowcomposer.net/content/html/en/deployment-guide/brocade-sdn-
openstack-integration-dp/GUID-3230BA97-29D2-4E05-B7A3-5BB9390A1B3A.html

[37] OpenDayLight, “OpenDaylight with OpenStack Guide”, Feb. 2018. [Online]. Available:
http://docs.opendaylight.org/en/stable-nitrogen/opendaylight-with-
openstack/index.html

[38] OpenDayLight, “Release/Lithium/VTN/Developer Guide/OpenStack Support”, Feb.
2018. [Online] Available:
https://wiki.opendaylight.org/view/Release/Lithium/VTN/Developer_Guide/OpenStac
k_Support

[39] Comparison of Availability Zone and Host Aggregate in OpenStack, Feb. 2018, available
online at https://www.datadoghq.com/blog/openstack-host-aggregates-flavors-
availability-zones/

[40] AWS 101: Learning About Regions and Availability Zones, Feb. 2018, available online at
https://cloudarchitectmusings.com/2017/02/07/aws-101-learning-about-regions-and-
availability-zones/

[41] SDNet Compiler Installation, Release Notes, and Getting Started Guide, Feb. 2018.
[Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1018-
sdnet-installation.pdf

[42] Xilinx SDK 2016.4, Feb. 2018. [Online]. Available:
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNa
v/embedded-design-tools/2016-4.html

[43] SDNet Packet Processor User Guide, Feb. 2018. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1018-
sdnet-installation.pdf

[44] OpenStack Architecture Design Guide, Feb. 2018. [Online]. Available:
https://docs.openstack.org/arch-design/

[45] OpenStack Magnum’s Developer Documentation, Feb. 2018. [Online]. Available:
https://docs.openstack.org/magnum/latest/

[46] ETSI GS MEC 001, “Mobile-Edge Computing (MEC); Terminology”, Mar. 2016, available
online at
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/001/01.01.01_60/gs_MEC001v010
101p.pdf

[47] Juju, Feb. 2018. [Online]. Available: https://Jujucharms.com/

[48] Juju for Telcos and Service Providers Pt. 2, Feb. 2018. [Online]. Available:
https://insights.ubuntu.com/2015/07/23/Juju-for-telcos-and-service-providers-pt-2

[49] Juju Charm Store, Feb. 2018. [Online]. Available: https://Jujucharms.com/store

[50] Open Baton, Feb. 2018. [Online]. Available: https://openbaton.github.io/

https://www.opendaylight.org/what-we-do/current-release/lithium
https://www.opendaylight.org/what-we-do/current-release/lithium
http://workflowcomposer.net/content/html/en/deployment-guide/brocade-sdn-openstack-integration-dp/GUID-3230BA97-29D2-4E05-B7A3-5BB9390A1B3A.html
http://workflowcomposer.net/content/html/en/deployment-guide/brocade-sdn-openstack-integration-dp/GUID-3230BA97-29D2-4E05-B7A3-5BB9390A1B3A.html
http://docs.opendaylight.org/en/stable-nitrogen/opendaylight-with-openstack/index.html
http://docs.opendaylight.org/en/stable-nitrogen/opendaylight-with-openstack/index.html
https://wiki.opendaylight.org/view/Release/Lithium/VTN/Developer_Guide/OpenStack_Support
https://wiki.opendaylight.org/view/Release/Lithium/VTN/Developer_Guide/OpenStack_Support
https://www.datadoghq.com/blog/openstack-host-aggregates-flavors-availability-zones/
https://www.datadoghq.com/blog/openstack-host-aggregates-flavors-availability-zones/
https://cloudarchitectmusings.com/2017/02/07/aws-101-learning-about-regions-and-availability-zones/
https://cloudarchitectmusings.com/2017/02/07/aws-101-learning-about-regions-and-availability-zones/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1018-sdnet-installation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1018-sdnet-installation.pdf
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2016-4.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2016-4.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1018-sdnet-installation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1018-sdnet-installation.pdf
https://www.openstack.org/
https://www.openstack.org/
https://docs.openstack.org/arch-design/
https://www.openstack.org/
https://www.openstack.org/
https://docs.openstack.org/magnum/latest/
https://jujucharms.com/
https://jujucharms.com/store
https://openbaton.github.io/

Deliverable D3.1 SliceNet H2020-ICT-2016-2/761913

© SliceNet consortium 2018 Page 77 of (77)

[51] K. Katsalis, N. Nikaein, and A. Huang, “JOX: an event-driven orchestrator for 5G
network slicing”, in Proc. IEEE/IFIP Network Operations and Management Symposium,
2018.

[52] OSM, Feb. 2018. [Online]. Available: https://osm.etsi.org/

[53] OSM Release THREE, Feb. 2018. [Online]. Available: https://osm.etsi.org/images/OSM-
Whitepaper-TechContent-ReleaseTHREE-FINAL.pdf

[End of document]

