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Executive Summary 

Mobile/Multi-access Edge Computing (MEC) has increasingly become an integral part of a 5G 
mobile network due to the considerable benefits that can be gained from this architectural 
enhancement, taking advantage of edge cloud computing and software networking 
capabilities, among other technologies. The SliceNet MEC architecture described in this 
document aims to provide an execution system for accelerated slice deployment, and offers 
advantageous support for service quality assurance, which is especially beneficial for 
services and use cases that demand ultra-low latency and/or high throughput for instance.   

Specifically, the following achievements are reported in this deliverable: 

 An advanced MEC system that is fully compliant with the ETSI MEC architecture is 
defined, as part of the end-to-end SliceNet infrastructure; 

 A fully functional MEC platform, named Low-Latency MEC (LL-MEC) platform, is 
presented with implementation details reported, including essential MEC services 
and Mobile Edge Application Framework and Software Development Kit (SDK) to 
allow further programmability;  

 A programmable, multi-tenanted Data Plane is designed and prototyped with 
experimental empirical results illustrated, as a slicing-friendly infrastructure for MEC 
and other non-Radio Access Network (RAN) segments, enabling Quality of Service 
(QoS) aware slicing; 

 The management and orchestration for the MEC system is discussed with specific 
open source managers and orchestrators considered and candidate solutions 
explored; 

 Finally, a number of preliminary use cases that can explore the proposed MEC system 
for improved performance are presented, as representative yet not comprehensive 
examples to be further evolved and aligned with SliceNet primary use cases. 
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Definitions 

 Mobile/Multi-access Edge Computing (MEC) segment: This primarily refers to the 
MEC infrastructure and MEC platform, together with essential MEC-level 
management and orchestration. It is noted that Mobile Edge Computing is equivalent 
to the ETSI (European Telecommunications Standards Institute) Multi-access Edge 
Computing when focused on the mobile access. 

 Slicing-friendly infrastructure: SliceNet infrastructure that explores Data Plane 
programmability, software networking, cloud computing and other related 
technologies to allow QoS awareness and control at the infrastructure level to 
facilitate network slicing that aims to meet specific Service Level Agreement (SLA). 
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1 Introduction 

Mobile/Multi-access Edge Computing (MEC) pushes cloud computing capabilities and 
resources to the edge of a network to allow end user and vertical applications to exploit this 
new IT/Telco service environment to achieve improved Quality of Service (QoS) and/or 
Quality of Experience (QoE). Therefore, MEC has emerged as a value-added paradigm to be 
increasingly integral and important in an end-to-end networking architecture. SliceNet fully 
adopts this vision and considers a MEC segment as an integral part of the SliceNet 
architecture [1]. 

1.1 Objectives 

Virtualised MEC infrastructure in particular features the end-to-end SliceNet infrastructure, 
and more generally to future 5G systems, which regards the establishment of slice-friendly 
cross-domain physical and virtual infrastructure layers, to provide an execution foundation 
for the upper layers in the SliceNet architecture. Within this the context, SliceNet will 
leverage and extend the MEC segment to support the emerging 5G slicing paradigm, and the 
resulted vertical use cases. The following specific objectives are identified, based on the 
description of the work: 

 Establish a MEC segment that is fully compliant with the ETSI MEC architecture under 
standardisation. This assures the standard compliance of the proposed SliceNet MEC 
segment and therefore all the interoperability with other ETSI MEC-compliant 
systems; 

 Explore enablers for slicing friendliness and multi-tenancy for the MEC infrastructure. 
Slicing-friendly infrastructure will facilitate the network slicing operations in the 
system especially in terms of providing enablers for QoS-aware or even QoS-assured 
network slicing. Moreover, multi-tenant isolation in the infrastructure layer will allow 
the infrastructure provider to offer the same infrastructure to multiple operators, 
among other potential users (tenants); 

 Create an execution system to accelerate slice deployment and support QoS. A Low 
Latency MEC (LL-MEC) platform will largely realise the ETSI MEC platform 
functionality required to run MEC applications on the SliceNet virtualisation 
infrastructure and provide MEC services. The MEC platform and the slicing-friendly 
and multi-tenanted infrastructure combined together will deliver the core of the 
SliceNet MEC execution system; 

 Investigate the essential management and orchestration support for the MEC 
infrastructure and MEC platform.  

1.2 Approach and Methodology  

The main technical approach taken in this task is to align the design and prototype of 
SliceNet MEC segment with the ETSI MEC architecture. SliceNet MEC segment mainly 
includes slicing friendly and multi-tenant aware infrastructure and LL-MEC platform, 
together with essential management and orchestration at the MEC level.  

 The slicing friendliness of the infrastructure is mainly achieved through programming 
the Data Plane to enable traffic flow classification and rule-based control, leading to 
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QoS support required by the slice to fulfil the SLA of a service. This will enable QoS-
aware slice deployment.  

 The multi-tenancy in the infrastructure layer is mainly achieved through the 
combination of virtual infrastructure management and software networking. The 
MEC-Core network Data Plane segmentation is achieved via availability zones 
provisioned by virtual infrastructure management. 

 The Control Plane and Data Plane programmability is supported through OpenFlow 
and FlexRAN control protocols effectively realising the ETSI MEC Traffic Rule Control 
and Radio Network Information services, among other MEC services.  

 Additional service quality assurance is enabled by the support of Mobile Edge 
services provided by the SliceNet MEC segment. These MEC services are especially 
beneficial for applications and use cases that demand ultra-low latency and/or high 
throughput for instance. 

1.3 Document Structure 

The remainder of the document is organised as follows. Section 2 reviews the ETSI MEC 
reference architecture and defines the scope and focus of this deliverable in terms of 
establishing the ETSI MEC-compliant SliceNet MEC segment. Section 3 presents details in the 
technical approach of designing and prototyping the SliceNet virtualised slicing-friendly and 
multi-tenanted MEC infrastructure especially the programmable Data Plane. Section 4 
elaborates the SliceNet LL-MEC platform achieving all the main functionalities defined in ETSI 
MEC platform for MEC applications and services. Section 5 investigates the necessary 
management and orchestration for the MEC infrastructure and platform, in particular, 
focusing on reference implementation for each functional block in Management and 
Orchestration (MANO). Section 6 describes a number of MEC applications and use cases to 
highlight the potential usage of the SliceNet MEC segment and benefits that it can bring to 
different application scenarios. 
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2 ETSI Mobile Edge Computing Standard and Compliance  

This section reviews the ETSI MEC reference architecture, and identifies the scope of MEC 
components and contribution in SliceNet for achieving an ETSI MEC compliant MEC segment. 
Moreover, the design challenges to achieve slicing-friendly infrastructure are highlighted. 

2.1 The Overall Architecture 

 

Figure 1. ETSI MEC reference architecture [2] 

Figure 1 illustrates the ETSI MEC reference architecture [2]. The following summary 
highlights the key MEC functional components, which are grouped into two subsystems, 
together with corresponding reference points (Mp reference points for the Mobile Edge 
Platform, and Mm ones for the MEC management plane, respectively): 

 Mobile Edge host subsystem: It contains Virtualization infrastructure (including the 
Data Plane), a Mobile Edge Platform (including ME Service, Service Registry, Traffic 
Rules Control and Domain Name System (DNS) handling) and ME applications 
(services). An ME service can be provided by the Mobile Edge platform or by an ME 
application (through service registration via Mp1 reference point).  

 Mobile Edge management subsystem: The host-level management consists of a 
Mobile Edge platform manager (including ME platform element management, ME 
application rules & requirements management and ME app lifecycle management) 
and a Virtualisation infrastructure manager, which manages the Mobile Edge 
platform via Mm5 and the Virtualisation infrastructure via Mm7, respectively.  The 
system-level management contains a Mobile Edge Orchestrator (MEO), which 
maintains an overview of the MEC system such as deployed ME hosts, available 
resources and ME services, topology etc., and an ME app catalogue. MEO interacts 
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with Mobile Edge Platform via Mm3 for the management of the ME application 
lifecycle, application rules and requirements, tracking available ME services, and 
Virtualisation infrastructure manager via Mm4 for managing virtualised resources of 
the Mobile Edge host, including tracking available resource capacity and managing 
ME application images. 

In addition, an optional User app LCM proxy is proposed to allow the User Equipment (UE) to 
request on-boarding, instantiation, termination and possible relocation (if supported) of the 
UE’s ME application and to be informed of the state of the ME application. 
An ME application package is on-boarded by the MEO, and the application can be associated 
with a set of application rules (especially traffic rules), and resources, services and/or QoS 
requirements (e.g., delay constraint) etc., and these requirements are validated by the MEO 
(and if necessary, adjusted to be compliant with the operator’s policies). The MEO also 
selects the appropriate Mobile Edge host to trigger the instantiation of the ME application 
based on these requirements.  

The Virtualisation Infrastructure provides the virtualisation resources to run the ME 
application as a Virtual Machine (VM). The Mobile Edge Platform provides an environment 
that enables the ME application to discover, advertise, provide and consume ME services 
and to run on the particular virtualisation infrastructure. 

The Mobile Edge Platform receives traffic rules from the Mobile Edge Platform Manager via 
Mm5 (or applications/services), and poses these rules to the Data Plane via Mp2. The Data 
Plane then executes the rules and consequently routes the traffic as desired for the MEC use 
case, e.g., among applications, services, network entities and various networks. 

2.2 Key Components and Interfaces Considered in SliceNet 

Figure 2 depicts the mapping of the ETSI functional elements to the tasks in this project 
based on the scoping of the tasks, which also illustrates the compliance of the SliceNet MEC 
with the ETSI MEC reference architecture.  

 

Figure 2. ETSI MEC compliance, scoping and tasks mapping 

In light of the scope of this project, to achieve an ETSI MEC compliant MEC segment, most of 
the functional elements in the standard reference architecture are explored.  
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Firstly, a Mobile Edge Platform is designed and prototyped, and a number of ME services are 
also implemented to support use cases. Consequently, an ETSI MEC compliant Mobile Edge 
host subsystem is achieved. It is noted that the DNS Handling element in the Mobile Edge 
platform is optional and thus it is not covered. This MEC platform part is in yellow (MEC 
platform) and purple (MEC applications/services) in Figure 2 and presented in Sections 3 and 
6, respectively.  

Secondly, regarding the virtualisation infrastructure, the aim is to achieve a programmable, 
multi-tenanted Data Plane for a slice-friendly MEC infrastructure. This infrastructure and 
Data Plane part is highlighted in light blue in Figure 2 and is addressed in Section 4. 

Thirdly, for the Mobile Edge management subsystem in red and brown in Figure 2, it is 
planned that this belongs to the Management Plane tasks to be further investigated in the 
corresponding following Work Package WP6 and task T7.2. In this deliverable, however, 
initial considerations regarding the Management Plane for the MEC segment are discussed 
in Section 5 to inform the design and implementation of the subsequent management tasks 
in other work packages. 

2.3 Design Challenges for Slicing-Friendly Infrastructure 

There are a number of challenges across different planes to achieve slicing-friendly 
infrastructure as envisioned in SliceNet: 

● Data Plane: To have different logical data paths (lanes/queues) into the networking 
infrastructures in order to allow traffic to flow through such lanes/queues without 
horizontal collisions/interference between lanes/queues. The Data Plane paths 
should be programmed to designated QoS-aware ones and best effort ones to allow 
the realisation of paths with controllable QoS and those with best effort delivery 
service, respectively. They are isolated from each other so that the traffic in each 
category would not affect that of the other category for effective management and 
fair provisioning even for the best effort slices. 

● Control Plane: To have a well-known semantics on the different priorities associated 
with each of the data path lanes/queues of the network infrastructure in order to 
allow the foundations of the specification of the definition of “network slicing”.  

○ Hardware Isolation: To have a logical architecture generic enough to 
represent the main technologies to allow hardware resource sharing, e.g., 
Virtualization and Encapsulation. 

● Application Plane: to enable Coordinated Control and User Plane programmability 
across Radio Access Network (RAN) and Core Network (CN) with real-time access to 
radio network information  the flexibility to develop control apps on the top of the 
platform SDK and the support of low latency control apps  and  their priorities and 
deadlines.  

● Management Plane: To have well-known semantics on the different rules used to 
identify how to select the lane/queue that is to be assigned to each of the network 
flows passing by the infrastructure and to select how much traffic is allowed over a 
given time period in order to allow the essential functionality of “network 
management”.  

○ Multi-tenancy: To have an infrastructure to allow the isolated use of shared 
resources.  
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○ Mobility: To have an infrastructure to allow user mobility along network 
resources.  

● Network Segments: To have a logical architecture inclusive enough to represent the 
main network segments involved in multiple administrative domains involved in the 
end-to-end communications. As shown in Figure 3, it includes the following 
connectivity: (Domain 1) Vertical business enterprise network -> RAN -> MEC 
segment -> CN -> Inter-Domain Network -> (Domain 2) CN -> MEC -> RAN -> Vertical 
business enterprise network. Moreover, it is envisioned that the 5G/4G 
components/network functions will be distributed in the appropriate segments: 

○ RAN: (5G) Remote Radio Unit (RRU), or Distributed Unit (DU);  
(4G) Remote Radio Head (RRH) 

○ Edge: (5G) Central Unit (CU);  
(4G) BaseBand Unit (BBU) 

○ CN: (5G) Access and Mobility Management Function (AMF), Session 
Management Function (SMF), User Plane Function (UPF), Authentication 
Server Function (AUSF), Unified Data Management (UDM), Policy Control 
Function (PCF) etc.;  
(4G) MME (Mobility Management Entity), Serving Gateway (SGW), Packet 
Data Network Gateway (PGW), Home Subscriber Server (HSS), Policy and 
Charging Rules Function (PCRF). 

 

Figure 3. Data path (and 5G/4G network functions) across different network segments 
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3 Low Latency MEC (LL-MEC) Platform for Software-Defined 
Mobile Network 

This section focuses on the design and prototyping of the SliceNet MEC platform, LL-MEC. 

Considering one of the key requirements for MEC, programmability, Software-Defined 
Networking (SDN) is a promising solution and already exploited extensively in non-mobile 
networks. It provides a network architecture where the Control Plane has been migrated 
from physical network devices with a well-defined protocol, e.g., OpenFlow [3]. OpenFlow is 
an SDN standard by ONF (Open Networking Foundation), and defines the southbound 
interfacing of a compliant SDN controller with the forwarding plane (Data Plane); it is further 
discussed in Section 4. The underlying infrastructure can therefore be abstracted creating 
opportunities for innovation and customization of network applications. The noticeable 
success in non-mobile networks made by SDN gives the initiatives to apply it onto the CN of 
Long Term Evolution (LTE) [4]. With the separation of Control Plane and Data Plane, SDN 
virtualizes the mobile network components, such as MME, Control Plane of SGW (or S-GW) 
and PGW (or P-GW) as potential MEC applications. The programmability of the core network 
provided by SDN is exactly where MEC can leverage and extend its programmability in RAN 
and further delegate control decisions. Not surprisingly, there have been considerable 
research interests on SDN and MEC with most of them focusing on conceptual frameworks 
but no open source platform for researchers as a reference to evaluate the benefits of SDN-
enabled MEC services. This gives the initiatives of LL-MEC to exploit the interplay between 
MEC and SDN in exploring and demonstrating coordinated network programmability 
through an ecosystem of network applications and SDK. Given the open specifications of 
MEC for vendor implementation, the SDN concept is applied in LL-MEC with OpenFlow [3] 
and FlexRAN [5] protocols. 

3.1 High-level Overview 

LL-MEC is a MEC platform thoroughly realizing SDN concept with much design ingenuity as 
well as many software components. In what follows, we provide an overview of LL-MEC 
architecture and the design challenges in realizing a low latency MEC platform that not only 
provides an ETSI-aligned MEC platform but also acts as a CN controller providing a clean 
separation between Control Plane (CP) and User Plane (UP) or Data Plane (DP) in CN [6]. 
Figure 4 shows that the MEC application manager lays the foundation for the upper-most 
layer and provides the programming interfaces (Mp1) for applications to be developed. 
Standing in the middle layer, the MEC platform includes two main core components, namely 
Radio Network Information Service (RNIS) and Edge Packet Service (EPS), which manage RAN 
and CN network services based on the C-plane and D-plane Application Programming 
Interfaces (APIs) from the abstraction layer respectively. At the bottom-most layer, the 
eNodeBs and OpenFlow-enabled switches comprises the Data Plane with the information 
abstracted by the FlexRAN and OpenFlow protocols and exposed through abstraction API 
(Mp2). The proposed MEC platform operates on a software-defined mobile network 
consisting of multiple LTE eNodeBs and OpenFlow-enabled switches, whether it is physical or 
software. Figure 4 depicts the application of LL-MEC to 4G. As seen in the figure, the control 
and Data Plane are separated, which without loss of generality also applies to 5G. In order to 
simplify the annotation in the figure, the Control Plane and Data Plane of SGW and PGW are 
respectively annotated as X-GW-C and X-GW-U, which represent the UPF and to some 
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extend SMF in 5G-CN architecture. As specified by ETSI, the Mp1 and Mp2 reference points 
are the interfaces between layers. In the following, we focus on the main design and 
implementation of LL-MEC, as a reference implementation of a subset of ETSI MEC 
specification, and highlight the key components to address the latency challenges. 

One of the key features of LL-MEC is to provide a unified applications development and 
programming environment by means of SDK to allow coordinated control decisions to be 
applied across different network domains, namely RAN and CN. In order to complete LL-
MEC, the abstraction protocols, i.e. FlexRAN towards RAN and OpenFlow towards CN, are 
exploited to facilitate the communication among network elements. These abstraction 
protocols and their corresponding APIs are developed within the MEC platform for allowing 
two-way interaction between them. In this way, LL-MEC is able to fulfil the requests coming 
from limitless edge applications and execute the precise tasks onto the underlying networks, 
which is exactly the merit of SDN. Moreover, the LL-MEC platform has been designed to 
support time-critical RAN operations and allow applications to be deployed with different 
level of priorities when interacting with the platform. The required low latency aspect has 
been considered throughout the design stages to fully utilise the power of LL-MEC at the 
network edge. 

 

Figure 4. High-level schematic diagram of LL-MEC 

Considering latency being the primary feature for a MEC platform to enable an ecosystem of 
rich edge applications with varieties of needs, LL-MEC distinguishes three types of latencies 
in its design as follows:  

● User latency: this represents the end-to-end user transport latency; 
● Control latency: this captures the latency for the MEC to perform an action, on 

behalf of an edge application, to the underlying networks, e.g. control and/or 
monitoring; 
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● Application latency: this represents the latency for an edge application to perform 
an action to the MEC. 

To this end, the key LL-MEC design challenges to realize the low latency MEC platform are 
listed below: 

● The separation of control and Data Plane throughout RAN and CN to have a 
programmable and coordinated network; 

● Coordinated control and user plane programmability across RAN and CN with real-
time access to radio network information; 

● The scalability with the large number of users and services (i.e. application flows) 
with QoS support; 

● The flexibility for applications and services to be registered as low latency to support 
the control decisions, their priorities and deadlines. 

3.1.1 Workflow of Bearer Establishment with LL-MEC   

Figure 5 shows the workflow of how an SDN-based mobile core network operates and 
interacts with LL-MEC to handle UE initial attach procedures for bearer’s establishment. The 
main point of the sequence diagram starts from the message calls initiated all the way from 
X-GW-C through LL-MEC to X-GW-U. It is noted that the entity to initiate the API call is not 
limited to be SGW-C, and MME can start the procedure for default and dedicated bearer’s 
establishment since they have the equal understanding about the bearer setup information.  

 Default Bearer: As soon as the UE becomes attached to the network with MME and 
X-GW-C knowing the GTP information, X-GW-C will initiate the procedure to transmit 
the UE information with the “UE Setup Rule” message to LL-MEC. And then based on 
the rules, LL-MEC is able to add the UE to its internal information base and setup the 
OpenFlow rules with the “OF Rules Setup” message in the corresponding switches. By 
introducing the concept of SDN into mobile network through the integration of 
OpenFlow-enabled switches, the default bearer can be setup by configuring the 
OpenFlow rules when UE completes the attach procedure. In addition, notice in 
Figure that at this point, default bear is established along the path, UE, eNodeB, and 
X-GW-U switch, and that the UE can access the Internet as normal. This procedure is 
the same for each “Modify Bearer Request” and “Modify Bearer Response” message 
for each is the same for S5/S8 bearer  

 Dedicated Bearer: When a UE attaches successfully to a mobile network, only the 
default bearer is created. Additional bearers that may be created after the default 
one are dedicated bearers, which also have different identities, e.g., bearer identifier 
(ID) and S1 SGW/eNB Uplink (UL)/Downlink (DL) Tunnel Endpoint Identifier (TEID), 
with default bearer. Another UE Setup Rules API call is required to setup the 
dedicated bearer right after the “Create Bearer Response” call for the default bearer, 
as shown in Figure. Like the case of default bearer, the dedicated bearer is 
established when X-GW-C receives the “UE Setup Rules Response” and exists only 
along the path between UE and X-GW-U switch. 

 QoS Setup for Guaranteed Bit Rate: The established dedicated bearer can be either 
Guaranteed Bit Rate (GBR) or Non Guaranteed Bit Rate (non GBR). For example, if the 
dedicated bearer is established for voice service, it has to be GBR for guaranteed 
QoS. In order to have the required QoS for UE, X-GW-C initiates a new API call (QoS 
Setup Rules) through LL-MEC right after the dedicated bearer is setup. This call is 
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used not only to reserve the required bandwidth but also to manage the access 
control based on allocation retention parameters (ARP). This is also shown in the 
bottom of Figure 5 clearly. When X-GW-U receives the configuration from LL-MEC, it 
will setup the rules for UE by creating a new meter table or adding into a pre-defined 
meter group. At this point, UE can access the Internet with guaranteed QoS. 

 

Figure 5. Workflow of bearer establishment with LL-MEC 

3.2 Design and Implementation 

The layered architecture of the LL-MEC and its main software components are shown in 
Figure 6. It can be seen that MEC application comprising the upper-most layer manages the 
Data Plane based on the information gathered through Mp1. The real-time RAN information 
is provided through a RNIS producer app to the MEC platform. The LL-MEC SDK abstracts the 
network information through a well-defined northbound interfaces and facilitates access to 
detailed network information based on which a decision can be made and enforced to the 
underlying network. The LL-MEC platform includes EPS, which implements ETSI Traffic Rule 
Control Service, to provide network services based on OpenFlow (OF) APIs located at the 
abstraction layer. In addition, the LL-MEC platform provides additional services to manage 
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events, UEs, context, stats, and switches. The eNodeBs and OpenFlow-enabled switches 
form the Data Plane as the bottom-most layer. The OpenFlow library is based on Libfluid.  

 

Figure 6. Software architecture of LL-MEC 

3.2.1 Mobile Network Abstraction 

The abstraction layer models and exposes the required operations for the underlying 
network through a unified interface. In LL-MEC, the Data-Plane APIs naturally comprise the 
abstraction layer for the edge of the network between RAN and CN by providing only the 
necessary information for the development of MEC applications and platform. The control 
protocols implemented in LL-MEC are divided into two domains, namely the RAN enabled by 
the RNIS producer App and the CN through OpenFlow. The RNIS producer app leverages the 
FlexRAN SDK to abstract view of the radio network status (e.g., topology, band, and signal 
strength) by extracting the parameters of interest from the RAN with the required level of 
granularity. Besides this, it also gives the possibilities to modify and control the state of the 
underlying network and passes the control decisions on the fly at a very fine time granularity 
(per subframe), e.g. reconfigure the resource block allocation policy for each connected UE 
and apply the policy on the fly in order to adapt service priorities. On the other hand, the 
OpenFlow protocol provides a fine-grain Data Plane programmability through the 
abstraction of the underlying data paths and allows the switch to handle GPRS (General 
Packet Radio Service) Tunnelling Protocol (GTP) packets in the core network and set the 
inner packet Type of Service (TOS) field to support QoS in the transport network. Last, all of 
the aforementioned features occur at the interaction between MEC platform and its 
underlying network enabled by CP and DP API. 
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3.2.2 Traffic Rules Control 

LL-MEC EPS implements the ETSI MEC Traffic Rules Control Service, and it is one of the main 
components for managing Data Plane. EPS brings a native IP-service end-point to the MEC 
applications and acts as a local IP agent performing network functions, like IP forwarding and 
packet encapsulation/decapsulation. EPS also gives the abilities for MEC applications to 
adapt the routing/forwarding for their specific purpose. Traffic coming from UEs through 
OpenFlow-enabled switches goes along the routes based on the rules setup in the switches 
by EPS and can be changed or shaped dynamically to optimize the routing. The way LL-MEC 
abstracts the Data Plane is to utilise the OpenFlow library as the protocol and based on that 
to construct the essential endpoints for LL-MEC infrastructure. As one of the core entities in 
LL-MEC, EPS offers the interfaces towards its northbound and southbound, which are 
described respectively as Mp1 and Mp2. 

Mp1 is the control interfaces for MEC applications to instruct the basic and advanced 
functionalities in the underlying network, such as default/dedicated bearers (re-
)establishment, QoS for GBR traffic, and a custom control commands from MEC applications. 
Note that the S1/S5/S8 bearer establishments follow the same workflow as presented in 
Figure 5. When the “Modify Bearer Request” is requested by either one of the “LTE attach 
procedures” or “EPS Mobility Management Service Request”, X-GW-C will notify LL-MEC for 
bearer establishment through “UE Setup Rules Request” API call, allowing LL-MEC to trigger 
an OpenFlow rules to setup the switch accordingly. When this “UE Setup Rules Request” API 
is called, the message must include the user identities, as indicated in Table 1 (e.g. 
uplink/downlink tunnel ID and bearer ID). As soon as the X-GW-C receives the “UE Setup 
Rules Response” call, the S1/S5/S8 bearer establishment is confirmed to be complete. 
Similar procedure can be used to extend LL-MEC to support QoS for GBR traffics through 
OpenFlow meter and group tables allowing performing various operations such as rate 
limiting for a particular flow, user, or group. LL-MEC currently supports traffic redirection 
allowing a MEC application to request that all traffic for a certain UE and certain service 
(flow) to be redirected to a receiver inside the calling MEC application.  

Mp2 is, from EPS point-of-view, used to instruct the Data Plane on how to route the traffic 
through OpenFlow rules. The types of rules that EPS creates and maintains in OpenFlow 
handler can be categorized into three groups:  

(1) default rules, which are pushed to OpenFlow-enabled switches on connection 
established for handling Address Resolution Protocol (ARP) and Domain Name 
System (DNS) queries;  

(2) UE specific rules, which are used to establish the default and dedicated bearers for 
UE; 

(3) MEC application rules, which are pushed to OpenFlow-enabled switch on events 
registered by applications.  

With the well-defined and full set of rules, the Data Plane can be fully separated from 
Control Plane and the user/nearer latency can be thus improved through dynamic 
programmability. 
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Table 1. Identifiers for user/bearer establishment/modifications 

Identities UE eNB MME SGW PGW 

UE IP YES  YES  YES 

BEARER ID YES YES YES YES YES 

S1 SGW/eNB 
UL TEID 

 YES YES YES  

S1 SGW/eNB 
DL TEID 

 YES YES YES  

S5 SGW/PGW 
DL TEID 

  YES YES YES 

S5 SGW/PGW 
UL TEID 

  YES YES YES 

SGW IP   YES YES YES 

PGW IP   YES YES YES 

3.2.3 Radio Network Information Service 

Under one of the specifications by ETSI MEC [2], RNIS is a service providing up-to-date radio 
network information, although the design and implementation details are under 
specification. In LL-MEC, RNIS exposes the real-time RAN information, such as radio bearer 
statistics, measurements related to UE, state changes of UE, and power measurements to 
MEC applications by interacting with C-plane API. The granularity of information can be 
adjusted based on parameters such as per cell, per UE, or per radio access bearer (RAB) and 
can be requested only once, periodically, or triggered when an event occurs. In addition, the 
control-plane API defines a set of functions that can be used by the Data Plane to notify the 
Control Plane about events such as the initiation of a new Transmission Time Interval (TTI) 
and the state change of a UE that has been powered off. In order to have a clean separation 
of control and Data Plane for RAN, FlexRAN protocol and RAN Information Base (RIB) are 
integrated into LL-MEC as a MEC producer app at the application level. 

The FlexRAN protocol acts as an abstraction layer allowing the management of the higher-
level control operations in a technology agnostic way, similarly to how OpenFlow abstracts 
the data path in the wired network. On the other hand, all the statistics and configurations 
about the RAN, i.e. UEs and eNodeB, are all maintained in the RIB as shown in Figure 6 and 
accessed by the applications. Furthermore, with the integration of RIB into MEC platform, LL-
MEC RNIS module can have direct and high priority access into RIB on per millisecond basis 
to ease the control latency. For example, an edge application can query each user link 
quality to provide a quasi real-time indication on the throughput in the next time window. 

3.2.4 Mobile Edge Application Framework and SDK 

One of the main benefits coming with the separation of control and Data Plane is that the 
MEC applications have limitless possibilities to be developed for any specific purpose 
without knowing the detailed knowledge of the underlying network. In LL-MEC, the 
programming interfaces (Mp1) and the SDK built on top of it (depicted in Figure 6) enable 
the application development and programming environment. The SDK offers a uniform 
interface and abstracts the multiple choices of Mp1 including Representational State 
Transfer (REST) API, message bus, and local API for having different requirements of 
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applications developed, such as low latency and elastic. Examples include monitoring and 
constantly acquiring the information through message bus, managing the traffic rules based 
on application preferences through REST API within 100 ms, or optimising the content 
according to the radio quality through local API within 1 ms. In addition, MEC applications, 
through Mp1, can also access the basic functionalities provided by the MEC platform, such as 
service registration, service discovery, event mechanism as described in [7]. Another pivotal 
feature LL-MEC has is that the application can be deployed in different scheduling recipes 
such as round robin, first-in-first-out, or deadline scheduler for having different priorities 
when executing the task behind the scene. This significantly lowers the application latency 
and meets the required control deadlines from an edge application.  

LL-MEC currently supports the following API endpoints in the UP through the OF Control 
Plane as shown in Table 2. LL-MEC currently supports the following API endpoints in the CP 
through FlexRAN Control Plane as shown in  

Table 3. 

API documentation and examples can be found at:  

 LL-MEC: http://mosaic-5g.io/apidocs/ll-mec    

 FLEXRAN: http://mosaic-5g.io/apidocs/flexran  

LL-MEC and FlexRAN SDKs integrate all of the above APIs into a set of high-level user-friendly 
APIs that simplify the application development and enable an application to extend such 
APIs to monitor, control, and manage the underlying network. 

Table 2. LL-MEC API endpoints in Data Plane 

Type Method End point Description 

STATS GET /stats Get all the traffic flow 
statistics in upstream and 
downstream. 

STATS GET /stats/id/:id Get a particular traffic flow 
statistics in upstream and 
downstream by ID 

STATS GET /stats/imsi_bearer/:imsi_bearer Get a particular traffic flow 
statistics in upstream and 
downstream by IMSI and EPS 
bearer ID 

USER POST /bearer Add a default/dedicated 
bearer context. 

USER GET /bearer Get all bearer context. 

USER GET /bearer/id/:id Get a specific bearer context 
by id 

USER GET /bearer/imsi_bearer/:imsi_bearer Get a bearer context by IMSI 
and EPS bearer ID 

USER POST /bearer/redirect/imsi_bearer/:imsi_bearer Redirect specific traffic flow 
for one bearer by IMSI and 
EPS bearer ID 

USER POST /bearer/redirect/:id  
/bearer/redirect/id/:id  

Redirect specific traffic flow 
for one bearer by its ID 

http://mosaic-5g.io/apidocs/ll-mec
http://mosaic-5g.io/apidocs/flexran
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USER DELETE /bearer Remove all bearers context 

USER DELETE /bearer/:id 
/bearer/id/:id 

Remove a specific bearer 
context by its ID 

USER DELETE /bearer/imsi_bearer/:imsi_bearer Remove a specific bearer 
context by its IMSI and EPS 
bearer ID 

USER DELETE bearer/redirect/:id 
bearer/redirect/id/:id 

Remove the redirect flow for 
one bearer by ID 

USER DELETE bearer/redirect/imsi_bearer/:imsi_bearer Remove the redirect flow for 
one bearer by it IMS and EPS 
bearer ID 

SLICE GET /slice Get all the slices and its ID 
mappings  

SLICE GET /slice/:id Get a specific slice and its ID 
mapping by slice ID 

 

Table 3. LL-MEC API endpoints in Data Plane 

Type Method End point Description 

STATS GET /stats_manager/:stats_type Get all the radio statistics in upstream and 
downstream by stats type in a human 
readable format. 
Stats type could be all, enb_config, 
mac_status 

STATS GET /stats/[:type] Get all the radio statistics in upstream and 
downstream for all eNBs and UES by stats 
type in json format. 
Stats type could be all (default), enb_config, 
mac_status 

STATS GET /stats/enb/:id/[:type] Get all the radio statistics in upstream and 
downstream for a particular eNB and the 
associated UES by stats type in json format. 
Stats type could be all (default), enb_config, 
mac_status. UE ID can be RNTI or IMSI. 

STATS GET /stats/enb/:id/ue/:id Get all the radio statistics in upstream and 
downstream for a particular eNB and UE by 
their ids in json format. UE ID can be RNTI 
or IMSI. 
 

STATS GET /stats/ue/:id Get all the radio statistics in upstream and 
downstream for a particular UE by its ids in 
json format. UE ID can be RNTI or IMSI. 
 

STATS POST /record/[:type/[:duration]] Record the radio statistics by type and for a 
predefined duration. 
Returns a record ID in the payload. 
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STATS GET /record/:id Ge the record radio statistics by its id 

USER POST /rrm_config -
d@pathtopolicyfile 

Post a RAN policy and commands to the 
underlying RAN 

3.2.5 Helper Services 

A set of helper services are also implemented in LL-MEC to complement the platform. These 
services are not the entities to provide core functionalities but necessary for having an 
effective MEC server.  

 Communication Service: It handles the channel between MEC application and 
platform as well as the interactions among MEC applications; they are enabled by the 
REST API and the SDK for the remote control apps, and CORE APIs for the local 
control apps (see Figure 6). LL-MEC is using Pistache (http://pistache.io/) to handle 
REST call binding and processing.  

 Event Manager: It facilitates the internal communication and monitoring among 
different MEC services.  

 App manager: It allows LL-MEC application to be deployed with different policies, 
scheduling receipt (e.g. RR, DEADLINE, and FIFO) and operation including continuous, 
periodic, or event-driven app. An app can be local implementing an event callback 
and start functions to get runtime to perform its task, and remote interacting with 
the LL-MEC either directly through the REST API or indirectly through the SDK. 
Currently, the following applications are  implemented:  

○ UE/Bearer Manager: It handles add/remove/redirect of a new pair of user-
bearer in LL-MEC with the associated OF rules that is transmitted to the 
underlying OF-enabled switches.  

○ Stats Manager: It provides fine-grain flow-level statistics on per user per 
service in both upstream and downstream directions. These statistics are 
extended by the RNIS producer app. 

○ Context manager:  It stores the context related to UEs, bearer, slice, and 
switch accessible by all the other services. It is also responsible for generating 
and managing the internal identifier for the pair of UE and bearer based on 
the cookie in the OpenFlow rules. 

○ Switch manager: It manages the connected switches to each LL-MEC 
instance, allowing a MEC app to apply a particular rule to a subset of 
underlying switches. 

 Core Apps Manager: It provides a tight integration with OpenFlow library and event 
manager. 

 OpenFlow Library: It enables the communication with OpenFlow-enabled switch 
based on Libfluid. 

In addition, two services are currently under design and development: 

 Service inventory: It identifies the available services supported by LL-MEC and the 
endpoints the service has.  

 Service Registry: It implemented as a database, and includes the holistic information 
of the available MEC applications and gives the abilities for high-level applications to 
verify if the desired information is available.  
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3.2.6 LL-MEC Implementation 

LL-MEC is a Low Latency Mobile/Multi-access Edge Computing platform licensed under 
Apache License V2.0 and delivered as part of mosaic-5g.io ecosystem. The bulk of the code is 
written from scratch using C++ and currently supports x64 Linux systems. The 
implementation aims to support core network programmability coordinated with RAN real-
time operation and provide flexible application programming environment at the network 
edge. In addition to exposing the APIs specified in ETSI MEC, it was designed to easily expand 
the control function as well as the supported OpenFlow rules. The current OF library is based 
on version 1.3.  

The open-source software Open vSwitch (OVS) [8] is employed as the software switch; it is 
further discussed in Section 4. Given the fact that OVS does not officially support GTP tunnel 
yet, GTP enabled OVS is packaged along with useful scripts in order to facilitate the 
deployment of LL-MEC for community. Currently, LL-MEC provides two versions of OVS with 
GTP support. The first version is based on the latest version of OVS with GTP support in Linux 
kernel that is available in 4.9, and the second version is based on the OVS version 2.7 with 
GTP management in the user space. 

The salient features of LL-MEC that are currently supported can be summarised as follows: 

 Northbound APIs and SDK 

 Add/Redirect/Remove Default and dedicated bearers support  

 Multiple switch support  

 Flow status per user/bearer/switch  

 Support of network slicing  

 Support of packet TOS update  

 LL-MEC S1 tester   
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4 Data Plane Programmability and Virtualized Infrastructure  

Following the design and prototyping of the SliceNet MEC Platform in the previous section, 
this section further presents the SliceNet programmable Data Plane for MEC and other non-
RAN segments. The focus is on investigating hardware-based and hybrid (hardware and 
software based) approaches, complementary to the software-based programmable Data 
Plane in the MEC platform.  

4.1 Data Plane Programmability Enablers  

4.1.1 Fundamental Architecture and Enablers 

Towards achieving Data Plane programmability, it is proposed in SliceNet that a common 
reference architecture known as SimpleSumeSwitch [9] (and workflow) as shown in Figure 7 
is adopted for prototyping forwarding devices (e.g., switches) to process packets at line rate 
and at affordable cost. This architecture comprises a single Parser, a single Match-Action 
pipeline, and a single Deparser. The different buses/channels (arrows) are coded in different 
colours in Figure 7: 

 (Red) Packet parsing only happens internally (between the Parser and the Deparser). 

 (Purple) Digest data are introduced by the Parser, and are one of the architecture’s 
outputs. SliceNet proposes to explore packet hashing to be applied for data integrity 
based on digest data of a fixed size (80 bits). The hashed digest data are part of a rule 
for packet processing and are accessible by the Match-Action component of the 
NetFPGA to make a decision with respect to the packet being received. 

 (Yellow) SUME metadata contain the metadata that indicate the port numbers of the 
packet and information related to the processing of the packet, and exposes to a 
programming language the programmable metrics. The SUME metadata struct is 
shown as follows: 
o struct sume_metadata_t { 

    bit<16> dma_q_size; // measured in 32-byte words; DMA (Direct Memory Access) 
    bit<16> nf3_q_size; // measured in 32-byte words 
    bit<16> nf2_q_size; // measured in 32-byte words 
    bit<16> nf1_q_size; // measured in 32-byte words 
    bit<16> nf0_q_size; // measured in 32-byte words 
    bit<8> send_dig_to_cpu; // send digest_data to Central Processing Unit (CPU)  
    bit<8> drop; 
    port_t dst_port; // one-hot encoded: {DMA, NF3, DMA, NF2, DMA, NF1, DMA, NF0} 
    port_t src_port; // one-hot encoded: {DMA, NF3, DMA, NF2, DMA, NF1, DMA, NF0} 
    bit<16> pkt_len; // (bytes) unsigned integer 
} 

The interpretation of the SUME metadata struct proposed is as follows: 

o pkt_len - the size of the packet (not including the Ethernet preamble of Frame 
Check Sequence or FCS) in bytes. 

o src_port - the port on which the packet arrived. 
o dst_port - the port or ports (if any) the packet should be sent out of.  
o drop - if the least significant bit of this field is set to 1, the packet will be dropped. 
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o send_dig_to_cpu - if the least significant bit of this field is set to 1, the digest data 
will be sent over DMA (Direct Memory Access) to the CPU. 

o X_q_size - the size of each output queue, measured in terms of 32-byte words 
(rounded up). This is the size of the output queues when the packet starts being 
processed. 

 (Brown) User metadata contain any additional information from the Parser to the 
Match-Action pipeline and from the pipeline to the Deparser (internal only). In 
SliceNet, it is proposed that this bus will be utilised to classify the packets, for 
instance, to share the number of encapsulated layers available in the packet among 
the Parser, Match-Action and Deparser. 

 (Green) Control bus. It is used to insert the rules into the hardware in order to 
determine the actions to be carried out over the packet.  

 

Figure 7. Reference architecture and workflow for a forwarding device to process packets [9] 

 Packet classification by Parser using the User metadata channel 

Packet classification is a fundamental function required for QoS support. It maps a 
received packet against a mapping rule to categorise the packet to the best-matched 
class, and the categorization of incoming packets is based on selected fields of 
selected headers of the packets according to specific classification criteria. Packet 
classification can be based on packet hashing to speed up the process of determining 
if an incoming packet matches a certain classification rule. 

 Packet hashing by Parser using the Digest data channel  

Packet hashing is a function that maps data of arbitrary size to data of fixed size. This 
facilitates classification‐based QoS measurement and monitoring. On receiving a 
packet, the forwarding device hashes it and looks up to check if the packet belongs to 
a known flow (flow classification). If yes, statistical measurement regarding the flow 
will be continued (e.g., in terms of packet count and bytes for that flow). Otherwise, 
a new flow entry can be created.  

Data Plane programmability entails the following enablers for network monitoring and 
control:  

 P4 language for Data Plane classification, monitoring and control  
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P4 [10] is a common language for the description of Data Plane functionalities of 
different targets. However, not every target supports every language option, which 
reduces the portability. Moreover, in order to add flexibility to describe non-standard 
elements available in a concrete target, the language provides mechanisms to add 
external modules to the pipeline. There is an official P4 compiler, P4C, which is target 
agnostic and is used as a showcase of the P4 functionalities. P4 requires a target 
architecture, a structure with fixed elements and programmable modules, being the 
most used Portable Switch Architecture (PSA). PSA is a target architecture that 
describes common capabilities of network switch devices which process and forward 
packets across multiple interface ports with a pipeline with three input stages 
(parser, ingress and deparser) and three output stages (parser, egress and deparser). 
There are multiple compilers available for different target technologies, using the 
PSA, or a modified version, including software switches, Field Programmable Gate 
Arrays (FPGA), Network Processor Units (NPU) or Application-Specific Integrated 
Circuit (ASIC). In SliceNet, with respect to the reference architecture and workflow 
for a forwarding device to process packets as shown in Figure 7, P4 is the 
programming language for packet classification, monitoring and internal control of 
the hardware. 

 OpenFlow for Data Plane monitoring and control 

OpenFlow [3] defines rule/policy-based traffic flow related processing, including flow 
matching, flow forwarding, flow QoS metering etc. Specific control actions may 
include packet forwarding to a particular port or ports, packet encapsulation and 
forwarding to the controller, packet forwarding to the normal processing pipeline or 
packet dropping etc. For monitoring purposes, statistics such as packet and byte 
count are available. OpenFlow is applicable to both physical and virtual (hypervisor-
based) forwarding devices and it is used in SliceNet to expose the control capabilities 
of the forwarding devices to the SDN controller for the purpose of Data Plane 
control. SliceNet recommends that P4 be employed to programme the monitoring 
and Control Plane capabilities, which are exposed by OpenFlow to the SDN 
Controller. 

 IPFIX/NetFlow and sFlow for Data Plane monitoring 

The IP Flow Information Export (IPFIX) protocol [11][12], as standardised in IETF RFC 
(Request for Comments) 7011 and a number of other associated RFCs, defines a 
standard mechanism to transmit uniform IP traffic flow information from an 
exporting process (in a network sensor or other reporting device) to a collecting 
process for the purpose of Data Plane monitoring. The IPFIX standard specifies the 
representation of different flows, IPFIX Data and Template Records sent over various 
transport protocols, additional data required for flow interpretation, packet format, 
and security concerns and so on. Monitoring is conducted on selected packets based 
on packet selection techniques such as sampling, filtering and hashing standardised 
by the Packet Sampling (PSAMP) protocol [13]. The Management Information Base 
(MIB) module [14] for monitoring and the data model [15] for configuring and 
monitoring IPFIX and PSAMP-compliant devices using the Network Configuration 
Protocol (NETCONF) [16] are specified as well. IPFIX is based on Cisco’s NetFlow 
Version 9 [17].  
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sFlow [18] is an industry standard multi-vendor sampling technology embedded 
within switches and routers for network traffic monitoring. sFlow is scalable in 
collecting, storing and analysing traffic data, and enables monitoring links of speeds 
up to 10 Gbps and beyond without impacting the network performance or adding 
significant network load. A comparison of sFlow with Cisco’s NetFlow is given in [19], 
which highlights a list of advanced features in sFlow across protocol layers and in 
terms of performance and cost considerations. 

 OVS and OVSDB for Data Plane packet forwarding and control 

OVS [8] is capable of forwarding packets between VMs within the same physical host 
machine or between VMs and physical infrastructure. OVS is programmable and 
controllable using OpenFlow and the OVSDB (Open vSwitch Database) management 
protocol, an IETF standard [19]. OVSDB allows programmatic access to the OVS 
database, which holds the configuration for the OVS (daemon), to manage and 
configure this OVS.   

The main components in OVS and the space each component belongs to are 
illustrated in Figure 8 [21]. Firstly, ovs-vswitchd is the daemon that controls all the 
OVS switches in the system. The daemon implements switch features such as 
mirroring, bonding and Virtual LANs (VLANs). The OVSDB management protocol is 
employed by this daemon to obtain the initial configuration and new configurations 
from the ovsdb-server, where the configurations are persistent. Secondly, the kernel 
module, openvswitch_mod.ko, takes care of the data path consisting of physical 
and/or virtual ports in the kernel space. This kernel module applies switching or 
tunnelling actions, e.g., through Generic Routing Encapsulation (GRE) or Virtual 
Extensible LAN (VXLAN), to the arriving packets belonging to a known flow, i.e. a flow 
where the action to be performed is known. Otherwise, the packet is sent to the user 
space for the ovs-vswitchd daemon to process. The OpenFlow controller is 
responsible for the persistence of important flows.  

The top-level configuration for the daemon is through the OVS tables in the OVSDB. The 
relationship among the tables are depicted in Figure 9 [22], where each node represents a 
different table. Table 4 [22] lists these tables and their purposes. It is noted that OVS 
supports NetFlow, IPFIX and sFlow for Data Plane monitoring. 

It is noted that the current prototyping is based on the develop branch of OVS to provide a 
set of extensions. Thus, OVS is taken as it is, and extended by NetFPGA hardware-based 
approach. 
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Figure 8. OVS components [22] 

 

 

Figure 9. Tables relationship in OVSDB for OVS configuration [22] 

 

Table 4. OVSDB tables [22] 

OVSDB Table Purpose 

Open_vSwitch  Open vSwitch configuration 

Bridge  Bridge configuration 

Port Port configuration 

Interface One physical network device in a Port 

Flow_Table OpenFlow table configuration 

QoS Quality of Service configuration 
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Queue QoS output queue 

Mirror Port mirroring 

Controller OpenFlow controller configuration 

Manager OVSDB management connection 

NetFlow NetFlow configuration 

Secure Sockets Layer (SSL) SSL configuration 

sFlow sFlow configuration 

IPFIX IPFIX configuration 

Flow_Sample_Collector_Set Flow_Sample_Collector_Set configuration 

 Kernel Network Control for Data Plane control 

In Linux, on receiving a packet, a Network Interface Card (NIC) sends it to a receive 
queue (RX). The packet is then copied to the main memory via the DMA (Direct 
Memory Access) mechanism. An sk_buff struct buffer is allocated for every received 
packet. The system is notified of the new packet and pass the data to the buffer. The 
process is based on an interrupt scheme, where several interrupts are incurred. The 
packet is then sent to the Linux networking subsystem. When an application (in the 
user space) needs to send or receive a packet, a system call is issued. 

There are drawbacks in terms of performance in this kernel space packet processing. 
Firstly, the buffer allocation based on the sk_buff struct consumes considerable bus 
cycles for copying the packet from CPU to the main memory. Moreover, the sk_buff 
struct is a complicated struct that was designed to be inclusive for different network 
protocols and thus is not optimised for performance. Thirdly, the mode switching 
between kernel and user spaces for packet sending and receiving also introduces 
latencies. Finally, the numerous interrupts slow down the system too. 

To address some of these problems, since version 2.6, Linux kernels  employ the New 
Application Programming Interface or API (NAPI), which combines interrupts with 
requests. To further mitigate the performance issues in kernel network control, 
further optimisations (e.g., kernel space speed-up enhancements), new approaches 
(e.g., kernel bypass) and/or hardware acceleration are entailed, as explained in the 
subsequent subsections. 

4.1.2 Programmability of the Hardware Data Path 

 NetFPGA platform 

NetFPGA [23] is a line-rate, open networking platform that enables hardware-based 
programmable data path. The state-of-the-art NetFPGA SUME is an FPGA-based PCI 
(Peripheral Component Interconnect) Express (PCIe) board with I/O capabilities for 
10 (and up to 100) Gbps operation, and the workflow is based on SimpleSumeSwitch 
depicted in Figure 7. The platform can be employed as NIC, multiport switch, or 
firewall, among other Data Plane networking or testing devices. The open source and 
low cost nature of the platform allows prototyping 10 Gbps solutions in R&D projects 
like SliceNet. More details on SliceNet prototyping are presented later. 
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(a) NetFPGA SUME PCIe board: physical view 

 

(b) NetFPGA SUME PCIe board: block diagram 

Figure 10. NetFPGA SUME platform [23] 

Figure 10 [23] shows the NetFPGA SUME PCIe board (a) and the block diagram of the 
board (b) respectively. The core element is a Xilinx Virtex 7 690T FPGA. There are five 
peripheral subsystems on this full-sized PCIe adaptor: 

 A PCIe x 8 Generation 3.0 interface between the board and the host device’s 
motherboard for packet transfer between them. 

 High-speed serial interfaces subsystem that comprises 30 serial links running 
at up to 13.1 Gbps speed, connected to 4 x 10 Gbps SFP+ Ethernet interfaces, 
2 x expansion connectors, and a PCIe edge connector to the FPGA. 

 Memory subsystem consisting of both SRAM (3 x 36-bit QDRII+ @500 MHz) 
and DRAM (2 x 64-bit DDR3 @933 MHz). 

 Storage subsystems allowing both a MicroSD card and external disks through 
two Serial Advanced Technology Attachment (SATA) interfaces. 

 FPGA configuration and debugging subsystem has 2 x NOR Flash devices, 
storing the FPGA’s programming file, initial bootup image etc., and contains 
the debug and control capabilities through additional interfaces, LEDs, 
buttons etc. 
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 Netcope platform 

Netcope [24] is an alternative FPGA-based networking platform, which supports up 
to 100 Gbps Ethernet interfaces. Figure 11 [24] shows the physical view of the 
various Netcope boards. NFB-100G2Q has been investigated in SliceNet as an 
alternative to deal with 100Gbps. It provides architecture similar to the 
SimpleSUMESwitch but with other capabilities such as multiple DMA channels per 
interface and DPDK Driver support. It is noted that P4 is the recommended language 
for programming both NetFPGA and Netcope platforms (e.g., [25]). 

 

Figure 11. Netcope platform (left: NFB-200G2QL; middle: NFB-100G2Q; right: NFB-100G2C) [24] 

4.1.3 Programmability of the Software Data Plane 

 DPDK (Data Plane Development Kit) 

DPDK [26] is an open source project that provides mechanisms for fast data 
processing for Data Plane applications, mostly running in the Linux user space and 
being agnostic to processors (Intel and others). As illustrated in Figure 12 [27], DPDK 
employs the kernel bypass approach, which allows the applications in the user space 
to directly communicate with the hardware (physical) or virtual devices (NICs) 
without involving the Linux kernel and thus circumvent the performance limitations 
of the Linux kernel caused by interrupts, the complexity of the sk_buff struct etc. 
After the interface receiving incoming packets is unbound from the Linux kernel 
driver, the communications between the application and the device is organised by 
the DPDK Poll Mode Driver (PMD).  

The DPDK framework creates a set of libraries for specific hardware and operating 
system environments through the creation of an Environment Abstraction Layer 
(EAL), which in turn is created through make and configuration files. Consequently, 
the user can link with the EAL library to create customised applications for the Data 
Plane. There are also other libraries to support Data Plane packet processing, e.g., 
the Hash for packet classification, and the Longest Prefix Match (LPM and LPM6) for 
packet forwarding based IP addresses. 
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Figure 12. Linux kernel with DPDK vs. without DPDK [27] 

 XDP (eXpress Data Path) 

In contrast to the kernel bypass approach taken e.g., in DPDK, XDP  [28] through the 
IO Visor Project [29] addresses the performance limitations of kernel space in packet 
processing by enabling bare-metal packet processing at the lowest point in the 
software stack in the kernel space for improved speed whilst achieving Data Plane 
programmability. Figure 13 shows the packet processing overview in the XDP 
approach. Essentially, XDP creates an integrated fast path in the kernel stack. The in-
kernel XDP Packet Processor intercepts the incoming packet before it is sent to the 
normal kernel process. It processes RX packet-pages directly out of driver via a 
functional interface and avoids early allocation of sk_buff’s or software queues as 
seen in conventional kernel based packet processing. Basic XDP packet processor 
actions include packet forwarding, dropping, normal receiving and steering (to 
another CPU for processing), and generic receive offloading etc. The BPF (Berkeley 
Packet Filters) program is leveraged to perform processing actions such as packet 
parsing, table lookups, stateful filters creation/management, packet manipulation 
e.g. encapsulation/decapsulation, and returns action. Powered by the XPD 
programmability, a number of use cases can be built by exploring XDP, e.g., filtering 
for mitigating DDoS (Distributed Denial of Service) attacks, packet forwarding, load 
balancing, and flow sampling, lookup, inspection and monitoring based on hash, and 
flow analytics. The XDP approach is agnostic to CPU/hardware. 
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Figure 13. XDP packet processing [28] 

 PF_Ring 

PF_Ring [30] is another technology that speeds up packet capture via kernel bypass. 
As shown in Figure 14, PF_RING polls packets from NICs through the Linux NAPI, 
which copies packets to the PF_RING circular buffer (ring), bypassing the kernel stack, 
and then the user-space application reads packets from the ring. PF_RING can 
distribute incoming packets to multiple rings, and thus multiple applications can read 
their packets simultaneously.  

PF_Ring is not in integrated in the mainstream Linux, and special kernel modules 
need to be launched. In particular, the PF_RING ZC (Zero Copy) [31] module offers a 
flexible packet processing framework that can achieve 1/10 Gbps line-rate packet 
processing for both RX and TX at various packet sizes. ZC implements zero copy 
operations for inter-process and inter-VM (Kernel-based Virtual Machine (KVM)) 
communications as a cloud-ready solution. Moreover, ZC can operate in either kernel 
bypass or normal kernel mode. In addition, PF_Ring also provides support for a range 
of FPGA vendors such as Netcope etc. through the FPGA-based card modules, among 
other additional modules. 
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Figure 14. PF_Ring operation [30] 

4.2 Data Path Architecture in SliceNet 

Two different approaches have been considered in the Data Path architecture of SliceNet. 
The first approach “Hardware Approach” is based on an intensive hardware-offline approach 
where all the functionality required to the Data Plane is implemented in hardware. Figure 15 
and Figure 16 show an overview of this approach, where two different hosts are illustrated 
as an example. One compute node is allocated in the edge network and another compute 
node in the core network. They are interconnected through a fibre-optical physical switch. 
The antenna and RRH or RRU/DU are connected to the MEC compute by mean of another 
physical switch. The solid red circles indicate possible control points (programmable points) 
in the data path. 

The proposal is to use a NIC that allows in hardware to bypass the Linux kernel of the Host 
Machine and connect the hardware directly into the VM deployed in the edge (MEC VNF). It 
is achieved by means of the Single Root I/O Virtualization (SR-IOV) technology [32]. Then, in 
order to achieve slicing-friendly capabilities into the 5G infrastructure, the NIC should 
provide the following. Firstly, at least VLAN tagging support should be employed in order to 
allow essential multi-tenant isolation; or ideally, VXLAN/GRE encapsulation is applied to 
provide a true capability to allow tenants to define networks in software and perform such 
off-loading into hardware. Secondly, the NIC should provide the exposition of the different 
lanes/queues directly to the VMs. This can be achieved by the VMDq technology [33]. This 
approach allows every VM to have a dedicated set of queues/lanes available to be used in an 
exclusive use and the scheduling of these lanes is an enabler of the slicing-friendly 
infrastructure.  

In this approach, the Infrastructure Provider only has the control capabilities exposed by the 
hardware. It means that in order to allow a slicing-friendly infrastructure in this “Hardware 
Approach”, the programmability of the scheduler is required in order to enforce the slice 
QoS control. Both the NetFPGA and Netcope architectures presented before allow these 
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capabilities by using a TCAM (Ternary Content Addressable Memory) structure for inserting 
the Match-Action rules. It is noted that packets in this approach still need to be processed by 
the Linux kernel of the Guest VM and thus this is where kernel-bypass approaches can be 
employed in the Guest VM as a complement to achieve efficiency at high rates. In case of 
considering a deployment where the programmability of the Data Plane is centralised in the 
SDN controller, then an OpenFlow agent is required to perform the programmability of the 
hardware rules of the scheduler implemented in the NIC.  

 

Figure 15. Programmable Data Plane (hardware approach) 

The second approach “Hybrid Approach” is the combination of both software and hardware 
forwarding devices in order to separate the required roles to achieve a slicing-friendly 
infrastructure between the software and hardware components. The proposed architecture 
is shown in Figure 16 and Figure 15. It can be seen how the traffic coming from the hardware 
NIC is now received in the OVS hosted in the Host machine. It would require the Linux kernel 
to deal with the packets and thus would suffer from scalability issues. In order to sort out 
this problem, it is proposed to ensure that DPDK (or alternatively PF_Ring) be integrated 
with OVS. In this architecture, OVS is the responsible element to forward packets to the VMs 
and thus introduces a control point where policies can be applied. Due to the experimental 
nature of XDP, it is suggested that XDP will only be monitored in SliceNet and will not be 
further explored for prototyping. 

In terms of role separation between software and hardware, it is proposed to minimise the 
possible use of the software-based approach, by off-loading as much as possible workload 
into the hardware capabilities. Compared with the Hardware Approach, this Hybrid 
Approach would yield significantly lower performance whereas it provides more flexibility in 
the Control Plane since it allows having double control points layers for the Infrastructure 
Provider and Network Operator. The Infrastructure Provider’s control points layer is 
composed by two control points: one flexible yet slow software control point and a limited 
yet fast hardware control point. The Network Operator’s control points layer, however, only 
has one control points layer for the tenant in the kernel space of the VM.  

SliceNet is a research and development project and thus it has been decided to explore this 
approach even knowing in advance that it is not as fast as a pure hardware-based approach 
in order to investigate how better make use of all these control points to maximise slicing 
flexibility, along the execution of the different stages of the project.  
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Figure 16. Programmable Data Plane (hybrid approach) 

4.3 Infrastructure Multi-Tenancy Support  

4.3.1 Overview of Multi-Tenancy Based on Integrating VIM and SDN 

The SliceNet infrastructure supports multi-tenancy at the virtualisation level. Different VMs 
belonging to different tenants are isolated from each other, even co-located in the same 
physical machine. This tenant isolation can be achieved by employing a proper Virtual 
Infrastructure Manager (VIM) such as OpenStack [34]. OpenStack allows the management of 
the control provided by the OVS in order to manage tenant isolation of networking resources 
by using tagging and encapsulation. Furthermore, OpenStack allows the management of the 
control provided by the Hypervisor in order to manage tenant isolation of memory, disk and 
CPU resources. OpenStack is further discussed in Section 5. 

Moreover, VMs belonging to the same tenant, even distributed in different physical 
machines, are able to reach each other via virtual switches such as OVS. This VM 
connectivity can be established by integrating the VIM with a compatible Software-Defined 
Networking (SDN) controller such as OpenDayLight (ODL) [35], as illustrated in Figure 17 
[36]. After a new VM is created and attached to the network, the SDN controller creates a 
tunnel e.g., through VXLAN, between the OVS switches of the compute nodes hosting the 
VMs. Once the tunnel is created, the tenant’s VMs on the different compute nodes are able 
to communicate with each other. In addition, when 5G or LTE traffic flows between the VMs, 
additional tunnelling e.g., the GTP tunnelling in LTE, applies. 

It is noted that there are various ways to integrate ODL with OpenStack to achieve the multi-
tenancy support [37]: 

 ODL-OpenStack integration using ODL Group Based Policy’s Neutron VPP Mapper 

 ODL-OpenStack integrating using ODL Group Based Policy 

 ODL-OpenStack integration using ODL NetVirt 

 ODL-OpenStack integration using ODL Virtual Tenant Network 
In principle, in all the methods, OpenStack employs ODL as its network management 
provider through the Modular Layer 2 (ML2) northbound plugin, and ODL controls the Data 
Plane network flows for the OpenStack compute nodes through the OVSDB southbound 
plugin. The next section takes the ODL Virtual Tenant Network approach as an example to 
elaborate the ODL-OpenStack integration for multi-tenancy. 
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Figure 17. Integrated SDN controller and OVS model for multi-tenancy [36] 

4.3.2 Multi-Tenancy Support Based on OpenDayLight Virtual Tenant Network  

The Virtual Tenant Network (VTN) in ODL provides multi-tenant virtual networks on an ODL 
SDN controller. VTN consists of two main components: the VTN Coordinator application on 
the top as part of the network application, orchestration and services layer, and the VTN 
Manager plugin as part of the Network Services below the ODL APIs in the overall ODL 
architecture.  

The VTN Coordinator provides a REST interface to the user to employ VTN, realises the VTN 
provisioning in ODL instances, and orchestrates multiple ODL to support VTNs that span 
across different ODL. The VTN Manager provides a REST interface to configure and manage 
the lifecycle of VTN components, and provides the integration with Neutron interface to 
provide network services for OpenStack by utilising the OVSDB plugin.  

Figure 18 [38] illustrates the system diagram of integrating VTN with OpenStack and OVSDB. 
In this integrated system, ML2 allows the OpenStack control node to use ODL as its L2 
network management provider. The ODL VTN Manager's Neutron deals with the interface 
creation notification (Event) from the OVSDB plugin and creates the mapping between the 
OpenFlow (OF) ports and the virtual interfaces in VTN. Moreover, the Neutron allows the 
VTN Manager to associate the VMs in the OpenStack compute nodes with the virtual 
networks, and install flow entries to OpenFlow switches between the VMs. In the Data 
Plane, the OVS switches in the OpenStack compute nodes communicate with each other 
through an optional OpenFlow network (e.g., a physical or logical OpenFlow switch) to 
achieve the inter-connectivity among the VMs belonging to the same tenant. 
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Figure 18. ODL (Lithium) VTN integration with OpenStack and OVSDB for multi-tenancy [38] 

The VTN may be leveraged by MEC in two ways: (1) associate different MEC instances to a 
particular VTN (1:1 mapping), and (2) associate a single MEC to multiple VTN (1:N mapping) 
and apply the programmability on the logical networks instead of the physical network. In 
the latter case, the MEC platform is unaware of the separation of physical network plane 
from the logical one.   

4.4 Mobile Edge-Core Network Data Plane 

In 5G networks, the Mobile Edges and the Core Network (CN) are geographically distributed. 
SliceNet achieves this infrastructure view by exploring the different availability zones 
provided by OpenStack. Essentially, an individual edge can be positioned in a specific 
availability zone, and the core network is in a different zone from any individual edge. 
Consequently, multiple zones corresponding to edges and the core network can be created. 
For instance, for an MEC #1 edge, all MEC #1 related network nodes including MEC #1 VNFs 
such as a pool of LTE BBUs (or 5G CUs) are grouped into one availability zone. For the core 
network, all core network nodes including the core VNFs such as MME, SGW, PGW and PCRF 
(or the 5G counterparts such as AMF, SMF, UPF and PCF) are grouped into another 
availability zone. Figure 19 illustrates this MEC-CN Data Plane segregation based on 
availability zones. 
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Figure 19. MEC-CN Data Plane segregation based on availability zones 

Figure 20 [39] shows two availability zones consisting of their own compute nodes, which 
can run the mentioned VNFs for the edge and the core network, respectively. Furthermore, 
the difference between the concepts of Availability Zone and Host Aggregate in OpenStack is 
also illustrated for the sake of clarification and justification. In brief, nodes geographically 
distributed should be separated with availability zones, whilst nodes with the same 
specification should be clustered with host aggregates. Clearly, availability zones are more 
appropriate to be adopted in segregating the different edge and core network segments. In 
addition, Regions are of a higher geographical hierarchy and are usually employed to 
separate cloud computing systems of larger scale. For example, it is reported that there are 
only 18 geographic Regions (and 49 Availability Zones) worldwide in the Amazon Web 
Services Global Infrastructure [40]. In addition, availability zones have a unified control of 
the network connectivity between all the computes involved whereas regions have different 
network connectivity going out of the administrative domains, which add additional 
complexity to the control in the creation of slices. Therefore, it is not recommended that the 
edge and core networks are segmented based on Regions. 

 

Figure 20. Availability zones and host aggregates in OpenStack [39] 
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4.5 SliceNet Programmable Data Plane Prototyping 

In order to validate and test the above design, prototyping has been conducted to achieve 
slicing-friendly infrastructure especially programmable Data Plane for multi-tenanted 5G 
MEC infrastructure, and the technologies are largely applicable to the Data Plane of other 
non-RAN segments (MEC to core, and core network). The main prototyping is based on 
NetFPGA (10 Gbps) and P4, following the SimpleSumeSwitch architecture [7] as shown in 
Figure 7, to create various actions (queue setting, ToS setting) as hardware-based slicing 
enablers, as described below. 

4.5.1 SliceNet Programmable Data Plane Prototyping Tools and Platform 

The prototyping utilised the P4 NetFPGA reference implementation recently released by the 
NetFPGA Team employing the Xilinx SDNet P4 compiler. The SDNet Compiler v2017.1.1 [41] 
was set up on Ubuntu (64-bit) with Vivado Design Suite installed and licensed, together with 
additional supporting tools including gcc 6.2.0, Questa v10.4c, GraphViz DOT graph 
visualization software library, and Wireshark. Moreover, Xilinx SDK 2016.4 [42] was 
employed for the development. The design and development procedure followed the official 
SDNet framework design flow presented in Figure 21 [43].   

 

Figure 21. SDNet framework design flow [43] 

4.5.2 SliceNet Programmable Data Plane Prototype 

Figure 22 illustrates the system diagram of SliceNet Data Plane traffic classification and 
control prototype. The prototype operates as follows. 
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1. The traffic classification rules are inserted in the NetFPGA’s Ternary Content 
Addressable Memories (TCAM) table through a REST API. 

2. An inbound packet arrives at the NetFPGA. 
3. The packet is sent to the Parser for classification. 
4. Once the packet have been classified based on its headers, it is sent to the 

Match/Action component. 
5. In the Match/Action component, the TCAM table is checked.  
6. If there is any rule that matches the packet, the "action data" will be received by the 

Mach/Action (step 6). 
7. Match/Action applies to the packet the action received in the "action data" of the 

rule (step 6) and it is sent to the Deparser component. 
8. The Deparser builds the packet that is going to be sent to the PCI or to the outbound 

interface depending on the specific action. 
9. The digest data will be sent to the CPU for further processing.  

 

Figure 22. SliceNet Data Plane traffic classification and control prototype 

The operations listed in Table 5 allows the flow control and management of the traffic 
processed by the NetFPGA in terms of lifecycle management (add, delete, clean) of the 
traffic classification rules installed in the table used by the Match-Action component and 
recording statistics of the flows offline. An operation defined in Table 5 is invoked on 
demand by a REST API with the parameters indicated in Table 6, among others. 

Table 5. SliceNet traffic flow control and management operations 

End Point Description 

/add Adds a new rule in a table 

/delete Deletes a rule of a table 

/clean Deletes all the rules of a table 

/totalMatchedBytes Returns the total of bytes matched 

/totalMatchedBytesPerRul
e 

Returns a list of tuples with the number of bytes matched by 
rule 

/ruleMatchedBytes Returns the number of bytes matched by a specific rule 
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/totalMatchedPackets Returns total number of packets matched 

/totalMatchedPacketsPerR
ule 

Returns a list of tuples the number of packets matched by 
rule 

/ruleMatchedPackets Returns the number of packets matched by a specific rule 

/numRules Returns the total of rules in the table in a determinate 
moment 

/resetCounters Resets all the measures, included the variable with the total 
of bytes matched 

/resetCounter Returns the bytes matched by a determined rule and reset 
the counter of that rule 

/availableAddress Returns if exist some rule in a determined address of the 
table 

Table 6 shows the actions supported by the NetFPGA with respect to a flow:  

 A flow can be dropped. 

 A flow can be mirrored to another interface. 

 The TOS value of the outermost IP header of a packet belonging to a flow can be 
dynamically set to configure its priority. 

 In addition to the above action, a flow can be sent to a specific queue at the FPGA to 
be further processed by the CPU. 

The instructions regarding these actions for matched flows are communicated through the 
REST API to establish the corresponding traffic classification rules beforehand or on demand.  

Table 6. SliceNet traffic flow actions supported by NetFPGA-based prototype 

Action 

Description 

Action value  

(5 bits) 

Parameter 1  

(48 bits) 

Parameter 2  

(2 bits) 

Parameter 3  

(3+1 bits) 

DROP 1 - mirror interface - 

NOPE 2 - mirror interface QueueID + 

Enable 

SET TOS 7 TOS (outer) mirror interface QueueID + 

Enable 

Headers supported by the P4 implementation are listed in Table 7, where Ethernet (ETH), 
User Datagram Protocol (UDP), Transmission Control Protocol (TCP) etc. are employed. The 
following different NIC Modes are supported: 

 NIC Mode I supports the traffic classification of pure IP flows, which may employ 
different L4 protocols. 

 NIC Mode II is able to classify flows with one-level of encapsulation applied, via either 
GTP or VXLAN, corresponding to 5G/LTE traffic that is GTP tunnelled or IP multi-
tenanted traffic respectively. 

 NIC Mode III enables the classification of flows with two-level of encapsulations 
applied, via both GTP and VXLAN, which means 5G multi-tenanted traffic. 
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Table 7. SliceNet traffic classification (headers supported) by the P4 implementation 

# 
NIC 

Mode 

Flow 

Type 
L2 L3 L4        

1 I   ETH IPv4 ICMP               

2 I 1 ETH IPv4 UDP/TCP               

3 II   ETH IPv4 UDP/TCP GTP IPv4 UDP/TCP         

4 II 2 ETH IPv4 UDP/TCP VXLAN ETH IPv4 UDP/TCP       

5 III 3 ETH IPv4 UDP/TCP VXLAN ETH IPv4 UDP/TCP GTP IPv4 UDP/TCP 

4.5.3 Empirical Results 

Experimental tests have been conducted to empirically validate the design and prototyping. 
In the tests, the following scenarios have been considered, with reference to Table 7: 

 Scenario 1: NetFPGA NIC Mode I, II and III; Flow Type 1, 2 and 3 (UDP); 1 traffic 
classification rule; Ethernet frame size is 1500 bytes. 

 Scenario 2: NetFPGA NIC Mode I, II and III; Flow Type 1, 2 and 3 (UDP); 512 traffic 
classification rules, Ethernet frame size is 1500 bytes. 

 Scenario 3: NetFPGA NIC Mode I, II and III; Flow Type 1, 2 and 3 (UDP); 1 traffic 
classification rule; Ethernet frame size is 144 bytes. 

Scenario 1 and Scenario 3 are configured to establish a benchmarking performance for the 
single-rule case (expected best-case performance in terms of rule scalability test). The 
difference between them is that Scenario 1 employs flow packet size of the Maximum 
Transmission Unit (MTU), whilst Scenario 3 employs small sized packets for the baseline 
packet size case (expected best case performance in terms of packet size). In contrast, 
Scenario 2 employs both high number of rules (512) and packet size of MTU, and thus it 
represents a challenging case (expected worst-case performance). 

Figure 23 shows the experimental testing results. The left, middle and right sub-figures 
depict the measured results in Scenarios 1, 2 and 3 respectively. Based on those results, the 
following observations can be made: 

 In every scenario, the delays increase as the NIC Mode varies from 1 to 3, 
corresponding to the increasing complexity levels of traffic classification logics 
deployed for pure IP, multi-tenanted IP and 5G multi-tenanted flows respectively. 

 When Scenario 1 and Scenario 2 are compared with each other, it can be seen that 
the differences in the delays between the two scenarios are negligible (insignificant) 
despite the significant difference in the number of classification rules applied. 
Therefore, this approach is scalable in terms of supporting an increasing number of 
traffic classification rules.  

 When Scenario 1 and Scenario 3 are compared with each other, it can be concluded 
that the size of the Data Plane traffic packets has an impact on the processing delays 
although the differences made by this do not change the overall profile of the delays 
and do not contribute to the overall delay significantly. Therefore, this approach is 
also scalable in terms of the size of packets. 

 In all scenarios, the Match-Action and Deparser steps combined together introduce 
the majority of the delays. The delays caused by the Parser are much lower. 
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 In all scenarios, the delays for pure IP flows are under 3000 ns (3 ms), which is the 
benchmarking performance. For multi-tenanted IP flows, the delays are about 4 ms; 
and for 5G multi-tenanted ones, the delays are about 6 ms. The extra delays in the 
latter two cases are the performance penalties paid to achieve multi-tenancy for IP 
flows and multi-tenancy for 5G (GTP tunnelled) flows, respectively.  

 To further reduce the delays, FPGA cards that are capable of realising higher speed 
such as 100 Gbps would be required. Nevertheless, in this proof-of-concept 
prototype, the experimental tests have shown promising results in achieving fast 
programmable Data Plane for 5G multi-tenanted traffic. 

 

Figure 23. SliceNet Data Plane traffic classification and control prototype 
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5 Management Plane Considerations for Mobile Edge Segment 

This section focuses on the Management Plane for MEC with description of management 
components including the Virtual Infrastructure Manager (VIM), Mobile Edge App/Platform 
Lifecycle Manager (VNFM), and the MEC Orchestrator (NFVO) where the functionalities and 
interfaces of those components are aligned as in ETSI MEC [2]. The section also focuses on 
the Management Plane considerations specifically for MEC. 

5.1 Virtual Infrastructure Management (VIM) 

A VIM, according to the MANO specification [2], is a virtual infrastructure manager that 
provides the Infrastructure-as-a-Service (IaaS) by assembling different NFVI, each with 
different technologies/vendors, and abstracting them into compute, storage and network 
nodes/resources. More specifically, VIM operations include: 

 managing software images, such as add/delete/update/query/copy, and allocating 
those images to run on the NFVI, as requested by other functional blocks (the VIM 
obtains information from NFVO for managing application images, virtual resources, 
and it also interacts with VNFM to manage the NFVI resources associated with the 
Mobile Edge application lifecycle);  

 orchestrating the allocation (of the virtual resources assigned to Mobile Edge 
applications), management and release of NFVI (compute, storage and networking) 
resources. The VIM will maintain an inventory of the allocation of virtual resources to 
physical resources for this operation; 

 collecting and reporting performance and fault information about the NVFI; 

 other operations that involve the NFVI management such as the security policies for 
access control, optimizing the use of resources, application relocation from/to 
external cloud environments, etc. 

Existing solutions for VIM include OpenStack [34], VMware vSphere, CloudStack, Google 
Kubernetes VIM, etc., all come in the form of complete software stacks. 

There are some considerations regarding the VIM performance, fault, and security, for 
example, how fast it can handle the provisioning of applications; how well it can allocate the 
physical resources necessary to deliver network services, keep track of the allocation of 
software images for applications/services onto the virtual resources, and then from virtual 
resources onto the physical resources and use that information to optimize/coordinate the 
use of resources; the issues of resource sharing and isolation; scaling up/down and scaling 
in/out; the decision whether to spin up VMs or containers for a VNF. The VIM should also be 
flexible to integrate/manage/orchestrate numerous hardware resources from different 
vendors/technologies/etc. Further, with multiple domains, it should be able to support 
multiple VIMs, and thus, communication and coordination among multiple VIMs should be 
taken into consideration to best utilise the resources across domains. 

Towards the functionalities and considerations for the VIM above, it is proposed that 
OpenStack VIM is adopted for NFVI management in SliceNet. The logical architecture of 
OpenStack is in Figure 24 [34], [44], mainly consists of functional blocks for Compute, 
Storage and Networking.  
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Figure 24. OpenStack logical architecture [34], [44] 

With different considerations listed in the architecture design guide [44], the logical 
compute, storage and networking functionalities are fully designed and implemented in 
OpenStack Nova, Cinder, and Neutron respectively.  

The OpenStack Compute Nova handles the provisioning computer instances (virtual servers), 
i.e. creating virtual machines, bare metal servers and some support for system containers. It 
requires additional OpenStack services including Keystone for identity and authentication 
services, Glance for compute image repository (as all compute instances launch from glance 
images), and Neutron for provisioning the virtual/physical networks connecting the compute 
instances. Nova supports a wide variety of compute technologies (hypervisor layer) such as 
KVM, Xen, LXC, Hyper-V, VMware, XenServer, OpenStack Ironic and PowerVM, which 
provides the flexibility in choosing a hypervisor(s). The OpenStack storage functionality is 
provided by three main components: Swift for object storage, Cinder for block storage and 
Glance for a repository for VM images, which can use storage from Cinder using standard 
protocols such as Internet Small Computer Systems Interface (iSCSI), Fibre Channel, NFS or 
object storage from Swift via the Swift API or HTTP protocols with simple PUT/GET 
commands. Finally, Neutron provides networking functionality between interface devices 
(e.g. vNICs) managed by other OpenStack services and supports advanced network services 
like firewall, load balancing, intrusion detection, VPN, etc. 

In addition, OpenStack also supports running containers on bare metal or VMs with full 
storage and networking support. One can easily run containers on top of Nova as it has 
everything needed to run compute instances. However, in complex environments, it is 
required to have a container orchestration solution to ease the task of managing many 
containers in data centre environments. For this, OpenStack offers the Magnum system [45] 
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that supports multiple container orchestration tools including Docker Swarm, Kubernetes, 
Mesos, etc. The architecture of Magnum system is presented in Figure 25, which mainly 
shows the integration of OpenStack Heat with backend container technology 
(Kubeneters/Swarm/Mesos).  

 

Figure 25. OpenStack Magnum architecture [45] 

5.2 Mobile Edge App Lifecycle Management (VNFM) 

According to ETSI GS MEC 001 [46] and 003 [2], the Mobile Edge Platform lifecycle manager 
is responsible for managing the life cycle of applications including informing the Mobile Edge 
orchestrator of relevant application related events. VNFM operations for managing 
application lifecycle include: 

 Instantiating/Terminating an Application instance; 

 Supporting the request to change the state (starting/stopping) of an application 
instance; supporting querying information about an application instance, status of an 
ongoing application lifecycle management operation, status of an application 
instance, etc.; 

 Operations on an Application Package Management such as querying application 
package information (release date, vendor info, manifest, descriptor, files contained 
in the package, etc.); providing notification as a result of changes on application 
package states or the on-boarding of the application packages; fetching an 
application package or selected files contained in a package. 

There are many considerations on managing the Mobile Edge application lifecycle. Firstly, to 
deploy an application, the consideration is on the number of instances per user and per host, 
etc. Then, how to bring the application on board and where to, in order to meet all the 
requirements regarding the virtual resources, latency, location (to be closer to the user), 
dependencies (other Mobile Edge services need to be running before this application gets 
on-boarded), etc. During the runtime of the application, mobility might occur in which VNFM 
should be able to handle application instance relocation (closer to the user to meet latency 
requirement), change of states, and so on. In addition, as many application instances and/or 
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different types of application might be running simultaneously, fairness among them or the 
users that requested to run those applications should be considered.  

5.3 Mobile Edge App Rules & Requirements Management (VNFM) 

The VNFM is also responsible for managing the application rules and requirements, which 
includes service authorizations, traffic rules, DNS configuration, mobility support, resolving 
conflicts, requirements on resources, services and/or QoS (e.g., delay constraint), and 
requirement validation, etc. For this, some considerations should be taken into account. 
Firstly, VNFM should be able to quickly create a ruleset for new and/or existing applications. 
Then, it is important to maintain a clean set of rules and to avoid unnecessary complexity. 
The VNFM should take a good care of the issues of unused/shadowed/expired rules, which 
create unnecessary costs and overhead in management. A clean set of rules also means no 
conflicting rules, no unwieldy rulesets that could break the applications or create risks to the 
system, for example, conflicting security rules can create backdoor entry points. Also, when 
there are many rules applied to the same object or one rule to different objects, etc. these 
rules configuration/application should be ordered optimally. At some stages, there should be 
a clean-up process to validate the existing rules and remove them if necessary (rules become 
invalid or expired). Finally, the VNFM should support all of those functionalities in different 
system scales. 

5.4 Mobile Edge Platform Element Management (VNFM) 

In Mobile Edge Platform Element Management, the VNFM is responsible for the functional 
management of VNFs running at MEC, i.e. FCAPS (Fault, Configuration, Accounting, 
Performance and Security Management). Technically, when a new VNF is created, the VNFM 
notifies this Element Management System to provide an element management for this new 
VNF, and the Element Manager associated with that VNF will take care of the management 
of functional components in that VNF, e.g. the functionalities that the VNF supposes to 
deliver/support. 

As there are many VNFs running simultaneously in the system, and also the dynamicity of 
the system (bringing up/tearing down VNFs), some considerations should be taken care of. 
For instance, when a VNF is instantiated, how the VNFM can quickly provide an element 
management for this new VNF, and how well this element management can handle the 
functional components of the VNF; the issues of managing FCAPS for a large number of 
VNFs/PNFs running on the same system, each might have different FCAPS requirement. 
Besides common functionalities in FCAPS management, e.g. monitoring, managing and 
reporting FCAPS for each and all VNFs/PNFs, the VNFM should take into account some other 
details on each feature. For example, in fault management, beside considerations on the 
strategy/toolsets/mechanism to monitor the NFV, consideration on fault collection and on 
alarm mediation, the VNFM should also consider some further processing, e.g. analysis on 
the root cause and fault correlation, in order to fix the issue optimally. However, the virtual 
environment with many-to-many relationship between VNFs, VMs and physical resources, 
and a fault could be VNF/VM/NFVI related, it is high complex to do such analysis, not to 
mention some services that are created by service function chaining across both VNFs/PNFs 
and in different domains. For configuration, the VNFM should be intelligent enough to 
automate the (re-)configuration operations, especially for those that react to runtime 
events, but also guarantees the configuration integrity. For accounting management, it 
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should extend to track network utilisation to ensure that individual parties can be 
appropriately billed for their use, especially the case of different parties coexist on the same 
device through virtualisation, etc. Then, the VNFM can extend to manage FCAPS with a 
global view and in an optimal way, e.g. configuration and performance optimisation can be 
automated responding to faults and accounting (billing). Finally, the management approach 
i.e. centralized/distributed/policy-based/self-managed (or self-healing) should also be taken 
into consideration. 

In SliceNet, it is proposed to have Juju [47] as a VNFM in MEC. Juju is an open source 
application modelling tool to quickly and efficiently deploy, configure, scale, integrate, and 
perform operational tasks on a wide choice of public and private clouds along with bare 
metal servers and containers. The central mechanism behind Juju is Charms. Charms contain 
all necessary instruction for deploying and configuring a service. A collection of Charms that 
link services together is called a Bundle, which allows to deploy whole chunks of app 
infrastructure in one go. According to [48], a Charm corresponds to a service definition and a 
collection of Charms and Bundles corresponds to the NS catalogue in ETSI model, and the 
process of uploading and deploying Charms into Juju corresponds to the NS on-boarding and 
instantiation process respectively. A global Charm catalogue containing all available Charms 
and Bundles can be found in Juju store [49]. 

 

Figure 26. Juju architecture [47] 

Juju manages the service lifecycle with hooks (or scripts) implemented inside Charms. 
Currently, there are five unit hooks including install, config-changed, start, upgrade-charm, 
and stop. There hooks are called during the lifecycle of a service, specified in the Charm’s 
configuration file. Besides, for each interface (e.g., loadbalancer) that a Charm supports, 
there are four relation hooks, named after the interfaces: ifaceName-relation-joined, 
ifaceName-relation-changed, ifaceName-relation-departed and ifaceName-relation-broken 
to handle cases where the interface is connected to it, or disconnected, or the configuration 
or settings of that interface are changed. 
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For management, Juju creates a special node, called Juju Controller during 
bootstrap/installation stage. This controller houses the database, manages all the machines 
in the running models and responds to all events that are triggered throughout the system. 
It also manages scale out, configuration and placement of all models/applications, user 
account and identification, access and sharing.  

In conclusion, we think that with Charms and Bundles mechanism and Juju Controller (also 
other supported functionality), Juju is a suitable tool to adopt as a VNFM in MEC MANO in 
SliceNet. 

5.5 Mobile Edge Orchestrator (NFVO) 

As in ETSI GS MEC 003 [2], the Mobile Edge Orchestrator (NFVO) is the core component in 
the Mobile Edge system level management. With an overview of complete Mobile Edge 
System, this NFVO is responsible for the following: 

 maintaining a global view of MEC system, including the view on all deployed Mobile 
Edge hosts, available services and resources on each edge host, instantiated 
applications running on each host and also the network topologies; 

 on-boarding of application packages, e.g. Mobile Edge application installations, 
application integrity check and authentication, application rules and requirements 
validation, also preparing the VIM(s) to handle the applications, while keeping track 
of the on-boarded packages; 

 triggering application instantiation and termination; 

 making decision on selecting a host(s) for application instantiation based on latency 
requirement, available resources and services;  

 triggering application relocation if supported. 

The main purpose of having MEC is to bring services closer to the users, in order to provide 
low latency services. However, mobility often occurs as users keep moving (ambulances, 
cars, phones, etc.); the communication between geographically edge hosts should be taken 
into account. Also, each edge host has its own NFVI managed by the local VIM, there should 
be multiple VIMs for multiple edge hosts, and thus multi-VIM management and 
orchestration, load balancing among edge hosts (also come with the issues how to select the 
best host for which applications, host relocation for the running application, etc.) should be 
taken into consideration. In addition, in 5G, the number of users grows significantly, there 
will be more Mobile Edge hosts added in a large scale, and for this, security and scalability 
should be supported, also the issue of monitoring and collecting KPIs from millions of edge 
objects should be counted. Overall, depending on the environments/conditions, the most 
suitable strategy to design and implement the NFVO, e.g. centralized/decentralized NFVO, 
distributed NFVO platform (with local NFVO for each edge and a centralized NFVO master), 
etc., is selected. However, in any decision, the NFVO should take into consideration the 
issues of mobility, scalability, load balancing, and orchestration on many different types of 
VIMs simultaneously; it should also be flexible to changes; and support for availability zones 
is a requirement for an orchestrator due to the edge and core networks segregation based 
on availability zones.  

Based on a preliminary investigation, SliceNet proposes three solutions to explore:  Open 
Baton [50], Juju-based orchestrator (JOX) [51], and OSM implemented in MEC as an NFVO.  
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5.5.1 Open Baton 

Open Baton [50] is an open source platform providing an aligned implementation of the ETSI 
MANO specification. The architecture of Open Baton is presented in Figure 27 which shows 
the interoperability (integrating heterogeneous VIMs and VNFMs via a plug and play model 
with the exposed Restful API and SDKs) and extensibility (flexible for supporting any kind of 
use case) of the framework. In addition, it supports a publish/subscribe Event Engine for 
dispatching of the lifecycle events execution, a Fault Management System (FMS) for 
automatic runtime management of faults which may occur at any level, an Autoscaling 
Engine (AE) for automatic runtime scaling operation of VNFs, a Network Slicing Engine (NSE) 
to ensure a specific QoS for a Network Slice Instance (NSI) or Network Slice Subnet Instance 
(NSSI), and a Monitoring Plugin to allow whatever monitoring system preferred. The 
communication between the components is via RabbitMQ, which implements the Advanced 
Message Queuing Protocol (AMQP). Importantly, the NFVO is completely designed and 
implemented and fully compliant with the ETSI MANO, and thus it is suitable to adopt this as 
the NFVO functional block for MEC MANO in SliceNet. 

 

Figure 27. Open Baton architecture [50] 

Open Baton is an extensible and customizable NFV MANO-compliant framework supporting 
different types of VIM (which can be easily added via a VIM instance Point of Presence 
(PoP)), VNFM, monitoring system, etc. Therefore, it is proposed in SliceNet that this 
framework will be adopted in SliceNet MANO where it uses existing Open Baton NFVO and 
integrates with OpenStack VIM; and either uses the provided generic VNFM and/or 
integrates with Juju VNFM to complete the comprehensive functional blocks in the ETSI 
MANO. Some other supported components (SSL, FM, AE, etc.) can be enabled, if needed. For 
multi-VIMs, the other VIMs can be integrated into this framework by providing their own 
VIM drivers via a plug and play model provided by Open Baton as shown in Figure 27. 
Alternatively, they can be integrated and managed by OpenStack (Docker Swarm, 
Kubernetes, Mesos) as shown in Figure 28, which illustrates the integration of the open 
source implementation selected for the three MANO functional blocks. 
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Figure 28. Proposed MANO implementation for MEC in SliceNet 

5.5.2 JOX- a Juju-based Slice Orchestrator  

JOX [51] is an open-source, event-driven orchestrator for the virtualized network that 
natively supports network slicing that can be used not only for MEC platform and its 
application, but also for RAN and CN segments. Inside the JOX core, a set of services is used 
to operate and control each network slice, while at the same time it supports the necessary 
interplay between resource and service orchestration, VNFM and VIMs. From the 
implementation perspective, JOX is tightly integrated with the Juju VNFM framework 
provided by Canonical.  

Figure 29 [51] shows the architecture of JOX including: 

 the JOX core with a set of core services to support of slice-specific life-cycle 
management, data handling, monitoring and template management; 

 JOX Plugin Framework where each plugin element interacts with the corresponding 
agent via a message bus; 

 the Northbound REST API to enable monitoring, control and programming of each 
slice. 

In more details, in JOX, a slice is represented by a JSlice object that is defined as a set of 
models (called JModels) together with a policy specification. Every JModel is a bundle of 
resources, services, service chains and policy. JOX Slices Controller (JSC) is responsible to 
host and control all the instantiated JSlices. This is the place where global optimizations can 
be performed. JOX Clouds Controller (JCC) is responsible to host and control all the 
instantiated JClouds. JCC offers services to the JSC. Every JCloud object hosts all the 
underlying cloud resources and interacts with the physical infrastructure and the cloud 
control mechanisms through two channels: (i) the VNFM for a set of basic functionalities, 
and (ii) directly with the VIM for fine-grain monitoring and control.  

JOX interacts with the Juju VNFM using the Juju-python 2.25 API. A specific Juju plugin is 
responsible to update the status of network slices services in runtime depending on the 
events/messages received by JOX driven by the JSlice owner. In order to interact with VIMs 
for the cloud infrastructure, the RAN and the MEC, JOX relies on a message-bus-based plugin 
framework. The message bus implementation is based in the RabbitMQ solution (v3.5.7 
AMQP), while we use the Pika library to exploit the RabbitMQ services. 
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Figure 29. JOX architecture [51] 

Different from Open Baton, JOX inherently supports lifecycle management of network slices 
and orchestration for the mobile network. Specifically, it supports basic operations defined 
by 3GPP in TR28.801 to manage the lifecycle (preparation, instantiation, configuration, 
activation, runtime and decommissioning phase) of a NSI, where all phase related API 
methods are exposed via the Northbound API. Besides, JOX also supports orchestration for 
the Mobile Network where it exploits RAN and CN specific plugins to efficiently orchestrate 
the edge network resources and services, e.g. orchestrating a new slice across multiple 
eNBs, partitioning the radio resources and deploying a dedicated CN for this newly 
generated slice. Furthermore, JOX also supports optimising the operational environment, for 
example, running a slice-specific logic or global optimisation on all slices applications on top 
of the Northbound API. 

Besides the implementation proposal in Figure 28, SliceNet has also investigated the option 
of JOX framework with JOX NFVO, Juju VNFM and multi-VIMs as shown in Figure 30. It is 
noted that JOX can also be used for RAN and CN segments. As JOX is a single JOX NFVO, 
single Juju VNFM and multi-VIMs, it can also integrate with other VIMs via the plugins 
framework.  
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Figure 30. Proposed MANO implementation for MEC in SliceNet with JOX NFVO 

5.5.3 OSM - ETSI’s Open Source Mano 

Open Source MANO (OSM) [52], [53] is an ETSI-hosted project to develop an Open Source 
NFV MANO software stack aligned with ETSI NFV, suitable for all VNFs, operationally 
significant and VIM-independent. The architecture of OSM is shown in Figure 31 [53], where 
it can be approximately mapped to ETSI NFV MANO logical view as in Figure 32 [53]. 

 

Figure 31. OSM Release THREE architecture [53] 
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Figure 32. OSM mapping to ETSI NFV MANO [53] 

The OSM has defined an expansive scope for the project covering both design-time and run-
time aspects related to service delivery for telecommunications service provider 
environments. The run-time scope includes: 

 An automated Service Orchestration environment that enables and simplifies the 
operational considerations of the various lifecycle phases involved in running a 
complex service based on NFV; 

 A superset of ETSI NFV MANO where the salient additional area of scope includes 
Service Orchestration but also explicitly includes provision for SDN control; 

 Delivery of a plugin model for integrating multiple SDN controllers; 

 Delivery of a plugin model for integrating multiple VIMs, including public cloud based 
VIMs; 

 Delivery of a plugin model for integrating multiple monitoring tools into the 
environment; 

 One reference VIM that has been optimised for Enhanced Platform Awareness (EPA) 
to enable high performance VNF deployments; 

 An integrated “Generic” VNFM with support for integrating “Specific” VNFMs. 

 Support to integrate Physical Network Functions into an automated Network Service 
deployment; 

 Being suitable for both Greenfield and Brownfield deployment scenarios; 

 GUI, CLI, Python based client library and REST interfaces to enable access to all 
features; 

The design-time scope includes: 



SliceNet H2020-ICT-2016-2/761913 Deliverable D3.1 

Page 64 of (77)  © SliceNet consortium 2018 

 Support for a model-driven environment with Data Models aligned with ETSI NFV 
MANO; 

 The capability for Create/Read/Update/Delete (CRUD) operations on the Network 
Service Definition; 

 Simplifying VNF Package Generation; 

 Supplying a Graphical User Interface (GUI) to accelerate the network service design 
time phase, VNF onboarding and deployment. 

As shown in Figure 31, with the plugins model for VIMs and SDNs, the Resource 
Orchestration Engine is connected to specific interface provided by the VIMs and SDN 
controllers for managing and coordinating resource allocations across multiple geo-
distributed VIMs and multiple SDN controllers. In addition, the VNF Configuration and 
Abstraction (VCA) layer enables configurations, actions and notifications to/from the VNFs 
and/or Element Managers. When backed by Juju, it provides the facility to create generic or 
specific indirect-mode VNFMs, via Charms that can support the interface the VNF/EM 
chooses to export. Overall, the OSM Release THREE substantially enhances interoperability 
with other components (VNFs, VIMs, SDN controllers, monitoring tools) and provides a plug-
in framework to make platform maintenance and extensions significantly easier to provide 
and support, and thus it is proposed in SliceNet that this framework will be adopted in 
SliceNet MANO. 
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6 Practical Case Studies – Mobile Edge Apps 

Studying the benefits of MEC as well as its practical cases was not possible due to the lack of 
implementation of ETSI MEC platform. We analyse three sample case studies that can be 
enabled with MEC in general and LL-MEC in particular. As a next step, the proposed SliceNet 
will be investigated leveraging the flexibility offered by the LL-MEC platform. 

The considered demonstration scenario is illustrated in Figure 33 and consists of 2 
commercial LTE-enabled smartphones (Huawei Nexus 6p), National Instrument/Ettus USRP 
B210 as RF front-end, and 4 Linux-based PC running OAI eNodeB, OAI core network, Open 
vSwitch v2.7, and Mosaic5G LL-MEC. The experiment is deployed in FDD SISO mode with 
5MHz channel bandwidth. The target frequencies will be band 7 (Europe) radio 
environment.  

 

Figure 33. SliceNet MEC demonstration platform 

6.1 End-to-End Mobile Network Slicing 

Future 5G networks are envisioned to support a wide range of vertical segments with a 
diverse set of performance and service requirements. Network slicing can be seen as an 
enabler to share the physical network across multiple logically isolated networks. We 
consider LL-MEC as a platform to deploy network slicing leveraging 3GPP Gateway CN 
(GWCN) towards the enhanced dedicated core network (eDECOR 3GPP TR 23.711) to 
achieve isolation and performance guarantee in the Data Plane. In eDECOR, a UE indicates a 
slice ID that allows the eNodeB to select the appropriate CN elements for its traffic. The slice 
ID is indicated by the UE based on the encoded information in the UE, i.e. in the Universal 
Subscriber Identity Module (USIM), or can be simply mapped to the Public Land Mobile 
Network (PLMN). Moreover, the UE communicates the slice ID during the RRC connection 
procedure as well as in the Non-Access Stratum (NAS) procedure, which allows both eNB and 
MME to contain the UE within the requested slice(s) and treat it accordingly.  
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We assume no traffic differentiation within a slice and thus the same policy is applied to all 
the UEs within the slice whereas the policy between different slices are generally mutually 
independent. When realizing an E2E network slicing, the significant challenges come mostly 
from RAN due to the dependency on dedicated hardware (i.e. radio frontend), the time-
varying radio resources, and mobility management among the others. Figure 34 shows how 
network programming (i.e. RAN and CN) is enabled in LL-MEC to create two network slices, 
where one gets higher over-the-air performance and served locally by MEC and the other 
gets the best-effort performance and directed to the backend server. This experiment is 
related to the SliceNet Smart Grid use-case, where the reaction time to an event is 
significantly reduced with the help of MEC. 

 

Figure 34. LL-MEC programmability in creating slices 

More specifically, we design a slice policy enforcement algorithm to apply different resource 
allocation strategies to RAN and implement it as a low latency MEC application interfacing 
with the LL-MEC platform through the SDK. The Data-Plane programmability is enabled by 
the EPS and the real-time control decision can be delegated back to RAN.   

Two slices are created and assigned with one Commercial Off-The-Shelf (COTS) UE each, and 
the percentage of radio resources and switching bandwidth for each slice are adjusted 
according to the applied slicing policy. To demonstrate the benefits of end-to-end slicing, we 
consider both uncoordinated and coordinated programmability for RAN and CN and change 
the enforced policy on-the-fly to measure the resulted downlink throughput. As illustrated in 
Figure 35, for uncoordinated case, the policy is first enforced at t=10s with 1Mbps for slice 1 
and 15 Mbps for slice 2. Then at t=20s, a second policy is enforced only to RAN to lower the 
rate down to 8Mbps for both slices (equivalent to 50% of radio resources per slice). Finally, a 
third policy is enforced only to CN at t=33s to increase the switching bandwidth to 6 Mbps. 
In case of coordinated programmability, only one policy is enforced at t=18s to both RAN 
and CN to create a best-effort slice with 1Mbps and low latency slice with 15 Mbps.  

The results confirm the benefits of MEC and SDN to allow coordinated programmability and 
enable the network slicing. In the case of uncoordinated slicing, some bandwidth is occupied 
but not used efficiently due to the asynchronous resource allocation between RAN and CN. 
However, for coordinated slicing, it can be clearly seen the performance gap between these 
two slices and the resources are appropriately allocated to each slice according to their 
specific requirements. While the results demonstrate the power of programmability in 
changing the behaviour and performance of the network, it has to be mentioned that 
unauthorized or inconsistent control decisions made from MEC applications can potentially 
lead to inefficient network utilization and performance or even a network failure. This 
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suggests that access control policy enforcement and conflict resolution among different MEC 
applications are definitely required in the production environment. 

 
(a) Uncoordinated Slicing  

 
(b) Coordinated Slicing  

Figure 35. Mobile network slicing use case 

6.2 RAN-Aware Video Optimization 

As a showcase of mobile network slicing, RAN-aware content optimization is chose as the 
second use case. To demonstrate the benefits of LL-MEC, we consider video optimization as 
one of the MEC applications and study the benefit of RAN information reported by the 
eNodeB on improving user QoE. For example, the application can monitor the cell load 
status and radio link quality obtained from RNIS in order to enforce a new resource 
allocation policy or change the content quality. In the latter case, the video transcoding is 
further adapted based on the RAN status so as to improve the network efficiency (e.g. by 
avoiding TCP congestion control) and user QoE (e.g. avoid buffer freeze).  

This use case is built on the top of the low latency network slice described above. We 
implement a simple video streaming application over HTTP on top of LL-MEC and choose 
Channel Quality Indicator (CQI) as a flag to reflect radio link quality of each UE. When UE 
accesses the video service, LL-MEC has the ability to (a) program the routing path and 
redirect the traffic to one of the MEC applications if the requested service matches (e.g. 
destination IP address), and (b) adapt dynamically the streaming rate according to the 
estimated UE throughput. Multiple approaches to provide throughput guidance can be 
applied on the top of LL-MEC RNIS producer app such as a statistical method, e.g. 
exponential moving average or even a discrete link quality to throughput mapping. This 
experiment is related to the SliceNet eHealth use-case, where the video streaming rate is 
adapted to the radio link condition with the help of MEC. 

In Table 8, we show the maximum TCP bitrate of a video stream through a discrete mapping 
between user CQI and sustainable TCP throughput identified during experiments. This value 
is then used as a predicted user throughput allowing the video server to adjust the 
transcoding accordingly. The observed buffer freeze and perceived QoE (results are not 
shown here) at the user confirm such a RAN-aware content optimization enabled by LL-MEC. 
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Table 8. Measured maximum sustainable TCP bitrate with discrete congestion level based on CQI 

CQI Downlink (Mb/s) Uplink (Mb/s) 

11- 15 15.224 8.08 

9- 11 11.469 6.04 

7- 9 9.88 4.47 

4- 7 5.591 2.49 

0-4 1.08 0.69 

The results reveal the benefit of the coordinated slicing and joint programmability managed 
by authorized MEC applications to achieve an effective mobile network. It is noted that the 
timescale of detecting CQI changes is much less than the one in TCP congestion mechanism. 
Instead of recovering congestion reactively, adapting the service demand proactively is also 
feasible through RNIS. 

6.3 IoT Gateway 

The MEC technology may be extended to the IoT services, as a platform used to aggregate 
and process the different IoT packets, with respect of scalability of resources. A specific 
implementation of IoT related to MEC is the Smart City vertical (Smart Lighting use case), 
which is in fact the massive Machine Type Communications UCs, aligned with the 3GPP. The 
MEC framework provides the networks communication aspects, 3GPP network, as an Mx 
interface between the UE app (users in general, sensors) and the MEC system. In case of 
different application and communication systems, it may be used also non-3GPP 
communication networks, as the LoRa or Wi-Fi. 

The scenario is based on the massive IoT sensors deployment (tens of thousands of lighting 
poles with sensors), connected through seamless type technology to the provider network 
(MEC), by using dedicated IoT Gateways that plays the role of the network connectors. The 
scenario is relevant if the application used for the UCs is also considered critical and there 
are not local Data Centres. In the E2E vision, the IoT sensors may generate tens of millions of 
messages  in a month, that are translated into thousands of messages per second, requiring 
a place of data processing before sending them to the edge or core application. There is also 
a requirement for security, as the application hosted in cloud (virtualized environment) are 
exposed to malicious attacks. These aspects and are treated at the locally, at the IoT 
Gateways level, that will handle the gap between the devices (sensors) and cloud apps.  

The IoT Gateway, as a connector, must support any application and any device and it may be 
a physical device or a software application and pass raw data into a secure way to the 
central application (IoT platform, dashboard, command and control). In this aspect, the IoT 
Gateway module integrates a two-way communication between any 3rd party edge/core 
platform apps and the devices (sensors), assuring the interoperability and scalability and 
simplified communication, distributes the messages of different services and expose 
multiple IoT protocols.  

The overall IoT network architecture for our use case, Smart Lighting, whose particularities 
and functional blocks were explained above, is presented on Figure 36.  
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Figure 36. Overall IoT network architecture 

As a third use case, we consider LL-MEC as a platform to deploy such an IoT Gateway at the 
edge leveraging the newly-introduced network slicing concept. Figure 37 shows a simplified 
workflow diagram on how the IoT traffics are directed to a dedicated user-plane function 
denoted as dedicated X-GW-U (De-X-GW-U) LL-MEC, based on the slice ID. Following the 
reception of the slice ID through attach request, the SMF, also referred as MME/SGW-C in 
4G, maps the UE slice ID (stored in HSS) to the De-X-GW-U, and initiates a set of OpenFlow 
rules for this newly instantiated switch. Then, the tunnel information setup for De-X-GW-U is 
included in Initial Context Setup Request and sent to eNodeB. At this point, the dedicated 
Data Plane of the UE is established between the eNodeB and switch.  This experiment is 
related to the Smart City use case, where a large number of sensory devices are served with 
the help of MEC. 

 

Figure 37. Workflow to establish a dedicated user-plane function 

In this use case, 2000 UEs are considered, which are grouped into two slices of 1000 UEs. 
The massive LL-MEC S1-U emulator is used for sending sensory data to dedicated switches 
depending on the UE slice ID. The result of latency measurement is shown in Figure 38 with 
and without slicing. It can be observed that with the dedicated Data Plane, not only traffic 
isolation and scalability can be achieved, but also performance can be greatly improved by 
lowering the latency and its variability. With the help of LL-MEC, current architecture is 
ready to deploy IoT gateway for different island of sensory devices. As a result, IoT devices 
can be directed to a dedicated gateway for S1-U capabilities based on slice ID and achieve 
traffic isolation and security in terms of data privacy.  
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Figure 38. Latency measurements of isolated IoT slices 

With MEC platform, an IoT Gateway control module can be deployed at the edge of the 
network for an efficient aggregation and management of messages sent by devices (sensors) 
towards the cloud and processing applications. It is designed to connect any type of sensors 
using different radio access network (4G, LTE-M, NR, LoRaWAN, etc.) or different dedicated 
UPF (see above). This device is built to assure bidirectional communication. Taking this into 
account, any admin or 3rd party applications can send commands through cloud to 
sensors/devices in the field. 

Such an IOT gateway shall support divers IoT protocols. A general solution should have at 
least four main available connectivity protocols: 

 MQTT (Message Queuing Telemetry Transport):  MQTT is a lightweight connectivity 
protocol for IoT applications. It is based on the TCP/IP stack which uses the 
publish/subscribe method for transportation of data. MQTT consists of two broad 
categories of participating devices - they are called brokers and clients. MQTT works 
on a paradigm called the publish/subscribe method. A client can publish data 
regarding a certain parameter to the broker under a topic. Another client interested 
in this topic can subscribe to this topic and receive regular updates on messages 
under the topic.  

 CoAP (Constrained Application Protocol):  CoAP is a web transfer protocol based on 
the REST model. It is mainly used for lightweight M2M communication owing to its 
small header size. CoAP is built upon the UDP stack, which is the primary difference 
when compared with HTTP or MQTT. This makes it faster and more resource 
optimized rather than resource intensive. However, this also makes it less reliable 
than HTTP or MQTT, and QoS factors remain static in case of CoAP.  

 REST: RESTful HTTP - Hyper Text Transfer Protocol, the most popular protocol for 
communication over the Internet. It runs on a client-server model, with the server 
responding to any client demands and it is necessary for this protocol to be built 
upon the TCP/IP stack.  
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 LoRaWAN: LoRaWAN is a media access control protocol for wide area networks. It is 
designed to allow low-powered devices to communicate with Internet-connected 
applications over long-range wireless connections. Using those protocols mentioned 
above, all sensors should connect to IoT Gateway over different type of access 
networks. E.g. 2G/3G/4G, LTE-M, LoRaWAN, NB-IoT or Bluetooth/Wi-Fi. 

Figure 39 below depicts the IoT Gateway connectors architecture. 

 

Figure 39. IoT gateway logical architecture 

As mentioned above, an IoT Gateway should be a component that can allow bidirectional 
communications. 

1. First flow, should gather data from all kind of sensors. Connectivity module is the 
interface that can be configured for specific protocol (according to each use case and 
access type). Message filtering is a function that sorts messages based on tags, id`s 
and forward the message to queue. Queues are configured based on 
clients/applications who listen for specifics messages. Endpoint block should expose 
an interface where some data can be extracted by anyone with access to it. 

2. Second flow, should relay also on endpoint block where can call some methods or 
functions such that sensors can receive commands or some specific configurations 
through APIs. 

IoT Gateway exposes a REST API with the following functionalities: 

 Device management (command operations, parameters, inventory, etc.); 

 API Key operations; 

 Queues management; 

 Alerts management; 

 Web portal. 
Software package for this type of application can be installed on a virtual machine with 
following amount of resources: 

 CPU: 8 cores; 

 RAM: 8 GB; 

 Storage: 750 GB (depends on the type of architecture – if, for example, choose to use 
a database as cache system for faster search and indexing). 

The IoT gateway is a key component of every IoT solution. Before decision regarding 
hardware for the gateway platform, it is important to analyse message flow and the data 
formats of the payloads and try to filter out or aggregate as much data as it can. In addition, 
while the choice of proper hardware for IoT solution is very important, picking up the right 
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gateway software and infrastructure is a factor that will highly affect the total maintenance 
and cost of entire system. 

Specific 5G IoT use case requirements, based on the principle of deploying applications 
lower in the network, in order to meet various customers’ requirements, starts from today 
implementations, as we face today’s high latency apps implementations. 5G applications in 
this context requires medium or low latency or data processing, as close as possible to the 
client, using a MEC architecture. 
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7 Conclusions 

This deliverable has presented the main activities related to the design and prototype of an 
open virtualised Mobile/Multi-access Edge Computing (MEC) infrastructure segment as part 
of the SliceNet end-to-end slicing-friendly infrastructure. An exhaustive analysis of the 
different programmable data path mechanisms has been carried out to provide a concrete 
design and prototype including selected suitable enablers towards allowing implementation 
of QoS-aware Network Slices in the MEC-Core network segment. It will enable the Slice 
Control and Slice Management capabilities envisioned in SliceNet to be created on top. An 
ETSI MEC platform has been prototyped to enable CP and UP programmability and the 
capabilities to facilitate the deployment of diverse applications over the edge of the network 
while enabling a slice-friendly infrastructure. Moreover, a number of considerations about 
the network Management Plane have been provided for the approach taken in the SliceNet 
consortium to address the management of MEC architecture. Prototyping details and 
empirical results have been provided to validate the essential technical approaches 
proposed in the MEC architecture. More empirical results will be presented in scientific 
publications.  
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